Что такое однофазное замыкание на землю

Однофазные замыкания на землю в распределительных сетях 6-35 кВ – что это?

Что такое однофазное замыкание на землю. Смотреть фото Что такое однофазное замыкание на землю. Смотреть картинку Что такое однофазное замыкание на землю. Картинка про Что такое однофазное замыкание на землю. Фото Что такое однофазное замыкание на землю

Суть процесса электроснабжения заключается в доставке электроэнергии от места, где она производится (электрические станции) до места ее потребления (электроприемники). Транспорт электроэнергии осуществляется по электрическим сетям, включающим в себя линии электропередачи, силовые трансформаторы, распределительные устройства и другое вспомогательное оборудование. Сама по себе передача электроэнергии производится по специальным трехфазным электрическим цепям высокого напряжения, чем выше уровень напряжения, тем с меньшими потерями мощности происходит доставка электроэнергии по цепи, но при этом повышение напряжения увеличивает стоимость самой электроустановки, таким образом, выбор оптимального уровня напряжения электроустановки – это сложная технико-экономическая задача. Как правило, распределение электроэнергии к потребителям осуществляется на классе напряжения 6-35 кВ, но иногда можно встретить подстанции глубокого ввода, когда распределение электроэнергии к очень мощным электроприемникам осуществляется на напряжении 110-220 кВ.

Одна из особенностей транспорта электроэнергии заключается в наличии нейтрального провода в схеме, который представляет из себя общую точку источников питания трехфазной электрической системы, также называемой нейтралью.

Одним из наиболее частых видов повреждений на линиях электропередачи является однофазное замыкание на землю это вид повреждения, когда одна из фаз трехфазной системы замыкается на землю или на элемент электрически связанный с землей. Процессы, протекающие в сети при возникновении такого замыкания, значительным образом зависят от режима работы нейтрали данной сети.

В сетях с изолированной нейтралью ток однофазного замыкания на землю замыкается через емкости неповрежденных фаз. Его значение невелико и определяется суммарной емкостью неповрежденных фаз. Соотношения линейных напряжений при возникновении однофазного замыкания на землю не изменяются, что позволяет эксплуатировать сеть, не отключая повреждения данного вида незамедлительно. Однако, однофазное замыкание на землю представляет значительную опасность для оборудования, вследствие того, что уравнивание потенциала поврежденной фазы и земли приводит к увеличению напряжения между неповрежденными фазами и землей до значения порядка номинального линейного напряжения сети. Изоляция неповрежденных фаз в результате воздействия повышенного напряжения подвержена ускоренному старению, что в конечном счете может привести к замыканию на землю других фаз и возникновению двойного замыкания на землю, являющегося коротким замыканием и требующего немедленного отключения поврежденного участка сети.

Кроме того, ток однофазного замыкания, растекаясь по земле вблизи места замыкания на землю, представляет опасность для жизни людей и животных.

В сетях с заземленной нейтралью однофазное замыкание на землю является коротким замыканием. Ток повреждения в данном случае замыкается через заземленные нейтрали первичного оборудования и имеет значительную величину. Такое повреждение требует немедленного обесточивания поврежденного участка.

Учитывая данную особенность, а также сложность реализации изоляции между фазными проводами и землей для различных классов напряжения (чем выше класс напряжения, тем сложнее эту изоляцию выполнить), то выбор оптимального типа нейтрали также является сложной технико-экономической задачей.

70-90% электричеcких повреждений

приходится на ОЗЗ 1

Причины однофазных замыканий на землю могут быть весьма различны, но все они возникают из-за нарушения изоляции оборудования электроустановок, особенно на кабельных или воздушных линиях электропередачи. Нарушение изоляции может быть по причине ее старения, а также вследствие механических воздействий на электроустановку, чаще это повреждение кабеля при проведении земляных работ или падение ветки дерева на провод воздушной линии и т.д.

В России данная задача нашла решение в таком виде, что распределительные сети уровнем 6-35 кВ эксплуатируются в изолированном от земли режиме нейтрали источников питания, а сети более высокого уровня напряжения эксплуатируются в режиме, когда нейтраль напрямую связана с землей – глухозаземленный и эффективный режим нейтрали.

1. Шуин В.А., Гусенков А.В. Защиты от замыканий на землю в электрических сетях 6-10 кВ. М.:НТФ «Энергопрогресс». //Приложение к журналу, «Энергетик», выпуск 11(35) 2001, 102 с.

Источник

Однофазные замыкания на землю в распределительных сетях 6-35 кВ – что это?

Что такое однофазное замыкание на землю. Смотреть фото Что такое однофазное замыкание на землю. Смотреть картинку Что такое однофазное замыкание на землю. Картинка про Что такое однофазное замыкание на землю. Фото Что такое однофазное замыкание на землю

Суть процесса электроснабжения заключается в доставке электроэнергии от места, где она производится (электрические станции) до места ее потребления (электроприемники). Транспорт электроэнергии осуществляется по электрическим сетям, включающим в себя линии электропередачи, силовые трансформаторы, распределительные устройства и другое вспомогательное оборудование. Сама по себе передача электроэнергии производится по специальным трехфазным электрическим цепям высокого напряжения, чем выше уровень напряжения, тем с меньшими потерями мощности происходит доставка электроэнергии по цепи, но при этом повышение напряжения увеличивает стоимость самой электроустановки, таким образом, выбор оптимального уровня напряжения электроустановки – это сложная технико-экономическая задача. Как правило, распределение электроэнергии к потребителям осуществляется на классе напряжения 6-35 кВ, но иногда можно встретить подстанции глубокого ввода, когда распределение электроэнергии к очень мощным электроприемникам осуществляется на напряжении 110-220 кВ.

Одна из особенностей транспорта электроэнергии заключается в наличии нейтрального провода в схеме, который представляет из себя общую точку источников питания трехфазной электрической системы, также называемой нейтралью.

Одним из наиболее частых видов повреждений на линиях электропередачи является однофазное замыкание на землю это вид повреждения, когда одна из фаз трехфазной системы замыкается на землю или на элемент электрически связанный с землей. Процессы, протекающие в сети при возникновении такого замыкания, значительным образом зависят от режима работы нейтрали данной сети.

В сетях с изолированной нейтралью ток однофазного замыкания на землю замыкается через емкости неповрежденных фаз. Его значение невелико и определяется суммарной емкостью неповрежденных фаз. Соотношения линейных напряжений при возникновении однофазного замыкания на землю не изменяются, что позволяет эксплуатировать сеть, не отключая повреждения данного вида незамедлительно. Однако, однофазное замыкание на землю представляет значительную опасность для оборудования, вследствие того, что уравнивание потенциала поврежденной фазы и земли приводит к увеличению напряжения между неповрежденными фазами и землей до значения порядка номинального линейного напряжения сети. Изоляция неповрежденных фаз в результате воздействия повышенного напряжения подвержена ускоренному старению, что в конечном счете может привести к замыканию на землю других фаз и возникновению двойного замыкания на землю, являющегося коротким замыканием и требующего немедленного отключения поврежденного участка сети.

Кроме того, ток однофазного замыкания, растекаясь по земле вблизи места замыкания на землю, представляет опасность для жизни людей и животных.

В сетях с заземленной нейтралью однофазное замыкание на землю является коротким замыканием. Ток повреждения в данном случае замыкается через заземленные нейтрали первичного оборудования и имеет значительную величину. Такое повреждение требует немедленного обесточивания поврежденного участка.

Учитывая данную особенность, а также сложность реализации изоляции между фазными проводами и землей для различных классов напряжения (чем выше класс напряжения, тем сложнее эту изоляцию выполнить), то выбор оптимального типа нейтрали также является сложной технико-экономической задачей.

70-90% электричеcких повреждений

приходится на ОЗЗ 1

Причины однофазных замыканий на землю могут быть весьма различны, но все они возникают из-за нарушения изоляции оборудования электроустановок, особенно на кабельных или воздушных линиях электропередачи. Нарушение изоляции может быть по причине ее старения, а также вследствие механических воздействий на электроустановку, чаще это повреждение кабеля при проведении земляных работ или падение ветки дерева на провод воздушной линии и т.д.

В России данная задача нашла решение в таком виде, что распределительные сети уровнем 6-35 кВ эксплуатируются в изолированном от земли режиме нейтрали источников питания, а сети более высокого уровня напряжения эксплуатируются в режиме, когда нейтраль напрямую связана с землей – глухозаземленный и эффективный режим нейтрали.

1. Шуин В.А., Гусенков А.В. Защиты от замыканий на землю в электрических сетях 6-10 кВ. М.:НТФ «Энергопрогресс». //Приложение к журналу, «Энергетик», выпуск 11(35) 2001, 102 с.

Источник

Однофазные замыкания на землю. Компенсация емкостных токов замыкания на землю. ДГР

1. Основные характеристики ОЗЗ

В сетях, где используется заземленная нейтраль, замыкание фазы на землю приводит к короткому замыканию. В данном случае ток КЗ протекает через замкнутую цепь, образованную заземлением нейтрали первичного оборудования. Такое повреждение приводит к значительному скачку тока и, как правило, незамедлительно отключается действием РЗ, путем отключения поврежденного участка.

Электрические сети классов напряжения 6-35 кВ работают в режиме с изолированной нейтралью или с нейтралью, заземленной через большое добавочное сопротивление. В этом случае замыкание фазы на землю не приводит к образованию замкнутого контура и возникновению КЗ, а ОЗЗ замыкается через емкости неповрежденных фаз.

Величина этого тока незначительна (достигает порядка 10-30 А) и определяется суммарной емкостью неповрежденных фаз. На рис. 1 показаны схемы 3-х фазной сети в режимах до и после возникновения ОЗЗ.

Что такое однофазное замыкание на землю. Смотреть фото Что такое однофазное замыкание на землю. Смотреть картинку Что такое однофазное замыкание на землю. Картинка про Что такое однофазное замыкание на землю. Фото Что такое однофазное замыкание на землю
Рисунок 1 – Схема сети с изолированной нейтралью а) в нормальном режиме; б) при ОЗЗ

Такое повреждение не требует немедленного отключения, однако, его длительное воздействие может привести к развитию аварийной ситуации. Однако при ОЗЗ в сетях с изолированной нейтралью происходят процессы, влияющие на режим работы электрической сети в целом.

На рис. 2 представлена векторная диаграмма напряжений.

Что такое однофазное замыкание на землю. Смотреть фото Что такое однофазное замыкание на землю. Смотреть картинку Что такое однофазное замыкание на землю. Картинка про Что такое однофазное замыкание на землю. Фото Что такое однофазное замыкание на землю
Рисунок 2 – Векторные диаграммы напряжений а) в нормальном режиме; б) при ОЗЗ

При ОЗЗ происходит нарушение симметрии линейных фазных напряжений, напряжение поврежденной фазы снижается практически до 0, а двух “здоровых” фаз поднимаются до уровня линейных. При этом линейные напряжения остаются неизменными.

2. Последствия ОЗЗ

Несмотря на преимущества изолированной нейтрали, такой режим работы имеет ряд недостатоков:

Несмотря на перечисленные недостатки ОЗЗ не требует немедленного ликвидации повреждения. Согласно ПУЭ, при возникновении ОЗЗ возможно эксплуатация сети без отключения аварии в течении 4 часов, которые выделяются на поиск поврежденного участка.

3. Расчет суммарного тока ОЗЗ

При замыкании на землю фазы одной из нескольких ЛЕП, что включенные к общему источнику, суммарный ток в месте замыкания за счет емкостных токов всех ЛЕП можно рассчитать несколькими методами.

Первый метод заключается в использовании удельных емкостей ЛЭП. Этот способ расчета даст наиболее точный результат и является предпочтительным. Удельные емкости ЛЭП можно взять из справочной литературы, или же из технических характеристик кабеля, предоставляемых заводом-изготовителем.

Выражение для определения тока ОЗЗ:

Что такое однофазное замыкание на землю. Смотреть фото Что такое однофазное замыкание на землю. Смотреть картинку Что такое однофазное замыкание на землю. Картинка про Что такое однофазное замыкание на землю. Фото Что такое однофазное замыкание на землю,

где С – суммарная емкость фазы всех ЛЕП, причем С = Суд l;
Суд – удельная емкость фазы сети относительно земли, Ф/км;
l – общая длина проводника одной фазы сети.

Второй метод применим для сетей с кабельными ЛЭП. Ток замыкания на землю для такой сети можно определить по эмпирической формуле:

Что такое однофазное замыкание на землю. Смотреть фото Что такое однофазное замыкание на землю. Смотреть картинку Что такое однофазное замыкание на землю. Картинка про Что такое однофазное замыкание на землю. Фото Что такое однофазное замыкание на землю,

Кроме этих методов для расчета суммарного тока ОЗЗ, можно использовать значения емкостных токов каждого кабеля взятых из справочной литературы.

4. Компенсационные меры защиты

Из-за распределённой по воздушным и кабельным линиям электропередач ёмкости, при ОЗЗ в месте повреждения протекает ёмкостный ток. В наиболее тяжелых случаях, возможно возникновение электрической дуги, горение которой может приводить к переходу ОЗЗ в двух- или трёхфазное замыкание и отключению линии релейной защитой. Вследствие этого потребитель электроэнергии может временно лишиться электроснабжения.

В соответствии с положениями ПУЭ в нормальных условиях работы сети должны предприниматься специальные меры защиты от возможного пробоя на землю.
Для предотвращения возникновения дуги и уменьшения емкостных токов применяют компенсацию емкостных токов. Значения емкостных токов, при превышении которых требуется компенсация согласно ПУЭ и ПТЭ, приведены табл. 1.

Таблица 1 – Значения токов требующие компенсации

Напряжение сети, кВ6102035
Емкостный ток, А30201510

При более низких уровнях токов считается, что дуга не загорается, или гаснет самостоятельно, применение компенсации в этом случае не обязательно.

5. Дугогасящий реактор

Для ограничения емкостных токов в нейтраль трансформатора вводится специальный дугогасящий реактор (рис. 3).

Что такое однофазное замыкание на землю. Смотреть фото Что такое однофазное замыкание на землю. Смотреть картинку Что такое однофазное замыкание на землю. Картинка про Что такое однофазное замыкание на землю. Фото Что такое однофазное замыкание на землю
Рисунок 3 – Дугогасящий реактор

Этот способ является наиболее эффективным средством защиты электрооборудования от замыканий на землю и компенсации емкостного тока. С его помощью удаётся снизить (компенсировать) ток однофазного замыкания на землю, возникающий сразу после аварии.

6. Основные характеристики ДГР

Дугогасящий реактор (ДГР) – это электрический аппарат, предназначенный для компенсации емкостных токов в электрических сетях с изолированной нейтралью, возникающих при однофазных замыканиях на землю (ОЗЗ). Главным нормативным документом регламентирующим работу, установку и надстройку ДГР является Р 34.20.179.

Дугогасящие реакторы должны подключаться к нейтралям трансформаторов, генераторов или синхронных компенсаторов через разъединители. В цепи заземления реакторов должен быть установлен трансформатор тока. Рекомендуемые схемы подключения ДГР представлены на рис. 4.

Что такое однофазное замыкание на землю. Смотреть фото Что такое однофазное замыкание на землю. Смотреть картинку Что такое однофазное замыкание на землю. Картинка про Что такое однофазное замыкание на землю. Фото Что такое однофазное замыкание на землю

Рисунок 4 – Схема подключения ДГР: а) подключение ДГР к трансформаторам СН; б) подключение ДГР к нейтрале силового трансформатора

Индуктивность ДГР подбирается из условия равенства емкостной проводимости сети и индуктивной проводимости реактора. Таким образом, происходит компенсация ёмкостного тока. Ёмкостный ток суммируется в месте замыкания равным ему и противоположным по фазе индуктивным, в результате остается только активная часть, обычно очень малая, это утечки через изоляцию кабельных линий и активные потери в ДГР (как правило, не превышают 5 А), которой недостаточно для возникновения электрической дуги и шагового напряжения. Токоведущие цепи остаются неповреждёнными, потребители продолжают снабжаться электроэнергией.

Современные ДГР имеют различные конструктивные особенности и производятся для огромного диапазона мощностей. В таблице 2 приведен ряд параметров дугогасящих реакторов разных производителей.

Источник

Система с изолированной нейтралью

Система с изолированной нейтралью

В системе с изолированной нейтралью замыкание на землю одной фазы не является КЗ и практически не отражается на работе потребителей.

Однако этот вид повреждения создает ненормальный режим, вызывая перенапряжения, которые могут привести к нарушению изоляции относительно земли двух неповрежденных фаз и переходу однофазного замыкания на землю в междуфазное КЗ.

Рассмотрим характер изменения токов и напряжений в системе и их векторные диаграммы при однофазных замыканиях на землю, принимая для упрощения, что нагрузка системы отключена.

Каждая фаза системы обладает относительно земли емкостной и активной проводимостями.

На рисунке а) приведена схема замещения системы с изолированной нейтралью, на которой емкости и сопротивления утечки фаз показаны условно сосредоточенными. В нормальном режиме работы системы напряжения фаз относительно земли симметричны и численно равны фазному напряжению, геометрическая сумма емкостных токов трех фаз равна нулю, а активные утечки по изоляции пренебрежимо малы. Емкостные токи между фазами можно не учитывать, так как при однофазных замыканиях на землю междуфазные напряжения не изменяются, а следовательно, не меняются и емкостные токи.

Что такое однофазное замыкание на землю. Смотреть фото Что такое однофазное замыкание на землю. Смотреть картинку Что такое однофазное замыкание на землю. Картинка про Что такое однофазное замыкание на землю. Фото Что такое однофазное замыкание на землю

Таким образом, емкостный ток однофазного замыкания на землю в системе с изолированной нейтралью равен тройному емкостному току на землю неповрежденной фазы при нормальном режиме и зависит от напряжения электроустановки, частоты и емкости фаз относительно земли. Практически ток Iз составляет единицы или десятки ампер.

Изменение напряжений фаз по отношению к земле можно рассматривать как результат наложения на напряжения фаз (Uа; Ub; Uc) напряжений нулевой последовательности Uао; Ubо; Ucо (рисунок в), равных по значению и противоположных по знаку фазному напряжению поврежденной фазы. При этом напряжения всех фаз относительно земли будут определяться геометрической суммой напряжений Uа; Ub; Uc в нормальном режиме работы системы и напряжений нулевой последовательности. Так, при полном замыкании на землю фазы L1 получим Uc’ = Uc + Ucj; Ub’ = Ub + Ubо; Uа’ = Uа + Uао.

Из векторной диаграммы (рисунок в)) видно, что Uc’ = Ub’ = √3*Ua, а угол между Uc’ и Ub’ равен 60°.

При однофазных замыканиях на землю междуфазные напряжения не изменяются по значению и остаются сдвинутыми по фазе на 120°, что видно из векторной диаграммы на рисунке (рисунок в)). Благодаря этому не нарушается электроснабжение потребителей, включенных на междуфазное напряжение, а система может продолжать работать с одной заземленной фазой, пока не будет найдено место повреждения, но не более 2 часов. Это является главным достоинством систем с изолированной нейтралью. Длительная работа системы в этом режиме недопустима, так как может привести к двойному замыканию на землю, возникающему вследствие повышенных напряжений неповрежденных фаз относительно земли и сопровождающегося прохождением значительного тока КЗ.

При неметаллическом замыкании на землю в месте замыкания возникает перемежающаяся дуга, сопровождающаяся повторными гашениями и зажиганиями. В колебательном контуре, образованном емкостью и индуктивностью системы, в этом случае возникают свободные электрические высокочастотные колебания, приводящие к возникновению перенапряжений, которые распространяются на всю электрически связанную сеть.

Значение перенапряжений может достигать 2,2 Uф (фазного напряжения) на поврежденной фазе и 3,2 Uф на неповрежденных фазах. При продолжительном горении как устойчивой, так и перемежающейся дуг перенапряжения, воздействующие на ослабленную изоляцию фаз, могут привести к двух- и трехфазным КЗ в системе и к отключению потребителей. поэтому в системах с изолированной нейтралью должны предусматриваться сигнализация и релейная защита от однофазных замыканий на землю.

Многолетний опыт эксплуатации незаземленных систем позволил установить критические значения емкостных токов замыкания на землю, которые в зависимости от номинального напряжения системы составляют 30 А при 3-6 кВ, 20 А при 10 кВ, 15 А при 15-20 кВ, 10 А при 35 кВ и 5 А в схемах блок генератор — трансформатор при напряжении генератора 6-20 кВ. если ток замыкания превышает указанные значения, то используют компенсацию его с помощью дугогасящих реакторов.

Источник

ОДНОФАЗНОЕ ЗАМЫКАНИЕ НА ЗЕМЛЮ
Можно ли решить проблему?

Вячеслав Горюнов,
к.т.н., рук. отдела разработок РЗА, ООО «НПП Микропроцессорные технологии»,
г. Новосибирск

Замыкание фазы на землю создает ненормальный режим и представляет опасность по ряду причин:

По перечисленным причинам замыкания на землю необходимо отключать. В сетях, работающих в условиях повышенной опасности для обслуживающего персонала, защита от замыканий на землю выполняет функции защитного отключения и по условиям техники безопасности должна работать без выдержки времени на отключение. Для защиты электродвигателей от замыканий на корпус необходимо применять специальные защиты, обладающие высокой чувствительностью, поскольку токи замыкания на корпус менее 5 А могут представлять для изоляции опасность [4].

Индивидуальные защиты присоединений

Любое развитие техники идет методом от простого к сложному. Наиболее простыми защитами от замыканий на землю являются защиты по току и напряжению нулевой последовательности НП промышленной частоты. Для реализации таких защит достаточно устройства, реагирующего на действующее значение тока или напряжения соответственно. Однако простота таких устройств сказывается на их возможностях. Общая неселективная защита по напряжению нулевой последовательности только сигнализирует о появлении замыкания на землю на любом присоединении секции. Среди недостатков токовых защит НП можно отметить следующие: фиксированная уставка, отстройка тока срабатывания от суммы тока небаланса нулевой последовательности и собственного емкостного тока линии, отказ в срабатывании при перемежающихся замыканиях при защите как кабельных линий (КЛ), так и воздушных (ВЛ) [5]. Для защит на токовых реле РТ 40/0,2 и РТЗ-50 возможны излишние срабатывания при внешних ОЗЗ из-за резкого увеличения токов нулевой последовательности при дуговых замыканиях за счет высокочастотных составляющих [6, 7]. А для защит на реле РТЗ-51 при питании от сети постоянного тока 110 или 220 В возможны ложные срабатывания в моменты коммутации в сети, возникающие по различным причинам [8].

При реализации токовых защит НП на микропроцессорных (МП) терминалах появилась возможность использовать сложные характеристики зависимости тока срабатывания от времени. Поэтому появились защиты с обратнозависимой времятоковой характеристикой, для них [9] не требуется отстройка от собственного емкостного тока присоединения. Однако такой принцип действия защит имеет ряд существенных недостатков. Основной недостаток заключается в том, что селективность срабатывания обеспечивается выдержкой времени, в связи с этим создание зависимых систем с различными выдержками времени становится практически невозможным. Работа таких защит возможна только на отключение, иначе по истечении некоторого времени все защиты начнут сигнализировать о наличии замыкания на землю. При отказе выключателя поврежденного присоединения произойдет неселективное отключение присоединения со вторым по величине током.

Защиты, использующие только один сигнал тока НП, несмотря на свою простоту имеют существенные недостатки, которые будут приводить к их неселективным действиям. В ходе дальнейшего усовершенствования таких защит стали использовать два сигнала – ток и напряжение НП для определения направления. Большое число направленных защит реагируют на направление мощности нулевой последовательности в установившемся режиме. Чувствительность таких защит выше, чем ненаправленных, так как их ток срабатывания отстраивается [6, 7] только от тока небаланса в «максимальном рабочем режиме», а отстройка защиты от собственного емкостного тока линии не требуется, поскольку от этого тока она отстроена «по направлению». Общим недостатком защит такого типа являются их неселективные действия или отказ в срабатывании при перемежающихся дуговых ОЗЗ. Эта неселективность не связана с программной или аппаратной реализацией. Направленные защиты – это такие защиты, которые определяют разность фаз между сигналами и в зависимости от полученного угла принимают решение. Однако разность фаз можно определить только для гармонических сигналов, т. е. сигналов одной частоты. Если рассмотреть осциллограмму замыкания на землю в кабельной сети 10 кВ на рис. 1, то можно сделать вывод, что понятие угла между кривыми тока и напряжения отсутствует, так как сигналы не гармонические.

Рис. 1. Осциллограмма дугового замыкания на землю в кабельной сети 10 кВ

Что такое однофазное замыкание на землю. Смотреть фото Что такое однофазное замыкание на землю. Смотреть картинку Что такое однофазное замыкание на землю. Картинка про Что такое однофазное замыкание на землю. Фото Что такое однофазное замыкание на землю

Другим методом определения поврежденного присоединения с использованием сигналов тока и напряжения НП является расчет активной мощности нулевой последовательности в установившемся режиме [10, 11]. Защиты, реализованные на этом принципе, обладают более высокой устойчивостью функционирования в режимах с перемежающейся дугой в месте ОЗЗ и отстроены в большей мере от бросков емкостных токов в переходных процессах. Обеспечить стабильное функционирование таких защит возможно в основном в сетях с резистивным заземлением нейтрали.

Для устранения недостатков защит, использующих токи и напряжения НП промышленной частоты, были разработаны защиты от ОЗЗ, реагирующие на высшие гармоники электрических величин [1]. При возникновении дуговых ОЗЗ содержание высших гармонических составляющих в сети резко увеличивается, причем содержание высших гармонических в токе нулевой последовательности поврежденной линии значительно больше, чем в токах нулевой последовательности неповрежденных линий. Эти процессы наблюдаются в сетях всех видов заземления нейтрали. Общие недостатки устройств, выполненных с использованием высших гармоник:

Другая категория защит – это защиты от ОЗЗ, реагирующие на электрические величины переходного процесса [1, 14]. Среди достоинств таких защит можно отметить возможность фиксации всех разновидностей ОЗЗ, независимость действия от режима заземления нейтрали, большую чувствительность к замыканиям через переходное сопротивление, большие значения амплитуд переходных токов, упрощающие отстройку от токов небаланса фильтра токов нулевой последовательности (ФТНП) и обеспечение высокой помехоустойчивости и чувствительности защиты.

Но и такие защиты обладают недостатками. Всем защитам присущи единые недостатки, такие как отсутствие непрерывного действия защиты, искажение фазовых соотношений между током и напряжением, возникающее в момент ОЗЗ в отраженной от конца защищаемой линии волне [15], возможные ложные срабатывания от помех, возникающих одновременно в цепях тока и напряжения при отсутствии ОЗЗ, например возможна ложная работа таких защит в сетях с компенсированной нейтралью при отключении трехфазных КЗ. В защитах КЗЗП и ПЗЗМ применен принцип раздельной фиксации начальных знаков переходного тока и напряжения нулевой последовательности с последующим их сравнением, который менее эффективен из-за возможности излишних срабатываний при малых значениях подведенных величин [1].

И последняя группа защит от ОЗЗ, которые следует рассмотреть, это защиты, реагирующие на наложенный ток [1]. Наложенный ток может быть частотой как выше промышленной, так и ниже. Для создания тока повышенной частоты возможно использование нелинейного сопротивления, включенного между нейтралью сети и землей. Однако данное устройство значительно повышает стоимость таких защит и может снизить надежность функционирования защиты. Также можно отметить тот факт, что значительная высокочастотная составляющая может присутствовать в токах присоединений и в нормальном режиме. Это в первую очередь относится к сетям, связанным с производствами, имеющими нелинейную нагрузку. В таких случаях описанный способ защиты непригоден. Кроме того, как показывают проведенные исследования [16], гармоники с частотой 100 Гц появляются почти в 2 раза чаще, чем, например, с частотой 25 Гц, и амплитуды их намного больше.

Поэтому ряд разработчиков создали защиты, реагирующие на наложенный ток частотой ниже промышленной. Различие по частоте тока небаланса ФТНП (50 Гц и гармоники, кратные трем) и воздействующей величины (25 Гц) позволяет упростить отстройку защиты от небаланса и избежать загрубления защиты по первичному току. Сам наложенный ток частотой ниже промышленной получить проще, и требуется меньшая мощность генерирующего источника. В результате такие защиты обеспечивают возможность замера больших значений активного сопротивления фазовой изоляции, имеют меньшую зависимость чувствительности от переходного сопротивления в месте замыкания и лучшую помехозащищенность от тока промышленной частоты [17].

К основным недостаткам защит, реагирующих на наложенный ток частотой ниже промышленной, можно отнести необходимость подключения в нейтраль сети специального устройства для создания контрольного тока, влияние на устойчивость функционирования защиты погрешностей ТТНП, возрастающих при уменьшении рабочей частоты, усложнение схемы первичной коммутации из-за необходимости подключения источника наложенного тока и трудности подключения источника вспомогательного тока при использовании в сети нескольких ДГР, установленных на разных объектах. Не исключены также сложности отстройки от естественных гармонических составляющих при внешних дуговых перемежающихся ОЗЗ, при которых спектр тока зависит от параметров сети и режима заземления ее нейтрали, положения точки ОЗЗ в сети. Кроме того, при замыканиях через большие переходные сопротивления происходит снижение контрольного тока [18].

В целом все индивидуальные защиты имеют общие недостатки, связанные либо с принципом действия, либо с непосредственной реализацией устройств защиты. При этом появление микропроцессорных устройств защиты не сдвинуло решение проблемы выявления поврежденного присоединения в позитивную область, так как сами алгоритмы определения замыкания на землю остались прежними.

Обобщая, можно выдвинуть следующие основные требования к защитам: использование уставки, зависящей от параметров замыкания, выявление замыканий через большие переходные сопротивления и дугу, возможность создания системы ступенчатых защит от замыканий на землю. Именно невозможность учесть эти требования приводит к низкой эффективности устройств индивидуального типа.

Виды ОЗЗ

Чтобы понять, в чем сложность выявления ОЗЗ, рассмотрим процессы, происходящие в сети. Можно выделить два основных вида однофазного замыкания на землю: металлическое (рис. 2, 3) и дуговое (рис. 4, 5). Металлическое и дуговое замыкание может происходить через повышенное сопротивление в месте контакта с землей, что приведет к снижению как токов однофазных замыканий, так и напряжения нулевой последовательности.

Рис. 2. Осциллограмма самоустранившегося ОЗЗ в кабельной сети 10 кВ

Что такое однофазное замыкание на землю. Смотреть фото Что такое однофазное замыкание на землю. Смотреть картинку Что такое однофазное замыкание на землю. Картинка про Что такое однофазное замыкание на землю. Фото Что такое однофазное замыкание на землю

Что такое однофазное замыкание на землю. Смотреть фото Что такое однофазное замыкание на землю. Смотреть картинку Что такое однофазное замыкание на землю. Картинка про Что такое однофазное замыкание на землю. Фото Что такое однофазное замыкание на землю

Рис. 3. Осциллограмма дугового самоустранившегося ОЗЗ в кабельной сети 10 кВ

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *