Что такое нок в математике определение

Наименьшее общее кратное

Общее кратное

Число может быть кратно не одному, а сразу нескольким числам, такое число называется общим кратным данных чисел.

Числу 3 кратны числа: 6, 9, 12, 15 и т. д.

Числу 4 кратны числа: 8, 12, 16, 20 и т. д.

Можно заметить, что одно и тоже число (12) делится нацело сразу на оба числа 3 и 4. Следовательно, число 12 есть общее кратное чисел 3 и 4.

Общее кратное чисел — это любое число, которое делится без остатка на каждое из данных чисел.

Найти общее кратное нескольких натуральных чисел достаточно легко, можно просто перемножить данные числа, полученное произведение и будет их общим кратным.

Пример. Найти общее кратное для чисел 2, 3, 4, 6.

Число 144 — общее кратное чисел 2, 3, 4 и 6.

Для любого количества натуральных чисел существует бесконечно много кратных.

Пример. Для чисел 12 и 20 кратными будут числа: 60, 120, 180, 240 и т. д. Все они являются общими кратными для чисел 12 и 20.

Наименьшее общее кратное

Наименьшее общее кратное (НОК) нескольких чисел — это самое маленькое натуральное число, которое делится без остатка на каждое из этих чисел.

Пример. Наименьшим общим кратным чисел 3, 4 и 9 является число 36, никакое другое число меньше 36 не делится одновременно на 3, 4 и 9 без остатка.

Наименьшее общее кратное записывается так:

Числа в круглых скобках могут быть указаны в любом порядке.

Пример. Запишем наименьшее общее кратное чисел 3, 4 и 9:

Как найти НОК

Рассмотрим два способа нахождения наименьшего общего кратного: с помощью разложения чисел на простые множители и нахождение НОК через НОД.

С помощью разложения на простые множители

Чтобы найти НОК нескольких натуральных чисел, надо разложить эти числа на простые множители, затем взять из этих разложений каждый простой множитель с наибольшим показателем степени и перемножить эти множители между собой.

Пример. Найдите наименьшее общее кратное двух чисел 99 и 54.

Решение: разложим каждое из этих чисел на простые множители:

Наименьшее общее кратное должно делиться на 99, значит, в его состав должны входить все множители числа 99. Далее НОК должно делиться и на 54, т. е. в его состав должны входить множители и этого числа.

Выпишем из этих разложений каждый простой множитель с наибольшим показателем степени и перемножим эти множители между собой. Получим следующее произведение:

Это и есть наименьшее общее кратное данных чисел. Никакое другое число меньше 594 не делится нацело на 99 и 54.

Ответ: НОК (99, 54) = 594.

Так как взаимно простые числа не имеют одинаковых простых множителей, то их наименьшее общее кратное равно произведению этих чисел.

Пример. Найдите наименьшее общее кратное двух чисел 12 и 49.

Решение: разложим каждое из этих чисел на простые множители:

12 = 2 · 2 · 3 = 2 2 · 3,

Применяя к этому случаю правило, мы придём к заключению, что взаимно простые числа надо просто перемножить:

2 2 · 3 · 7 2 = 12 · 49 = 980.

Ответ: НОК (12, 49) = 980.

Таким же образом надо поступать, когда нужно найти наименьшее общее кратное простых чисел.

Пример. Найдите наименьшее общее кратное чисел 5, 7 и 13.

Решение: так как данные числа являются простыми, то просто перемножим их:

Ответ: НОК (5, 7, 13) = 455.

Если большее из данных чисел делится на все остальные числа, то это число и будет наименьшим общим кратным данных чисел.

Пример. Найдите наименьшее общее кратное чисел 24, 12 и 4.

Решение: разложим каждое из этих чисел на простые множители:

24 = 2 · 2 · 2 · 3 = 2 3 · 3,

12 = 2 · 2 · 3 = 2 2 · 3,

Можно заметить, что разложение большего числа содержит все множители остальных чисел, значит большее из этих чисел делится на все остальные числа (в том числе и само на себя) и является наименьшим общим кратным:

Ответ: НОК (24, 12, 4) = 24.

Нахождение НОК через НОД

НОК двух натуральных чисел равно произведению этих чисел, поделённого на их НОД.

Правило в общем виде:

Пример. Найдите наименьшее общее кратное двух чисел 99 и 54.

Теперь мы можем вычислить НОК этих чисел по формуле:

НОК (99, 54) = 99 · 54 : НОД (99, 54) = 5346 : 9 = 594.

Ответ: НОК (99, 54) = 594.

Чтобы найти НОК трёх или более чисел используется следующий порядок действий:

Пример. Найдите наименьшее общее кратное чисел 8, 12 и 9.

Решение: сначала находим наибольший общий делитель любых двух из этих чисел, например, 12 и 8:

Вычисляем их НОК по формуле:

НОК (12, 8) = 12 · 8 : НОД (12, 8) = 96 : 4 = 24.

Теперь найдём НОК числа 24 и оставшегося числа 9. Их НОД:

Вычисляем НОК по формуле:

НОК (24, 9) = 24 · 9 : НОД (24, 9) = 216 : 3 = 72.

Ответ: НОК (8, 12, 9) = 72.

Калькулятор НОК

Источник

Нахождение наименьшего общего кратного: способы, примеры нахождения НОК

Продолжим разговор о наименьшем общем кратном, который мы начали в разделе « НОК – наименьшее общее кратное, определение, примеры». В этой теме мы рассмотрим способы нахождения НОК для трех чисел и более, разберем вопрос о том, как найти НОК отрицательного числа.

Вычисление наименьшего общего кратного (НОК) через НОД

Мы уже установили связь наименьшего общего кратного с наибольшим общим делителем. Теперь научимся определять НОК через НОД. Сначала разберемся, как делать это для положительных чисел.

Решение

Решение

В этом примере мы использовали правило нахождения наименьшего общего кратного для целых положительных чисел a и b : если первое число делится на второе, что НОК этих чисел будет равно первому числу.

Нахождение НОК с помощью разложения чисел на простые множители

Теперь давайте рассмотрим способ нахождения НОК, который основан на разложении чисел на простые множители.

Для нахождения наименьшего общего кратного нам понадобится выполнить ряд несложных действий:

Решение

Найдем все простые множители чисел, данных в условии:

441 147 49 7 1 3 3 7 7

700 350 175 35 7 1 2 2 5 5 7

Дадим еще одну формулировку метода нахождения НОК путем разложения чисел на простые множители.

Раньше мы исключали из всего количества множителей общие для обоих чисел. Теперь мы сделаем иначе:

Решение

Нахождение НОК трех и большего количества чисел

Независимо от того, с каким количеством чисел мы имеем дело, алгоритм наших действий всегда будет одинаковым: мы будем последовательно находить НОК двух чисел. На этот случай есть теорема.

Теперь рассмотрим, как можно применять теорему для решения конкретных задач.

Решение

Как видите, вычисления получаются несложными, но достаточно трудоемкими. Чтобы сэкономить время, можно пойти другим путем.

Предлагаем вам следующий алгоритм действий:

Решение

Нахождение наименьшего общего кратного отрицательных чисел

Для того, чтобы найти наименьшее общее кратное отрицательных чисел, эти числа необходимо сначала заменить на числа с противоположным знаком, а затем провести вычисления по приведенным выше алгоритмам.

Решение

Источник

Наименьшее общее кратное (НОК) — алгоритмы и примеры определения

trong>В школьную программу по математике входит понятие наименьшее общее кратное.Каждый ученик должен понимать и уметь находить эту величину. Это поможет проводить действия с дробями, знаменатели у которых отличаются. Вычислить этот показатель можно несколькими способами на бумаге или с помощью онлайн-калькуляторов.

Что такое нок в математике определение. Смотреть фото Что такое нок в математике определение. Смотреть картинку Что такое нок в математике определение. Картинка про Что такое нок в математике определение. Фото Что такое нок в математике определение

Базовые понятия

Для вычисления НОК (наименьшее общее кратное) необходимо разобраться с терминами и определениями. Если любое натуральное число делится на Х без остатка, это число считается кратным Х. Например, 14, 49, 63 кратны 7.

Любое число в математике может иметь бесконечное множество кратных. А вот количество делителей для него самого ограничено. У простых чисел их всего 2 — это единица и само простое число.

Что такое нок в математике определение. Смотреть фото Что такое нок в математике определение. Смотреть картинку Что такое нок в математике определение. Картинка про Что такое нок в математике определение. Фото Что такое нок в математике определение

НОК может быть общим сразу для нескольких величин. Если какая-то из них делится без остатка сразу на 2 числа, она называется общим кратным этой пары. Например, 10 кратно одновременно 2 и 5, то есть его можно разделить нацело на 2 и на 5. Однако для 2 и 5 кратным может быть не только 10, но и другие величины — 20, 50, 100 и так далее. С математической точки зрения, важно определить меньшую из этих величин.

Наименьшее общее кратное или НОК для величин А и В — это самое маленькое число, которое одновременно делится на А и на В. То есть оно кратно сразу А и В.

Вместо переменных можно подставлять любые числа и искать для них этот показатель.

Методы нахождения

Чтобы найти НОК 2 чисел, в математике используются три способа. Каждый из них может быть применен для проведения вычислений. Если все операции совершены правильно, в результате получится один и тот же ответ при всех методах.

Первый способ

При этом способе применяется метод простого подбора. Для многих учеников он самый простой. Порядок вычисления будет такой:

Что такое нок в математике определение. Смотреть фото Что такое нок в математике определение. Смотреть картинку Что такое нок в математике определение. Картинка про Что такое нок в математике определение. Фото Что такое нок в математике определение

Пример: необходимо найти НОК для 6 и 8. Сначала составляется ряд кратных 6. Он будет выглядеть так: 6, 12, 18, 24, 30, 36, 42, 48, 54, 60 и так далее. Для числа 8 ряд кратных будет иметь вид: 8, 16, 24, 32, 40. 48, 56, 64, 72, 80 и так далее. Если изучить оба ряда, можно обнаружить 2 одинаковых числа — 24 и 48. Меньшим из них является 24. Это и есть НОК для 6 и 8. Для проверки делят 24 на эти величины. В обоих случаях получаются целые величины без остатка.

Второй вариант

Для вычисления вторым способом нужно разложить на простые множители обе величины. Простым множителем в математике принято называть число, которое делится без остатка только на 1 и на себя.

Что такое нок в математике определение. Смотреть фото Что такое нок в математике определение. Смотреть картинку Что такое нок в математике определение. Картинка про Что такое нок в математике определение. Фото Что такое нок в математике определение

Следующий шаг — выписываются все множители из первого ряда. Затем добавляются те цифры, которых не было в первом ряду, но были во втором. Получится цепочка из нескольких простых чисел. Их необходимо перемножить между собой, в результате чего получится НОК.

Пример: требуется найти НОК для 8 и 12. Для начала нужно разложить на простые множители 8. Получится 2, 2 и 2. Дальше раскладывается аналогичным образом число 12. Получается 2, 2 и 3. Выписываются множители из первого разложенного ряда 2х2х2. Далее добавляются цифры из второго ряда, которых нет в первом — 2х2х2х3.

После перемножения этих величин получается 24. Это и будет НОК для 12 и 8, поскольку оно делится нацело на оба числа. Фактически все действие сводится к разложению на простые множители двух величин одновременно.

Третий алгоритм

Существует еще один метод нахождения НОК. Решать примеры с его помощью можно только для двух чисел. Необходимо заранее знать наибольший общий делитель — НОД. Так принято называть самое большое число, на которое 2 какие-либо переменные делятся без остатка. Вместо переменных можно ввести конкретные данные. НОД возможно вычислить не только для 2, но и для большего количества величин. В математике это понятие принято записывать кратко НОД (х, у).

Что такое нок в математике определение. Смотреть фото Что такое нок в математике определение. Смотреть картинку Что такое нок в математике определение. Картинка про Что такое нок в математике определение. Фото Что такое нок в математике определение

Пример: требуется рассчитать НОД для 90 и 117. При разложении на простые множители 90 получается ряд 2,3,3,5. Ту же операцию проводят с числом 117 — получается 3,3,13. Для вычисления НОД умножают общие для двух рядов множители — 3х3=9. Значит, НОД (90,117) = 9.

Часто получается, что наибольший общий делитель равняется одному из чисел. Так бывает, если на него можно разделить все остальные. Например, для 10, 20 и 30 наибольшим делителем будет 10.

Если в задаче необходимо найти одновременно НОД и НОК, применяют третий способ вычисления. Алгоритм работы следующий:

Пример: требуется найти НОД и НОК для чисел 115 и 175. Вначале вычисляется НОД. В этом случае он будет равняться 5. Затем 25 и 40 перемножают, получается 20125.

Полученный результат делят на 5, в итоге НОК 15 и 40 равно 4025.

Что такое нок в математике определение. Смотреть фото Что такое нок в математике определение. Смотреть картинку Что такое нок в математике определение. Картинка про Что такое нок в математике определение. Фото Что такое нок в математике определение

Чтобы проверить достоверность результата, можно вычислить НОК первым или вторым методами.

Например, нужно найти НОК (25, 40).

Наибольшим делителем для них будет 5. Тогда (25х40):5 = 200.

Проверка вторым способом:

Такой же результат будет получен и при решении вторым методом.

Особые случаи

Не во всех случаях вычисление проводится стандартными способами. Существуют пары чисел с особыми свойствами, для которых найти НОК можно без громоздких вычислений.

К таким случаям относятся следующие:

Что такое нок в математике определение. Смотреть фото Что такое нок в математике определение. Смотреть картинку Что такое нок в математике определение. Картинка про Что такое нок в математике определение. Фото Что такое нок в математике определение

Большинство учащихся быстро усваивают, как найти НОК двух чисел.

Однако некоторых вводят в растерянность ситуации, когда требуется вычислить НОК или НОД для трех или более исходных. В этом случае необходимо последовательно находить кратное для каждой пары из имеющегося ряда.

Для этих случаев в математике есть особая теорема. Если имеется числовой ряд с формулой А1, А2, А3… Ах, то НОК для всех показателей вычисляется последовательно. Вначале НОК (А1, А2), затем для А2, А3 и так далее.

Однако такой путь может оказаться довольно трудоемким.

Чтобы сэкономить время, можно воспользоваться другим методом поиска:

Что такое нок в математике определение. Смотреть фото Что такое нок в математике определение. Смотреть картинку Что такое нок в математике определение. Картинка про Что такое нок в математике определение. Фото Что такое нок в математике определение

Применение онлайн-калькулятора

Современные технологии позволяют не рассчитывать нужные данные на бумаге. Любой пользователь может найти в интернете НОД и НОК калькулятор, работающий в онлайн-режиме. Такой онлайн-сервис особенно удобен, если нужно найти делитель и кратное для 3 и более чисел.

Чтобы получить нужные расчеты, достаточно ввести в окошки калькулятора исходные данные и выбрать НОД или НОК. Поскольку между этими понятиями существует тесная связь, обычно они вычисляются вместе. Внизу находится кнопка «найти», которую нужно нажать. Через 2−3 секунды внизу появится ответ. Кроме того, некоторые сервисы выдают не только конечные результаты, но и пошаговый порядок расчетов. Здесь же можно найти онлайн-тесты на заданную тему.

Таким образом, учащийся может понять алгоритм действий и усвоить правило при вычислении НОК онлайн. Это всегда проще сделать на практическом примере.

Источник

Презентация к уроку

Вернемся к нашему примеру и для наглядности запишем решение в виде таблицы.

ДелимоеДелительЧастноеОстаток
343287156
2875657
56780

А как найти наименьшее общее кратное (НОК) тех же чисел? Нет ли и для этого какого-нибудь способа, не требующего предварительного разложения этих чисел на простые множители? Оказывается, есть, и притом очень простой. Нужно перемножить эти числа и разделить произведение на найденный нами наибольший общий делитель(НОД). В данном примере произведение чисел равно 98441. Делим его на 7 и получаем число 14063. НОК(343,287) = 14063.

— позволяет экономить время, отводимое на выполнение работы, что приводит к значительному увеличению объема выполненных заданий;

— повышает скорость и точность выполнения арифметических операций, что ведет к значительному уменьшению количества допускаемых вычислительных ошибок;

— позволяет находить красивые способы решения нестандартных текстовых задач;

— развивает любознательность учащихся, расширяет их кругозор;

— создает предпосылки для воспитания разносторонней творческой личности.

Источник

Наименьшее общее кратное

Наиме́ньшее о́бщее кра́тное (НОК) двух целых чисел m и n есть наименьшее натуральное число, которое делится на m и n без остатка. Обозначается одним из следующих способов:

Пример: НОК(16, 20) = 80.

Наименьшее общее кратное для нескольких чисел — это наименьшее натуральное число, которое делится на каждое из этих чисел.

Одно из наиболее частых применений НОК — приведение дробей к общему знаменателю.

Содержание

Свойства

Нахождение НОК

НОК(a, b) можно вычислить несколькими способами.

1. Если известен наибольший общий делитель, можно использовать его связь с НОК:

Что такое нок в математике определение. Смотреть фото Что такое нок в математике определение. Смотреть картинку Что такое нок в математике определение. Картинка про Что такое нок в математике определение. Фото Что такое нок в математике определение

2. Пусть известно каноническое разложение обоих чисел на простые множители:

Что такое нок в математике определение. Смотреть фото Что такое нок в математике определение. Смотреть картинку Что такое нок в математике определение. Картинка про Что такое нок в математике определение. Фото Что такое нок в математике определение Что такое нок в математике определение. Смотреть фото Что такое нок в математике определение. Смотреть картинку Что такое нок в математике определение. Картинка про Что такое нок в математике определение. Фото Что такое нок в математике определение

где Что такое нок в математике определение. Смотреть фото Что такое нок в математике определение. Смотреть картинку Что такое нок в математике определение. Картинка про Что такое нок в математике определение. Фото Что такое нок в математике определение— различные простые числа, а Что такое нок в математике определение. Смотреть фото Что такое нок в математике определение. Смотреть картинку Что такое нок в математике определение. Картинка про Что такое нок в математике определение. Фото Что такое нок в математике определениеи Что такое нок в математике определение. Смотреть фото Что такое нок в математике определение. Смотреть картинку Что такое нок в математике определение. Картинка про Что такое нок в математике определение. Фото Что такое нок в математике определение— неотрицательные целые числа (они могут быть нулями, если соответствующее простое отсутствует в разложении). Тогда НОК(a,b) вычисляется по формуле:

Что такое нок в математике определение. Смотреть фото Что такое нок в математике определение. Смотреть картинку Что такое нок в математике определение. Картинка про Что такое нок в математике определение. Фото Что такое нок в математике определение

Другими словами, разложение НОК содержит все простые множители, входящие хотя бы в одно из разложений чисел a, b, причём из двух показателей степени этого множителя берётся наибольший. Пример:

Что такое нок в математике определение. Смотреть фото Что такое нок в математике определение. Смотреть картинку Что такое нок в математике определение. Картинка про Что такое нок в математике определение. Фото Что такое нок в математике определение Что такое нок в математике определение. Смотреть фото Что такое нок в математике определение. Смотреть картинку Что такое нок в математике определение. Картинка про Что такое нок в математике определение. Фото Что такое нок в математике определение Что такое нок в математике определение. Смотреть фото Что такое нок в математике определение. Смотреть картинку Что такое нок в математике определение. Картинка про Что такое нок в математике определение. Фото Что такое нок в математике определение Что такое нок в математике определение. Смотреть фото Что такое нок в математике определение. Смотреть картинку Что такое нок в математике определение. Картинка про Что такое нок в математике определение. Фото Что такое нок в математике определение

Вычисление наименьшего общего кратного нескольких чисел может быть сведено к нескольким последовательным вычислениям НОК от двух чисел:

См. также

Литература

Ссылки

Полезное

Смотреть что такое «Наименьшее общее кратное» в других словарях:

НАИМЕНЬШЕЕ ОБЩЕЕ КРАТНОЕ — наименьшее из целых положительных чисел, делящихся без остатка на каждое из данных целых чисел. Напр., наименьшее общее кратное 2, 3 и 4 есть 12 … Большой Энциклопедический словарь

наименьшее общее кратное — HOK — [[http://www.rfcmd.ru/glossword/1.8/index.php?a=index d=23]] Тематики защита информации Синонимы HOK EN least common multipleLCM … Справочник технического переводчика

наименьшее общее кратное — наименьшее из целых положительных чисел, делящихся без остатка на каждое из данных целых чисел. Например, наименьшее общее кратное 2, 3 и 4 есть 12. * * * НАИМЕНЬШЕЕ ОБЩЕЕ КРАТНОЕ НАИМЕНЬШЕЕ ОБЩЕЕ КРАТНОЕ, наименьшее из целых положительных чисел … Энциклопедический словарь

НАИМЕНЬШЕЕ ОБЩЕЕ КРАТНОЕ — наименьшее из целых положит. чисел, делящихся без остатка на каждое из данных целых чисел. Напр., Н. о. к. 2, 3 и 4 есть 12 … Естествознание. Энциклопедический словарь

Наименьшее общее кратное — двух или нескольких натуральных чисел наименьшее, делящееся на каждое из них, положительное число. Например, Н. о. к. чисел 2 и 3 есть 6, чисел 6, 8, 9, 15 и 20 есть 360. Н. о. к. пользуются при сложении и вычитании дробей: наименьшим… … Большая советская энциклопедия

наименьшее общее кратное (НОК) — — [http://www.iks media.ru/glossary/index.html?glossid=2400324] Тематики электросвязь, основные понятия EN least common multipleLCM … Справочник технического переводчика

КРАТНОЕ — число, делящееся на данное целое число без остатка, напр. 12 кратно 3. Общее кратное нескольких целых чисел число, делящееся на каждое из них в отдельности, напр. 180 общее кратное чисел 30, 18, 2. При арифметических действиях особое значение… … Большой Энциклопедический словарь

кратное — ого; ср. Целое число, делящееся на данное без остатка. Шесть к. чисел два и три. Наименьшее общее к. нескольких чисел. * * * кратное число, делящееся на данное целое число без остатка, например 12 кратно 3. Общее кратное нескольких целых чисел … … Энциклопедический словарь

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *