Что такое обратная связь физиология

Что такое обратная связь физиология

Диапазон нормальных значений каждого показателя достаточно узок, а значения, выходящие за пределы этих диапазонов, обычно связаны с патологией.
Особенно важны предельно допустимые значения, отклонение от которых сопряжено с угрозой жизни. Так, повышение температуры тела лишь на 7°С приводит к усилению клеточного метаболизма и по типу порочного круга — к разрушению клеток. Нужно отметить, что границы нормальных значений рН также очень узки. Нормальное значение рН составляет 7,4, и его отклонение в ту или другую сторону всего на 0,5 несовместимо с жизнью.

Важнейшее значение имеет также концентрация ионов калия. Снижение ее всего лишь на 1/3 скорее всего вызовет паралич, поскольку нервные волокна будут не способны проводить возбуждение. Напротив, увеличение содержания ионов калия в 2 и более раз может привести к тяжелому угнетению сократимости миокарда. Снижение уровня ионов кальция более чем в 2 раза может приводить к тетаническим сокращениям скелетных мышц вследствие спонтанного возбуждения нервов. Если уровень глюкозы уменьшается в 2 раза, возникает раздражительность, а иногда и судороги.

Из этих примеров ясно, насколько важны и даже необходимы многочисленные регуляторные системы организма для поддержания его в нормальном состоянии. Отсутствие любой из этих систем может приводить к тяжелым последствиям и даже смерти.

Что такое обратная связь физиология. Смотреть фото Что такое обратная связь физиология. Смотреть картинку Что такое обратная связь физиология. Картинка про Что такое обратная связь физиология. Фото Что такое обратная связь физиологияГлавные компоненты и физические характеристики внеклеточной жидкости.

Отрицательная обратная связь в организме

Работа большинства регуляторных систем основана на принципе отрицательной обратной связи, который можно понять, обратившись к некоторым из приведенных ранее примеров. Так, при регуляции уровня углекислого газа его высокая концентрация во внеклеточной жидкости увеличивает вентиляцию легких. В свою очередь, это снижает уровень углекислого газа во внеклеточной жидкости, поскольку легкие выводят из организма большое его количество.

Другими словами, повышение концентрации углекислого газа запускает цепь реакций по снижению его содержания до нормы, что является отрицательным по отношению к запускающему фактору. Напротив, при слишком сильном снижении уровня углекислого газа обратная связь приведет к его увеличению. По отношению к запускающему фактору это действие также будет отрицательным.

Примерно так же регулируется и артериальное давление: повышение показателя запускает серию реакций, способствующих его снижению, а снижение — реакций, обеспечивающих его повышение. В обоих случаях результат воздействия является отрицательным по отношению к запускающему сигналу.

Таким образом, когда некий параметр становится слишком высоким или низким, регуляторные системы включают отрицательные обратные связи, которые путем некоторых изменений возвращают параметр к некоему усредненному значению и поддерживают гомеостаз.

Коэффициент надежности регуляторных систем. Эффективность регуляторных систем в поддержании гомеостаза определяется коэффициентом надежности отрицательной обратной связи. Представим, например, что больному, у которого не функционирует барорецепторная система поддержания давления, перелили большой объем крови, и артериальное давление у него увеличилось от 100 до 175 мм рт. ст.

Источник

Что такое обратная связь физиология

ЛЕКЦИЯ № 6. Физиология центральной нервной системы

1. Основные принципы функционирования ЦНС. Строение, функции, методы изучения ЦНС

Основным принципом функционирования ЦНС является процесс регуляции, управления физиологическими функциями, которые направлены на поддержание постоянства свойств и состава внутренней среды организма. ЦНС обеспечивает оптимальные взаимоотношения организма с окружающей средой, устойчивость, целостность, оптимальный уровень жизнедеятельности организма.

Различают два основных вида регуляции: гуморальный и нервный.

Гуморальный процесс управления предусматривает изменение физиологической активности организма под влиянием химических веществ, которые доставляются жидкими средами организма. Источником передачи информации являются химические вещества – утилизоны, продукты метаболизма (углекислый газ, глюкоза, жирные кислоты), информоны, гормоны желез внутренней секреции, местные или тканевые гормоны.

Нервный процесс регуляции предусматривает управление изменения физиологических функций по нервным волокнам при помощи потенциала возбуждения под влиянием передачи информации.

1) является более поздним продуктом эволюции;

2) обеспечивает быструю регуляцию;

3) имеет точного адресата воздействия;

4) осуществляет экономичный способ регуляции;

5) обеспечивает высокую надежность передачи информации.

В организме нервный и гуморальный механизмы работают как единая система нейрогуморального управления. Это комбинированная форма, где одновременно используются два механизма управления, они взаимосвязаны и взаимообусловлены.

Нервная система представляет собой совокупность нервных клеток, или нейронов.

По локализации различают:

1) центральный отдел – головной и спинной мозг;

2) периферический – отростки нервных клеток головного и спинного мозга.

По функциональным особенностям различают:

1) соматический отдел, регулирующий двигательную активность;

2) вегетативный, регулирующий деятельность внутренних органов, желез внутренней секреции, сосудов, трофическую иннервацию мышц и самой ЦНС.

Функции нервной системы:

1) интегративно-коордиационная функция. Обеспечивает функции различных органов и физиологических систем, согласует их деятельность между собой;

2) обеспечение тесных связей организма человека с окружающей средой на биологическом и социальном уровнях;

3) регуляция уровня обменных процессов в различных органах и тканях, а также в самой себе;

4) обеспечение психической деятельности высшимие отделами ЦНС.

2. Нейрон. Оособенности строения, значение, виды

Структурной и функциональной единицей нервной ткани является нервная клетка – нейрон.

Нейрон – специализированная клетка, которая способна принимать, кодировать, передавать и хранить информацию, устанавливать контакты с другими нейронами, организовывать ответную реакцию организма на раздражение.

Функционально в нейроне выделяют:

1) воспринимающую часть (дендриты и мембрану сомы нейрона);

2) интегративную часть (сому с аксоновым холмиком);

3) передающую часть (аксонный холмик с аксоном).

Дендриты – основное воспринимающее поле нейрона. Мембрана дендрита способна реагировать на медиаторы. Нейрон имеет несколько ветвящихся дендритов. Это объясняется тем, что нейрон как информационное образование должен иметь большое количество входов. Через специализированные контакты информация поступает от одного нейрона к другому. Эти контакты называются «шипики».

Мембрана сомы нейрона имеет толщину 6 нм и состоит из двух слоев липидных молекул. Гидрофильные концы этих молекул обращены в сторону водной фазы: один слой молекул обращен внутрь, другой – наружу. Гидрофильные концы повернуты друг к другу – внутрь мембраны. В двойной липидный слой мембраны встроены белки, которые выполняют несколько функций:

1) белки-насосы – перемещают в клетке ионы и молекулы против градиента концентрации;

2) белки, встроенные в каналы, обеспечивают избирательную проницаемость мембраны;

3) рецепторные белки осуществляют распознавание нужных молекул и их фиксацию на мембране;

4) ферменты облегчают протекание химической реакции на поверхности нейрона.

В некоторых случаях один и тот же белок может выполнять функции как рецептора, фермента, так и насоса.

Аксоновый холмик – место выхода аксона из нейрона.

Сома нейрона (тело нейрона) выполняет наряду с информационной и трофическую функцию относительно своих отростков и синапсов. Сома обеспечивает рост дендритов и аксонов. Сома нейрона заключена в многослойную мембрану, которая обеспечивает формирование и распространение электротонического потенциала к аксонному холмику.

Аксон – вырост цитоплазмы, приспособленный для проведения информации, которая собирается дендритами и перерабатывается в нейроне. Аксон дендритной клетки имеет постоянный диаметр и покрыт миелиновой оболочкой, которая образована из глии, у аксона разветвленные окончания, в которых находятся митохондрии и секреторные образования.

1) генерализация нервного импульса;

2) получение, хранение и передача информации;

3) способность суммировать возбуждающие и тормозящие сигналы (интегративная функция).

а) центральные (головной и спинной мозг);

б) периферические (мозговые ганглии, черепные нервы);

2) в зависимости от функции:

а) афферентные (чувствительные), несущие информацию от рецепторов в ЦНС;

б) вставочные (коннекторные), в элементарном случае обеспечивающие связь между афферентным и эфферентным нейронами;

– двигательные – передние рога спинного мозга;

– секреторные – боковые рога спинного мозга;

3) в зависимости от функций:

4) в зависимости от биохимических особенностей, от природы медиатора;

5) в зависимости от качества раздражителя, который воспринимается нейроном:

3. Рефлекторная дуга, ее компоненты, виды, функции

Деятельность организма – закономерная рефлекторная реакция на стимул. Рефлекс – реакция организма на раздражение рецепторов, которая осуществляется с участием ЦНС. Структурной основой рефлекса является рефлекторная дуга.

Рефлекторная дуга – последовательно соединенная цепочка нервных клеток, которая обеспечивает осуществление реакции, ответа на раздражение.

Рефлекторная дуга состоит из шести компонентов: рецепторов, афферентного (чувствительного) пути, рефлекторного центра, эфферентного (двигательного, секреторного) пути, эффектора (рабочего органа), обратной связи.

Рефлекторные дуги могут быть двух видов:

1) простые – моносинаптические рефлекторные дуги (рефлекторная дуга сухожильного рефлекса), состоящие из 2 нейронов (рецепторного (афферентного) и эффекторного), между ними имеется 1 синапс;

2) сложные – полисинаптические рефлекторные дуги. В их состав входят 3 нейрона (их может быть и больше) – рецепторный, один или несколько вставочных и эффекторный.

Представление о рефлекторной дуге как о целесообразном ответе организма диктует необходимость дополнить рефлекторную дугу еще одним звеном – петлей обратной связи. Этот компонент устанавливает связь между реализованным результатом рефлекторной реакции и нервным центром, который выдает исполнительные команды. При помощи этого компонента происходит трансформация открытой рефлекторной дуги в закрытую.

Особенности простой моносинаптической рефлекторной дуги:

1) территориально сближенные рецептор и эффектор;

2) рефлекторная дуга двухнейронная, моносинаптическая;

3) нервные волокна группы А? (70—120 м/с);

4) короткое время рефлекса;

5) мышцы, сокращающиеся по типу одиночного мышечного сокращения.

Особенности сложной моносинаптической рефлекторной дуги:

1) территориально разобщенные рецептор и эффектор;

2) рецепторная дуга трехнейронная (может быть и больше нейронов);

3) наличие нервных волокон группы С и В;

4) сокращение мышц по типу тетануса.

Особенности вегетативного рефлекса:

1) вставочный нейрон находится в боковых рогах;

2) от боковых рогов начинается преганглионарный нервный путь, после ганглия – постганглионарный;

3) эфферентный путь рефлекса вегетативной нервной дуги прерывается вегетативным ганглием, в котором лежит эфферентный нейрон.

Отличие симпатической нервной дуги от парасимпатической: у симпатической нервной дуги преганглионарный путь короткий, так как вегетативный ганглий лежит ближе к спинному мозгу, а постганглионарный путь длинный.

У парасимпатической дуги все наоборот: преганглионарный путь длинный, так как ганглий лежит близко к органу или в самом органе, а постганглионарный путь короткий.

4. Функциональные системы организма

Функциональная система – временное функциональное объединение нервных центров различных органов и систем организма для достижения конечного полезного результата.

Полезный результат – самообразующий фактор нервной системы. Результат действия представляет собой жизненно важный адаптивный показатель, который необходим для нормального функционирования организма.

Существует несколько групп конечных полезных результатов:

1) метаболическая – следствие обменных процессов на молекулярном уровне, которые создают необходимые для жизни вещества и конечные продукты;

2) гомеостатическая – постоянство показателей состояния и состава сред организма;

3) поведенческая – результат биологической потребности (половой, пищевой, питьевой);

4) социальная – удовлетворение социальных и духовных потребностей.

В состав функциональной системы включаются различные органы и системы, каждый из которых принимает активное участие в достижении полезного результата.

Функциональная система, по П. К. Анохину, включает в себя пять основных компонентов:

1) полезный приспособительный результат – то, ради чего создается функциональная система;

2) аппарат контроля (акцептор результата) – группу нервных клеток, в которых формируется модель будущего результата;

3) обратную афферентацию (поставляет информацию от рецептора в центральное звено функциональной системы) – вторичные афферентные нервные импульсы, которые идут в акцептор результата действия для оценки конечного результата;

4) аппарат управления (центральное звено) – функциональное объединение нервных центров с эндокринной системой;

5) исполнительные компоненты (аппарат реакции) – это органы и физиологические системы организма (вегетативная, эндокринные, соматические). Состоит из четырех компонентов:

а) внутренних органов;

б) желез внутренней секреции;

г) поведенческих реакций.

Свойства функциональной системы:

1) динамичность. В функциональную систему могут включаться дополнительные органы и системы, что зависит от сложности сложившейся ситуации;

2) способность к саморегуляции. При отклонении регулируемой величины или конечного полезного результата от оптимальной величины происходит ряд реакций самопроизвольного комплекса, что возвращает показатели на оптимальный уровень. Саморегуляция осуществляется при наличии обратной связи.

В организме работает одновременно несколько функциональных систем. Они находятся в непрерывном взаимодействии, которое подчиняется определенным принципам:

1) принципу системы генеза. Происходят избирательное созревание и эволюция функциональных систем (функциональные системы кровообращения, дыхания, питания, созревают и развиваются раньше других);

2) принципу многосвязного взаимодействия. Происходит обобщение деятельности различных функциональных систем, направленное на достижение многокомпонентного результата (параметры гомеостаза);

3) принципу иерархии. Функциональные системы выстраиваются в определенный ряд в соответствии со своей значимостью (функциональная система целостности ткани, функциональная система питания, функциональная система воспроизведения и т. д.);

4) принципу последовательного динамического взаимодействия. Осуществляется четкая последовательность смены деятельности одной функциональной системы другой.

5. Координационная деятельность ЦНС

Координационная деятельность (КД) ЦНС представляет собой согласованную работу нейронов ЦНС, основанную на взаимодействии нейронов между собой.

1) обеспечивает четкое выполнение определенных функций, рефлексов;

2) обеспечивает последовательное включение в работу различных нервных центров для обеспечения сложных форм деятельности;

3) обеспечивает согласованную работу различных нервных центров (при акте глотания в момент глотания задерживается дыхание, при возбуждении центра глотания тормозится центр дыхания).

Основные принципы КД ЦНС и их нейронные механизмы.

1. Принцип иррадиации (распространения). При возбуждении небольших групп нейронов возбуждение распространяется на значительное количество нейронов. Иррадиация объясняется:

1) наличием ветвистых окончаний аксонов и дендритов, за счет разветвлений импульсы распространяются на большое количество нейронов;

2) наличием вставочных нейронов в ЦНС, которые обеспечивают передачу импульсов от клетки к клетке. Иррадиация имеет границы, которая обеспечивается тормозным нейроном.

2. Принцип конвергенции. При возбуждении большого количества нейронов возбуждение может сходиться к одной группе нервных клеток.

3. Принцип реципрокности – согласованная работа нервных центров, особенно у противоположных рефлексов (сгибание, разгибание и т. д.).

4. Принцип доминанты. Доминанта – господствующий очаг возбуждения в ЦНС в данный момент. Это очаг стойкого, неколеблющегося, нераспространяющегося возбуждения. Он имеет определенные свойства: подавляет активность других нервных центров, имеет повышенную возбудимость, притягивает нервные импульсы из других очагов, суммирует нервные импульсы. Очаги доминанты бывают двух видов: экзогенного происхождения (вызванные факторами внешней среды) и эндогенными (вызванные факторами внутренней среды). Доминанта лежит в основе формирования условного рефлекса.

5. Принцип обратной связи. Обратная связь – поток импульсов в нервную систему, который информирует ЦНС о том, как осуществляется ответная реакция, достаточна она или нет. Различают два вида обратной связи:

1) положительная обратная связь, вызывающая усиление ответной реакции со стороны нервной системы. Лежит в основе порочного круга, который приводит к развитию заболеваний;

2) отрицательная обратная связь, снижающая активность нейронов ЦНС и ответную реакцию. Лежит в основе саморегуляции.

6. Принцип субординации. В ЦНС существует определенная подчиненность отделов друг другу, высшим отделом является кора головного мозга.

7. Принцип взаимодействия процессов возбуждения и торможения. ЦНС координирует процессы возбуждения и торможения:

оба процесса способны к конвергенции, процесс возбуждения и в меньшей степени торможения способны к иррадиации. Торможение и возбуждение связаны индукционными взаимоотношениями. Процесс возбуждения индуцирует торможение, и наоборот. Различаются два вида индукции:

1) последовательная. Процесс возбуждения и торможения сменяют друг друга по времени;

2) взаимная. Одновременно существует два процесса – возбуждения и торможения. Взаимная индукция осуществляется путем положительной и отрицательной взаимной индукции: если в группе нейронов возникает торможение, то вокруг него возникают очаги возбуждения (положительная взаимная индукция), и наоборот.

По определению И. П. Павлова, возбуждение и торможение – это две стороны одного и того же процесса. Координационная деятельность ЦНС обеспечивает четкое взаимодействие между отдельными нервными клетками и отдельными группами нервных клеток. Выделяют три уровня интеграции.

Первый уровень обеспечивается за счет того, что на теле одного нейрона могут сходиться импульсы от разных нейронов, в результате происходит или суммирование, или снижение возбуждения.

Второй уровень обеспечивает взаимодействиями между отдельными группами клеток.

Третий уровень обеспечивается клетками коры головного мозга, которые способствуют более совершенному уровню приспособления деятельности ЦНС к потребностям организма.

6. Виды торможения, взаимодействие процессов возбуждения и торможения в ЦНС. Опыт И. М. Сеченова

Торможение – активный процесс, возникающий при действии раздражителей на ткань, проявляется в подавлении другого возбуждения, функционального отправления ткани нет.

Торможение может развиваться только в форме локального ответа.

Выделяют два типа торможения:

1) первичное. Для его возникновения необходимо наличие специальных тормозных нейронов. Торможение возникает первично без предшествующего возбуждения под воздействием тормозного медиатора. Различают два вида первичного торможения:

а) пресинаптическое в аксо-аксональном синапсе;

б) постсинаптическое в аксодендрическом синапсе.

2) вторичное. Не требует специальных тормозных структур, возникает в результате изменения функциональной активности обычных возбудимых структур, всегда связано с процессом возбуждения. Виды вторичного торможения:

а) запредельное, возникающее при большом потоке информации, поступающей в клетку. Поток информации лежит за пределами работоспособности нейрона;

б) пессимальное, возникающее при высокой частоте раздражения;

в) парабиотическое, возникающее при сильно и длительно действующем раздражении;

г) торможение вслед за возбуждением, возникающее вследствие снижения функционального состояния нейронов после возбуждения;

д) торможение по принципу отрицательной индукции;

е) торможение условных рефлексов.

Процессы возбуждения и торможения тесно связаны между собой, протекают одновременно и являются различными проявлениями единого процесса. Очаги возбуждения и торможения подвижны, охватывают большие или меньшие области нейронных популяций и могут быть более или менее выраженными. Возбуждение непременно сменяется торможением, и наоборот, т. е. между торможением и возбуждением существуют индукционные отношения.

Торможение лежит в основе координации движений, обеспечивает защиту центральных нейронов от перевозбуждения. Торможение в ЦНС может возникать при одновременном поступлении в спинной мозг нервных импульсов различной силы с нескольких раздражителей. Более сильное раздражение тормозит рефлексы, которые должны были наступать в ответ на более слабые.

В 1862 г. И. М. Сеченов открыл явление центрального торможения. Он доказал в своем опыте, что раздражение кристалликом хлорида натрия зрительных бугров лягушки (большие полушария головного мозга удалены) вызывает торможение рефлексов спинного мозга. После устранения раздражителя рефлекторная деятельность спинного мозга восстанавливалась. Результат этого опыта позволил И. М. Сеченому сделать заключение, что в ЦНС наряду с процессом возбуждения развивается процесс торможения, который способен угнетать рефлекторные акты организма. Н. Е. Введенский высказал предположение, что в основе явления торможения лежит принцип отрицательной индукции: более возбудимый участок в ЦНС тормозит активность менее возбудимых участков.

7. Методы изучения ЦНС

Существуют два большие группы методов изучения ЦНС:

1) экспериментальный метод, который проводится на животных;

2) клинический метод, который применим к человеку.

К числу экспериментальных методов классической физиологии относятся методы, направленные на активацию или подавление изучаемого нервного образования. К ним относятся:

1) метод поперечной перерезки ЦНС на различных уровнях;

2) метод экстирпации (удаления различных отделов, денервации органа);

3) метод раздражения путем активирования (адекватное раздражение – раздражение электрическим импульсом, схожим с нервным; неадекватное раздражение – раздражение химическими соединениями, градуируемое раздражение электрическим током) или подавления (блокирования передачи возбуждения под действием холода, химических агентов, постоянного тока);

4) наблюдение (один из старейших, не утративших своего значения метод изучения функционирования ЦНС. Он может быть использован самостоятельно, чаще используется в сочетании с другими методами).

Экспериментальные методы при проведении опыта часто сочетаются друг с другом.

Клинический метод направлен на изучение физиологического состояния ЦНС у человека. Он включает в себя следующие методы:

2) метод регистрации и анализа электрических потенциалов головного мозга (электро-, пневмо-, магнитоэнцефалография);

3) метод радиоизотопов (исследует нейрогуморальные регуляторные системы);

4) условно-рефлекторный метод (изучает функции коры головного мозга в механизме обучения, развития адаптационного поведения);

5) метод анкетирования (оценивает интегративные функции коры головного мозга);

6) метод моделирования (математического моделирования, физического и т. д.). Моделью является искусственно созданный механизм, который имеет определенное функциональное подобие с исследуемым механизмом организма человека;

7) кибернетический метод (изучает процессы управления и связи в нервной системе). Направлен на изучение организации (системных свойств нервной системы на различных уровнях), управления (отбора и реализации воздействий, необходимых для обеспечения работы органа или системы), информационной деятельности (способности воспринимать и перерабатывать информацию – импульс в целях приспособления организма к изменениям окружающей среды).

Источник

Что такое обратная связь физиология

Может возникнуть вопрос: почему регуляторные системы организма используют преимущественно отрицательную, а не положительную обратную связь? Ответ на этот вопрос следует искать в природе положительной связи, которая по сути является не стабилизирующей, а дестабилизирующей и может приводить даже к гибели организма.

Рисунок отображает изменение сердечного выброса, в норме составляющего 5 л/мин. Быстрая потеря 2 л крови приводит к такому снижению объема крови, что насосная функция сердца становится малоэффективной. В результате артериальное давление падает, и приток крови по коронарным сосудам к сердечной мышце снижается. Ослабление сердечной деятельности еще больше уменьшает сердечный выброс и, как следствие, приводит к дальнейшему снижению коронарного кровотока и угнетению сердечной деятельности.

Этот цикл повторяется вновь и вновь и в итоге приводит к смерти. Важно отметить, что каждый цикл положительной обратной связи приводит к большему ослаблению сердечной деятельности. Другими словами, запускающий стимул вызывает реакцию того же направления — положительную обратную связь.

Положительная обратная связь более известна как порочный круг. При умеренном нарушении порочный круг можно разорвать с помощью систем, использующих отрицательную обратную связь. Например, если объем кровопотери у вышеупомянутого больного составит только 1 л вместо 2 л, то вклад отрицательной обратной связи в регуляцию сердечного выброса и артериального давления превысит вклад положительной обратной связи и сердечный выброс восстановится.

Положительная обратная связь может быть полезной. В некоторых случаях организм использует преимущества положительной обратной связи. В качестве примера можно привести свертывание крови. При нарушении целостности сосуда и начале формирования тромба происходит активация множества ферментов, называемых факторами свертывания. Некоторые из этих факторов влияют на другие неактивные ферменты в крови, окружающей тромб, таким образом продолжая его рост.

Этот процесс идет до тех пор, пока дефект сосуда не закроется тромбом, и кровотечение не прекратится. Однако в некоторых случаях процесс может выходить из-под контроля, заканчиваясь нежелательным тромбообразованием. Так, основной причиной острого приступа стенокардии является формирование тромба на внутренней поверхности венечной артерии в области атеросклеротической бляшки. Рост тромба продолжается вплоть до полной закупорки просвета сосуда.

Другим примером полезного действия положительной обратной связи являются роды. Когда сокращения матки во время родов становятся настолько сильными, что головка плода достигает шейки матки и растягивает ее, сигналы от шеечных рецепторов распространяются по мускулатуре назад к телу матки, вызывая еще более мощные сокращения миометрия. Таким образом, сокращения матки растягивают шейку, а растяжение шейки, в свою очередь, приводит к сильным сокращениям матки.

Достигнув определенной силы, этот процесс приводит к рождению ребенка. Если этот процесс недостаточно эффективен, сокращения матки обычно затухают, но через несколько дней начинаются вновь.

Еще один пример положительной обратной связи — генерация возбуждения в нервном волокне. При стимуляции нервного волокна возникает небольшая утечка ионов натрия через каналы внутрь волокна. Входящий внутрь натрий изменяет мембранный потенциал, что приводит к еще большему открытию каналов, а это, в свою очередь, — к еще большему изменению потенциала и т.д.

Таким образом, небольшая утечка ионов в итоге вызывает бурный вход ионов натрия в нервное волокно, в результате формируется потенциал действия. В свою очередь, этот потенциал вызывает образование петель тока, распространяющихся внутри и снаружи по мембране. Процесс повторяется вновь и вновь, пока импульс не достигнет окончания волокна.

В приведенных примерах положительная связь является частью всеобъемлющей отрицательной обратной связи. Например, положительная связь в случае с образованием тромба является частью механизма отрицательной связи по поддержанию постоянного объема циркулирующей крови. То же самое относится и к положительной связи, формирующей нервный импульс, поскольку она позволяет нервным волокнам участвовать в многочисленных системах нервной регуляции на основе отрицательной обратной связи.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *