Что такое нуклеиновые кислоты в химии
Какие бывают типы нуклеиновых кислот? Что они собою являют?
Содержание:
Нуклеиновые кислоты – важнейшие органические соединения, осуществляющие хранение, передачу и реализацию наследственной информации. Это биополимеры – длинные молекулы, образованные мономерами – нуклеотидами. Нуклеиновые кислоты располагаются в ядре клетки.
Описание нуклеиновых кислот
Структура нуклеотидов
Нуклеотиды – это звено, состоящее из трех компонентов – азотистого основания, углеводной части (остатка моносахарида) и остатка фосфорной (ортофосфорной) кислоты.
Азотистое основание – производное пурина и пиримидина. Они классифицируются на две группы – мажорные и минорные. Мажорные, или главные основания – соединения пуринового ряда (аденин А и гуанин) и пиримидинового ряда (цитозин Ц, тимин Т и урацил У).
Минорные основания – гипоксантин, 5-метилцитозин, 6-N-метиладенин, 1-N-метилгуанин и др.
Углеводная часть может состоять из рибозы или дезоксирибозы. Она представляет собой остаток моносахарида. В нуклеиновых кислотах они находятся в циклической форме.
Связь между углеводной частью и азотистым основанием называется гликозидной.
Остаток кислоты связывается с пятым углеродным атомом в сахаре и образует сложноэфирную связь.
Какие существуют типы нуклеиновых кислот
Дезоксирибонуклеиновая кислота ДНК
Рибонуклеиновая кислота РНК
Существует несколько типов РНК:
иРНК (информационная РНК) – РНК, считывающая информацию с ДНК;
тРНК (транспортная РНК) – РНК, которая считывает информацию с иРНК и образует антикодон;
рРНК (рибосомальная РНК) – РНК, с помощью которого происходит синтез белка.
Сходства и различия ДНК и РНК
Сходства ДНК и РНК:
структуры включают в себя остаток ортофосфорной кислоты;
Что такое нуклеиновые кислоты в химии
Глава V. НУКЛЕИНОВЫЕ КИСЛОТЫ
§ 13. НУКЛЕИНОВЫЕ КИСЛОТЫ:
ФУНКЦИИ И СОСТАВ
Общие представления о нуклеиновых кислотах
Существует два различных типа нуклеиновых кислот – дезоксирибонуклеиновые кислоты (ДНК) и рибонуклеиновые кислоты (РНК). ДНК представляет собой генетический материал большинства организмов. В клетках прокариот, кроме основной хромосомной ДНК, часто встречаются внехромосомные ДНК – плазмиды. В эукариотических клетках основная масса ДНК расположена в клеточном ядре, где она связана с белками в хромосомах. Клетки эукариот содержат ДНК также в митохондриях и хлоропластах.
Что же касается РНК, то по выполняемым ими функциям различают:
В качестве генетического материала РНК входят в состав ряда вирусов. Например, вирусы, вызывающие такие опасные заболевания, как грипп и СПИД, являются РНК-содержащими.
Нуклеиновые кислоты могут быть линейными и кольцевыми (ковалентно замкнутыми). Они могут состоять из одной или двух цепей. Ниже приведена схема, отражающая существование в природе различных типов нуклеиновых кислот:
Функции нуклеиновых кислот
Нуклеиновым кислотам присущи три важнейшие функции: хранение, передача и реализация генетической информации. Кроме этих, они выполняют и другие функции, например, участвуют в катализе некоторых химических реакций, осуществляют регуляцию реализации генетической информации, выполняют структурные функции и др. Роль хранителя генетической информации у большинства организмов (эукариот, прокариот, некоторых вирусов) выполняют двухцепочечные ДНК. Только у некоторых вирусов хранителем генетической информации являются одноцепочечные ДНК или одноцепочечные, а также двухцепочечные РНК. Генетическая информация записана в генах. Ген по своей природе является участком нуклеиновой кислоты. В них закодирована первичная структура белков. Гены могут также нести информацию о структуре некоторых типов РНК, например, тРНК и рРНК.
Генетическая информация передается от родителей к потомкам. Этот процесс связан с удвоением нуклеиновой кислоты (ДНК или РНК), выполняющей функцию хранителя генетической информации, и последующей передачи ее потомкам. Например, в результате деления дочерние клетки получают от материнской идентичные молекулы ДНК, а следовательно, и идентичную генетическую информацию (рис. 38). При размножении вирусы также передают дочерним вирусным частицам точные копии нуклеиновой кислоты. При половом размножении потомки получают генетическую информацию от обоих родителей. Вот почему дети наследуют признаки обоих родителей.
Рис. 38. Распределение ДНК при делении клетки
В результате реализации генетической информации происходит синтез белков, закодированных в ДНК в виде генов (или для некоторых вирусов – в РНК). В этом процессе информация о первичной структуре белка переписывается с молекулы ДНК на иРНК и затем расшифровывается на рибосомах при участии тРНК. В итоге образуется белок:
ДНК РНК
белок.
Состав нуклеиновых кислот
Нуклеиновые кислоты представляют собой полимеры, построенные из нуклеотидов, соединенных между собой фосфодиэфирными связями. Каждый нуклеотид состоит из остатков азотистого основания, пентозы и фосфорной кислоты.
Различают пиримидиновые и пуриновые основания, называемые также соответственно пиримидины и пурины. Пиримидиновые основания являются производными пиримидина:
пуриновые основания – производными пурина:
К пиримидинам относятся урацил, тимин и цитозин, к пуринам – аденин и гуанин:
В состав ДНК входят тимин, цитозин, аденин и гуанин, в состав РНК – те же основания, только вместо тимина входит урацил. Кроме азотистых оснований, нуклеиновые кислоты содержат пентозы: ДНК – D-дезоксирибозу, а РНК – D-рибозу. Углеводы находятся в виде b-аномера фуранозной формы:
Азотистое основание связывается с углеводом за счет гликозидного гидроксила. Образуется нуклеозид. Схематически образование нуклеозида можно изобразить так:
В состав нуклеиновых кислот входят 8 нуклеозидов, 4 – в состав РНК и 4 – в состав ДНК (рис. 39).
Нуклеозиды, входящие в состав РНК:
Нуклеозиды, входящие в состав ДНК:
Нуклеозид, связанный с остатком фосфорной кислоты, называется нуклеотидом:
При этом остаток фосфорной кислоты может быть связан с 3’- или 5’- атомом углерода:
Сокращенно аденозин-5’-монофосфат обозначается как АМФ. Если нуклеотид образован дезоксорибозой, аденином и одним остатком фосфорной кислоты, то он будет носить название дезоксиаденозинмонофосфат, или сокращенно дАМФ. В таблице 5 представлена номенклатура нуклеотидов.
Номенклатура нуклеотидов, образующих ДНК и РНК
Нуклеиновые кислоты

Всего получено оценок: 574.
Всего получено оценок: 574.
Полимерные молекулы, состоящие из нуклеотидов, называются нуклеиновыми кислотами. Они образуют ДНК и РНК и несут наследственную информацию. Подробнее о строение нуклеиновых кислот говорим в этой статье.
Строение мономера
Основой строения нуклеиновых кислот является структурная единица – нуклеотид. Это мономер, состоящий из остатков:
Моносахарид – основа нуклеотида. В зависимости от содержащегося моносахарида различают два вида нуклеиновых кислот:
Нуклеотиды отличаются азотистыми основаниями. Всего известно пять видов: аденин, гуанин (производные пурина), тимин, цитозин, урацил (производные пиримидина). В РНК входят нуклеотиды с аденином, гуанином, цитозином и урацилом. В ДНК урацил заменён аналогичным тимином.
К моносахариду посредством сложноэфирной связи по кислороду присоединены остатки фосфорной кислоты Н2РО3-. В зависимости от количества фосфорных остатков различают монофосфатные, дифосфатные и трифосфатные нуклеотиды.

Остаток фосфорной кислоты присоединён к третьему или пятому атому углерода моносахарида, а остаток азотистого основания – к первому атому.
Строение цепочки
Нуклеотиды, содержащие разные типы азотистых оснований, выстраиваются в длинную полимерную цепь, называемую полинуклеотидом. Чтобы эта гигантская цепочка уложилась в ядро клетки, она компактно скручивается. Выделяют четыре уровня структурной организации или упаковки кислот:
Пример третичной структуры – ДНК. Это самая большая молекула, которая может состоять из миллионов нуклеотидов. Мономеры образуют две цепочки, соединённые по принципу комплементарности и перекрученные в спираль. Более сложная упаковка – четвертичная структурная организация, при которой ДНК, переплетается с РНК и белками, образуя хроматин. Это вязкое вещество, содержащееся в ядре и образующее хромосомы при делении клетки.

Принцип комплементарности – это возможность определённых азотистых оснований создавать водородные связи с другими азотистыми основаниями. Аденин всегда образует связь только с тимином (в ДНК) или урацилом (в РНК), а гуанин – с цитозином.
Общее описание
Нуклеиновые кислоты хорошо растворяются в воде, но практически не растворяются в органических растворителях. ДНК образует в воде вязкое вещество белого цвета. Цепочки нуклеотидов легко фрагментируются при механическом воздействии или под влиянием температур. Например, ДНК в растворе распадается на две цепочки при нагревании до 60°С или под действием щелочей. При остывании раствора цепочки вновь соединяются по принципу комплементарности.
Определённые последовательности нуклеотидов образуют гены, которые определяют свойства организма посредством синтеза белков.
Нуклеиновые кислоты впервые были выделены из ядер лейкоцитов в 1868 году химиком Фридрихом Мишером. Неразлагающееся под действием ферментов вещество содержало фосфор и имело ярко выраженные кислотные свойства. Соединению была приписана формула C29H49N9O22P3.
Что мы узнали?
Из урока химии 10 класса узнали об общей характеристике нуклеиновых кислот. Это полимерные вещества, состоящие из мономеров – нуклеотидов, которые включают моносахарид, остатки фосфорной кислоты и пять типов азотистых оснований. Нуклеиновые кислоты в зависимости от содержащегося моносахарида делятся на два типа – ДНК и РНК. ДНК – самая большая молекула, состоящая из двух цепочек нуклеотидов, перекрученных в спираль.
Нуклеиновые кислоты
Нуклеи́новые кисло́ты (от лат. nucleus — ядро) — высокомолекулярные органические соединения, биополимеры (полинуклеотиды), образованные остатками нуклеотидов. Нуклеиновые кислоты ДНК и РНК присутствуют в клетках всех живых организмов и выполняют важнейшие функции по хранению, передаче и реализации наследственной информации.
Содержание
История исследования
Способы выделения
Нуклеиновые кислоты легко деградируют под действием особого класса ферментов — нуклеаз. В связи с этим при их выделении важно обработать лабораторное оборудование и материалы соответствующими ингибиторами. Так, например, при выделении РНК широко используется такой ингибитор рибонуклеаз как DEPC.
Химические свойства
Нуклеиновые кислоты хорошо растворимы в воде, практически не растворимы в органических растворителях. Очень чувствительны к действию температуры и критических значений уровня pH. Молекулы ДНК с высокой молекулярной массой, выделенные из природных источников, способны фрагментироваться под действием механических сил, например при перемешивании раствора. Нуклеиновые кислоты фрагментируются ферментами — нуклеазами.
Строение
Полимерные формы нуклеиновых кислот называют полинуклеотидами. Цепочки из нуклеотидов соединяются через остаток фосфорной кислоты (фосфодиэфирная связь). Поскольку в нуклеотидах существует только два типа гетероциклических молекул, рибоза и дезоксирибоза, то и имеется лишь два вида нуклеиновых кислот — дезоксирибонуклеиновая (ДНК) и рибонуклеиновая (РНК).
Мономерные формы также встречаются в клетках и играют важную роль в процессах передачи сигналов или запасании энергии. Наиболее известный мономер РНК — АТФ, аденозинтрифосфорная кислота, важнейший аккумулятор энергии в клетке.



















