Что такое нули функции в алгебре

Свойства функции. Возрастание и убывание, наибольшее и наименьшее значения, нули, промежутки знакопостоянства.

теория по математике 📈 функции

Каждый из нас встречался с разными графиками, как на уроках, так и в жизни. Например, рассматривали, как изменяется температура воздуха в определенный период времени.

Что такое нули функции в алгебре. Смотреть фото Что такое нули функции в алгебре. Смотреть картинку Что такое нули функции в алгебре. Картинка про Что такое нули функции в алгебре. Фото Что такое нули функции в алгебре

На рисунке видно, что температура воздуха была отрицательной с 0 часов до 6 часов, а также с 20 до 24 часов. Еще можем сказать, что температура повышалась до 14 часов, а затем понижалась. То есть по данному графику мы смогли определить некоторые свойства зависимости температуры воздуха от времени суток.

Остановимся подробнее на свойствах функций.

Нули функции

Нули функции – это значение аргумента, при которых функция обращается в нуль. Если смотреть нули функции на графике, то берем точки, где график пересекает ось х.

Что такое нули функции в алгебре. Смотреть фото Что такое нули функции в алгебре. Смотреть картинку Что такое нули функции в алгебре. Картинка про Что такое нули функции в алгебре. Фото Что такое нули функции в алгебреНа рисунке он пересекает ось х при х=-1; х=4; х=6. Эти точки пересечения выделены красным цветом. Внимание!

Существует функция, которая не будет иметь нули функции. Это гипербола. Вспомним, что функция имеет вид у=k/x, где х не равное 0 число.

а) Для нахождения нулей функции необходимо в данную формулу вместо у подставить число 0, так как координаты точки пересечения графика с осью х (х;0). Нам нужно найти значение х. Получаем 0 = –11х +12. Решаем уравнение. Переносим слагаемое, содержащее переменную, в левую часть, меняя знак на противоположный: 11х=22

Находим х, разделив 22 на 11: х=22:11

Таким образом, мы нашли нуль функции: х=2

Пример №2. Найти нули функции у=f(x) по заданному графику.

Что такое нули функции в алгебре. Смотреть фото Что такое нули функции в алгебре. Смотреть картинку Что такое нули функции в алгебре. Картинка про Что такое нули функции в алгебре. Фото Что такое нули функции в алгебре

Находим точки пересечения графика с осью х и выписываем значения х в этих точках. Это (-4,9); (-1,2); 2,2 и 5,7. У нас на рисунке точки пересечения выделены красным цветом.

Промежутки знакопостоянства

Промежутки, где функция сохраняет знак (то есть значение y либо положительное на этом промежутке, либо отрицательное), называется промежутками знакопостоянства.

Что такое нули функции в алгебре. Смотреть фото Что такое нули функции в алгебре. Смотреть картинку Что такое нули функции в алгебре. Картинка про Что такое нули функции в алгебре. Фото Что такое нули функции в алгебре

Пример №3. Найдем промежутки знакопостоянства по заданному на промежутке [-2; 10] графику функции у=f(x).

Что такое нули функции в алгебре. Смотреть фото Что такое нули функции в алгебре. Смотреть картинку Что такое нули функции в алгебре. Картинка про Что такое нули функции в алгебре. Фото Что такое нули функции в алгебре

Функция принимает отрицательные значения в промежутках (-1; 3) и (8; 10]. Обратите внимание на линии синего цвета.

Возрастание и убывание функции

Значения функции могут уменьшаться или увеличиваться. Это зависит от того, как изменяются значения х. Рассмотрим это свойство по рисунку.

Что такое нули функции в алгебре. Смотреть фото Что такое нули функции в алгебре. Смотреть картинку Что такое нули функции в алгебре. Картинка про Что такое нули функции в алгебре. Фото Что такое нули функции в алгебре

Посмотрим на значения х, которые увеличиваются от 2 до 5. В этом случае значения у уменьшаются. На графике эта часть выделена зеленым цветом. Слева направо эта часть графика идет вниз. То есть в промежутке [2;5] функция у=f(x) является убывающей.

Функция называется возрастающей в некотором промежутке, если большему значению аргумента из этого промежутка соответствует большее значение функции; функция называется убывающей в некотором промежутке, если большему значению аргумента из этого промежутка соответствует меньшее значение функции.

Источник

Нули функции

Что такое нули функции? Как определить нули функции аналитически и по графику?

Нули функции — это значения аргумента, при которых функция равна нулю.

Чтобы найти нули функции, заданной формулой y=f(x), надо решить уравнение f(x)=0.

Если уравнение не имеет корней, нулей у функции нет.

1) Найти нули линейной функции y=3x+15.

Чтобы найти нули функции, решим уравнение 3x+15 =0.

2) Найти нули квадратичной функции f(x)=x²-7x+12.

Для нахождения нулей функции решим квадратное уравнение

Его корни x1=3 и x2=4 являются нулями данной функции.

3)Найти нули функции

Что такое нули функции в алгебре. Смотреть фото Что такое нули функции в алгебре. Смотреть картинку Что такое нули функции в алгебре. Картинка про Что такое нули функции в алгебре. Фото Что такое нули функции в алгебре

Дробь имеет смысл, если знаменатель отличен от нуля. Следовательно, x²-1≠0, x² ≠ 1,x ≠±1. То есть область определения данной функции (ОДЗ)

Что такое нули функции в алгебре. Смотреть фото Что такое нули функции в алгебре. Смотреть картинку Что такое нули функции в алгебре. Картинка про Что такое нули функции в алгебре. Фото Что такое нули функции в алгебре

Из корней уравнения x²+5x+4=0 x1=-1 x2=-4 в область определения входит только x=-4.

Чтобы найти нули функции, заданной графически, надо найти точки пересечения графика функции с осью абсцисс.

Если график не пересекает ось Ox, функция не имеет нулей.

Что такое нули функции в алгебре. Смотреть фото Что такое нули функции в алгебре. Смотреть картинку Что такое нули функции в алгебре. Картинка про Что такое нули функции в алгебре. Фото Что такое нули функции в алгебре

функция, график которой изображен на рисунке,имеет четыре нуля —

Что такое нули функции в алгебре. Смотреть фото Что такое нули функции в алгебре. Смотреть картинку Что такое нули функции в алгебре. Картинка про Что такое нули функции в алгебре. Фото Что такое нули функции в алгебре

В алгебре задача нахождения нулей функции встречается как в виде самостоятельного задания, так и при решения других задач, например, при исследовании функции, решении неравенств и т.д.

Источник

Как найти нули функции?

Каждый из нас встречался с разными графиками, как на уроках, так и в жизни. Например, рассматривали, как изменяется температура воздуха в определенный период времени.

На рисунке видно, что температура воздуха была отрицательной с 0 часов до 6 часов, а также с 20 до 24 часов. Еще можем сказать, что температура повышалась до 14 часов, а затем понижалась. То есть по данному графику мы смогли определить некоторые свойства зависимости температуры воздуха от времени суток.

Свойства функции. Возрастание и убывание, наибольшее и наименьшее значения, нули, промежутки знакопостоянства

Что такое нули функции в алгебре. Смотреть фото Что такое нули функции в алгебре. Смотреть картинку Что такое нули функции в алгебре. Картинка про Что такое нули функции в алгебре. Фото Что такое нули функции в алгебре

Остановимся подробнее на свойствах функций.

Нули функции

Нули функции – это значение аргумента, при которых функция обращается в нуль. Если смотреть нули функции на графике, то берем точки, где график пересекает ось х.

Что такое нули функции в алгебре. Смотреть фото Что такое нули функции в алгебре. Смотреть картинку Что такое нули функции в алгебре. Картинка про Что такое нули функции в алгебре. Фото Что такое нули функции в алгебреНа рисунке он пересекает ось х при х=-1; х=4; х=6. Эти точки пересечения выделены красным цветом.Внимание!

Существует функция, которая не будет иметь нули функции. Это гипербола. Вспомним, что функция имеет вид у=k/x, где х не равное 0 число.

График функции у=k/x выглядит следующим образом: Что такое нули функции в алгебре. Смотреть фото Что такое нули функции в алгебре. Смотреть картинку Что такое нули функции в алгебре. Картинка про Что такое нули функции в алгебре. Фото Что такое нули функции в алгебреПо данному рисунку видно, что нулей функции не существует.Как найти нули функции?

Рассмотрим примеры нахождения нулей функции. Пример №1. Найти нули функции (если они существуют):

а) Для нахождения нулей функции необходимо в данную формулу вместо у подставить число 0, так как координаты точки пересечения графика с осью х (х;0). Нам нужно найти значение х. Получаем 0 = –11х +12. Решаем уравнение. Переносим слагаемое, содержащее переменную, в левую часть, меняя знак на противоположный: 11х=22

б) Аналогично во втором случае. Подставляем вместо у число 0 и решаем уравнение вида 0=(х + 76)(х – 95). Вспомним, что произведение двух множителей равно 0 тогда и только тогда, когда хотя бы один из множителей равен 0.

Значит, нули функции это числа (-76) и 95.

Пример №2. Найти нули функции у=f(x) по заданному графику.

Что такое нули функции в алгебре. Смотреть фото Что такое нули функции в алгебре. Смотреть картинку Что такое нули функции в алгебре. Картинка про Что такое нули функции в алгебре. Фото Что такое нули функции в алгебре

Находим точки пересечения графика с осью х и выписываем значения х в этих точках. Это (-4,9); (-1,2); 2,2 и 5,7. У нас на рисунке точки пересечения выделены красным цветом.

Промежутки знакопостоянства

Промежутки, где функция сохраняет знак (то есть значение y либо положительное на этом промежутке, либо отрицательное), называется промежутками знакопостоянства.

Что такое нули функции в алгебре. Смотреть фото Что такое нули функции в алгебре. Смотреть картинку Что такое нули функции в алгебре. Картинка про Что такое нули функции в алгебре. Фото Что такое нули функции в алгебре

Пример №3. Найдем промежутки знакопостоянства по заданному на промежутке [-2; 10] графику функции у=f(x).

Что такое нули функции в алгебре. Смотреть фото Что такое нули функции в алгебре. Смотреть картинку Что такое нули функции в алгебре. Картинка про Что такое нули функции в алгебре. Фото Что такое нули функции в алгебре

Функция принимает отрицательные значения в промежутках (-1; 3) и (8; 10]. Обратите внимание на линии синего цвета.

Возрастание и убывание функции

Значения функции могут уменьшаться или увеличиваться. Это зависит от того, как изменяются значения х. Рассмотрим это свойство по рисунку.

Что такое нули функции в алгебре. Смотреть фото Что такое нули функции в алгебре. Смотреть картинку Что такое нули функции в алгебре. Картинка про Что такое нули функции в алгебре. Фото Что такое нули функции в алгебре

Посмотрим на значения х, которые увеличиваются от 2 до 5. В этом случае значения у уменьшаются. На графике эта часть выделена зеленым цветом. Слева направо эта часть графика идет вниз. То есть в промежутке [2;5] функция у=f(x) является убывающей.

Функция называется возрастающей в некотором промежутке, если большему значению аргумента из этого промежутка соответствует большее значение функции; функция называется убывающей в некотором промежутке, если большему значению аргумента из этого промежутка соответствует меньшее значение функции.

Метод интервалов: примеры, решения

Метод интервалов принято считать универсальным для решения неравенств. Иногда этот метод также называют методом промежутков. Применим он как для решения рациональных неравенств с одной переменной, так и для неравенств других видов. В нашем материале мы постарались уделить внимание всем аспектам вопроса.

Что ждет вас в данном разделе? Мы разберем метод промежутков и рассмотрим алгоритмы решения неравенств с его помощью. Затронем теоретические аспекты, на которых основано применение метода.

Особое внимание мы уделяем нюансам темы, которые обычно не затрагиваются в рамках школьной программы. Например, рассмотрим правила расстановки знаков на интервалах и сам метод интервалов в общем виде без его привязки к рациональным неравенствам.

Алгоритм

Кто помнит, как происходит знакомство с методом промежутков в школьном курсе алгебры? Обычно все начинается с решения неравенств вида f(x) или ≥). Здесь f(x) может быть многочленом или отношением многочленов. Многочлен, в свою очередь, может быть представлен как:

произведение линейных двучленов с коэффициентом 1 при переменной х;

произведение квадратных трехчленов со старшим коэффициентом 1 и с отрицательным дискриминантом их корней.

Приведем несколько примеров таких неравенств:

Запишем алгоритм решения неравенств такого вида, как мы привели в примерах, методом промежутков:

Четреж, с которым мы будем работать, может иметь схематический вид. Излишние подробности могут перегружать рисунок и затруднять решение. Нас будет мало интересовать маштаб. Достаточно будет придерживаться правильного расположения точек по мере роста значений их координат.

При работе со строгими неравенствами мы будем использовать обозначение точки в виде круга с незакрашенным (пустым) центром. В случае нестрогих неравенств точки, которые соответствуют нулям знаменателя, мы будем изображать пустыми, а все остальные обычными черными.

Отмеченные точки разбивают координатную прямую на несколько числовых промежутков. Это позволяет нам получить геометрическое представление числового множества, которое фактически является решением данного неравенства.

Научные основы метода промежутков

Основан подход, положенный в основу метода промежутков, основан на следующем свойстве непрерывной функции: функция сохраняет постоянный знак на интервале (a, b), на котором эта функция непрерывна и не обращается в нуль. Это же свойство характерно для числовых лучей (−∞, a) и (a, +∞).

Приведенное свойство функции подтверждается теоремой Больцано-Коши, которая приведена во многих пособиях для подготовки к вступительным испытаниям.

Возьмем любой из промежутков и покажем на нем, что на всем промежутке выражение из левой части неравенства будет иметь постоянный знак. Пусть это будет промежуток (−∞, −1). Возьмем любое число t из этого промежутка. Оно будет удовлетворять условиям t

Источник

График линейной функции, его свойства и формулы

Что такое нули функции в алгебре. Смотреть фото Что такое нули функции в алгебре. Смотреть картинку Что такое нули функции в алгебре. Картинка про Что такое нули функции в алгебре. Фото Что такое нули функции в алгебре

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Понятие функции

Функция — это зависимость «y» от «x», где «x» является переменной или аргументом функции, а «y» — зависимой переменной или значением функции.

Задать функцию значит определить правило, в соответствии с которым по значениям независимой переменной можно найти соответствующие ее значения. Вот, какими способами ее можно задать:

График функции — это объединение всех точек, когда вместо «x» можно подставить произвольные значения и найти координаты этих точек.

Понятие линейной функции

Линейная функция — это функция вида y = kx + b, где х — независимая переменная, k, b — некоторые числа. При этом k — угловой коэффициент, b — свободный коэффициент.

Геометрический смысл коэффициента b — длина отрезка, который отсекает прямая по оси OY, считая от начала координат.

Геометрический смысл коэффициента k — угол наклона прямой к положительному направлению оси OX, считается против часовой стрелки.

Если известно конкретное значение х, можно вычислить соответствующее значение у.

Для удобства результаты можно оформлять в виде таблицы:

Графиком линейной функции является прямая линия. Для его построения достаточно двух точек, координаты которых удовлетворяют уравнению функции.

Угловой коэффициент отвечает за угол наклона прямой, свободный коэффициент — за точку пересечения графика с осью ординат.

Что такое нули функции в алгебре. Смотреть фото Что такое нули функции в алгебре. Смотреть картинку Что такое нули функции в алгебре. Картинка про Что такое нули функции в алгебре. Фото Что такое нули функции в алгебре

Буквенные множители «k» и «b» — это числовые коэффициенты функции. На их месте могут стоять любые числа: положительные, отрицательные или дроби.

Давайте потренируемся и определим для каждой функций, чему равны числовые коэффициенты «k» и «b».

ФункцияКоэффициент «k»Коэффициент «b»
y = 2x + 8k = 2b = 8
y = −x + 3k = −1b = 3
y = 1/8x − 1k = 1/8b = −1
y = 0,2xk = 0,2b = 0

Может показаться, что в функции «y = 0,2x» нет числового коэффициента «b», но это не так. В данном случае он равен нулю. Чтобы не поддаваться сомнениям, нужно запомнить: в каждой функции типа «y = kx + b» есть коэффициенты «k» и «b».

Еще не устали? Изучать математику веселее с опытным преподавателем на курсах по математике в Skysmart!

Свойства линейной функции

Построение линейной функции

В геометрии есть аксиома: через любые две точки можно провести прямую и притом только одну. Исходя из этой аксиомы следует: чтобы построить график функции вида «у = kx + b», достаточно найти всего две точки. А для этого нужно определить два значения х, подставить их в уравнение функции и вычислить соответствующие значения y.

Например, чтобы построить график функции y = 1 /3x + 2, можно взять х = 0 и х = 3, тогда ординаты этих точек будут равны у = 2 и у = 3. Получим точки А (0; 2) и В (3; 3). Соединим их и получим такой график:

Что такое нули функции в алгебре. Смотреть фото Что такое нули функции в алгебре. Смотреть картинку Что такое нули функции в алгебре. Картинка про Что такое нули функции в алгебре. Фото Что такое нули функции в алгебре

В уравнении функции y = kx + b коэффициент k отвечает за наклон графика функции:

Что такое нули функции в алгебре. Смотреть фото Что такое нули функции в алгебре. Смотреть картинку Что такое нули функции в алгебре. Картинка про Что такое нули функции в алгебре. Фото Что такое нули функции в алгебре

Проанализируем рисунок. Все графики наклонены вправо, потому что во всех функциях коэффициент k больше нуля. Причем, чем больше значение k, тем круче идет прямая.

В каждой функции b = 3, поэтому все графики пересекают ось OY в точке (0; 3).

Что такое нули функции в алгебре. Смотреть фото Что такое нули функции в алгебре. Смотреть картинку Что такое нули функции в алгебре. Картинка про Что такое нули функции в алгебре. Фото Что такое нули функции в алгебре

В этот раз во всех функциях коэффициент k меньше нуля, и графики функций наклонены влево. Чем больше k, тем круче идет прямая.

Коэффициент b равен трем, и графики также пересекают ось OY в точке (0; 3).

Что такое нули функции в алгебре. Смотреть фото Что такое нули функции в алгебре. Смотреть картинку Что такое нули функции в алгебре. Картинка про Что такое нули функции в алгебре. Фото Что такое нули функции в алгебре

Теперь во всех уравнениях функций коэффициенты k равны. Получили три параллельные прямые.

При этом коэффициенты b различны, и эти графики пересекают ось OY в различных точках:

Прямые будут параллельными тогда, когда у них совпадают угловые коэффициенты.

Подытожим. Если мы знаем знаки коэффициентов k и b, то можем представить, как выглядит график функции y = kx + b.

Если k 0, то график функции y = kx + b выглядит так:

0″ src=»https://user84060.clients-cdnnow.ru/uploads/5fc1049363f94987951092.png» style=»height: 600px;»>

Если k > 0 и b > 0, то график функции y = kx + b выглядит так:

0 и b > 0″ src=»https://user84060.clients-cdnnow.ru/uploads/5fc104b2640e6151326286.png» style=»height: 600px;»>

Точки пересечения графика функции y = kx + b с осями координат:

Решение задач на линейную функцию

Чтобы решать задачи и строить графики линейных функций, нужно рассуждать и использовать свойства и правила выше. Давайте потренируемся!

Пример 2. Написать уравнение прямой, которая проходит через точки A (1; 1); B (2; 4).

Источник

Как определить нули функции по графику

Что такое нули функции? Как определить нули функции аналитически и по графику?

Нули функции — это значения аргумента, при которых функция равна нулю.

Чтобы найти нули функции, заданной формулой y=f(x), надо решить уравнение f(x)=0.

Если уравнение не имеет корней, нулей у функции нет.

1) Найти нули линейной функции y=3x+15.

Чтобы найти нули функции, решим уравнение 3x+15 =0.

2) Найти нули квадратичной функции f(x)=x²-7x+12.

Для нахождения нулей функции решим квадратное уравнение

Его корни x1=3 и x2=4 являются нулями данной функции.

3)Найти нули функции

Что такое нули функции в алгебре. Смотреть фото Что такое нули функции в алгебре. Смотреть картинку Что такое нули функции в алгебре. Картинка про Что такое нули функции в алгебре. Фото Что такое нули функции в алгебре

Дробь имеет смысл, если знаменатель отличен от нуля. Следовательно, x²-1≠0, x² ≠ 1,x ≠±1. То есть область определения данной функции (ОДЗ)

Что такое нули функции в алгебре. Смотреть фото Что такое нули функции в алгебре. Смотреть картинку Что такое нули функции в алгебре. Картинка про Что такое нули функции в алгебре. Фото Что такое нули функции в алгебре

Из корней уравнения x²+5x+4=0 x1=-1 x2=-4 в область определения входит только x=-4.

Чтобы найти нули функции, заданной графически, надо найти точки пересечения графика функции с осью абсцисс.

Если график не пересекает ось Ox, функция не имеет нулей.

Что такое нули функции в алгебре. Смотреть фото Что такое нули функции в алгебре. Смотреть картинку Что такое нули функции в алгебре. Картинка про Что такое нули функции в алгебре. Фото Что такое нули функции в алгебре

функция, график которой изображен на рисунке,имеет четыре нуля —

Что такое нули функции в алгебре. Смотреть фото Что такое нули функции в алгебре. Смотреть картинку Что такое нули функции в алгебре. Картинка про Что такое нули функции в алгебре. Фото Что такое нули функции в алгебре

В алгебре задача нахождения нулей функции встречается как в виде самостоятельного задания, так и при решения других задач, например, при исследовании функции, решении неравенств и т.д.

Это можно сделать и графически. Просто построить функцию по точкам и начертить, точки пересечения графика с осью Х и будут нулями функции.

Посмотрите еще здесь:

2.Ну просто f(x)=0
Приравниваем функцию к нулю и считаем «нули» 🙂

Ответ или решение 1

Что такое нули функции в алгебре. Смотреть фото Что такое нули функции в алгебре. Смотреть картинку Что такое нули функции в алгебре. Картинка про Что такое нули функции в алгебре. Фото Что такое нули функции в алгебре

Решение: Точки пересечения графика с осью абсцисс, на которой откладываются аргументы х, называются нулями функции. Поиск возможных нулей – одна из задач по исследованию заданной функции. Другими словами, нуль функции – что такое значение аргумента х, при котором значение функции равно нулю. Однако нулями могут быть лишь те аргументы, которые входят в область определения исследуемой функции. То есть в такое множество значений, для которых функция f(x) имеет смысл.

С осью абсцисс она пересекается один раз в точке (92;0).

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *