Что такое огонь плазма

Что такое Огонь?

Доброго дня, дорогие наши читатели, сегодня очень хочется поделиться с Вами знаниями об огне. Да да, именно о том самом, который обжигает сильно, который способен стать сильным разрушающим фактором, но при этом без него никак, ведь он может и созидать.

В общих чертах, поговорим об огне с точки зрения науки, но простыми словами. Однажды, учась в школе я интересовался у физика. мол что такое есть огонь вообще, как его изучают, почему одни предметы горят, другие нет. В общем тогда я внятного, точнее понятного, ответа так и не получил. Прошло уже 20 лет. Особо я этим вопросом и не задавался.

Что такое огонь плазма. Смотреть фото Что такое огонь плазма. Смотреть картинку Что такое огонь плазма. Картинка про Что такое огонь плазма. Фото Что такое огонь плазма

На днях у меня сын, которому пять лет, спрашивал меня про водовороты. Ему очень стало интересно, мы смотрели видео и картинки. Как мог объяснил, но дело в том, что мне вспомнился случай из школы и я полез в интернет. Информации оказалось очень много, но многая из них не популярная, а научная. В общем такое ребенку точно не объяснить просто так. Но я попробовал переработать полученную информацию в более понятный язык.

Не знаю, как получится, но помимо физических эффектов стоит рассмотреть еще и более обширные понятия этого вещества или явления, как огонь. Еще, если нужно ребенку объяснить что такое огонь, то нужно сразу рассказать как он опасен, где его применяют и как он помогает человеку жить и развиваться.

Давайте так, если что-то я скажу не так, не правильно, то пишите в комментариях в самом низу. Так же жду Ваших отзывов там же. Пишите, обсудим)))

Что есть Огонь?

Вот тут даже не знаю как точно все рассказать. Начнем с того, что его изучают ученые, и это факт. Но вот объяснения можно найти абсолютно разные.

Самое первое, что я узнал еще из школы, что огонь — это физический процесс, а именно ускоренное окисление. В общем то это ничего не говорит мне, кроме того, что это не вещество, а именно химический процесс.

По другой версии, абсолютно научной, огонь — свечение раскалённых частиц в потоке горячего воздуха… Тут я уже начинаю понимать, что это не просто процесс, а еще и вещество.

Еще есть вариант, что этот процесс и есть состояние вещества — газ. Он отличается от остальных газов тем, что заканчивается. Например пропан (в закрытом сосуде) никуда не денется, он есть и есть. А вот огонь нет, закрой его и когда кислород закончится, тогда его и нет сразу. Да и просто, если топливо (например древесина) заканчивается, огонь так же заканчивается. Но тогда постойте, получается что это газ, вступающий в реакцию с кислородом, а значит это есть вещество, быстро проходящее окисление…. Тогда нас просто отсылают к первому варианту.

Собрав все в кучу и посмотрев некоторые научно-популярные фильмы я пришел к более понятному понимаю, которое признают все учение. Сложность еще заключается в том, что огонь находится на стыке нескольких научных направлений (химия, термодинамика, физика…).

Огонь — это низкотемпературная плазма. А значит это состояние вещества. Но когда мы говорим, мол дерево горит, то немного ошибаемся. Дело в том, что при сильном нагреве дерево выделяет газ, который при высокой температуре вступает в реакцию с кислородом и тем самым получается выделение еще большего тепла и света. Значит газ переходит в форму плазмы. Как-то так в общих чертах.

Что мы знаем об огне?

В пользу теории о том, что огонь это низкотемпературная плазма, говорит еще и древнее мировоззрение, где мир состоит из 4 веществ (стихий): земля, вода, воздух и огонь. Это точка зрения не отличается от современного, ведь вещества имеют 4 стадии: жидкое состояние, твёрдое состояние, газообразное и плазма. Даже интересно стало, от куда в древности об этом знали? Может догадывались, но не могли точно описать?

Мы не можем потрогать огонь, как другую материю, но можем видеть. Правда не всегда, некоторые газы горят практические без цветно, но тогда тепло мы ощущаем. Значит можем увидеть и почувствовать. Кроме того мы можем им управлять, правда не всегда.

В современном мире очень легко его разжечь и точно так же потушить. Казалось бы все просто, но это очень опасная стихия. Как только мы теряем контроль, то своими силами потушить его очень сложно. Тогда процесс окисления превращается в очень страшную стихию, уничтожающую все вокруг. Горит все, кроме железа и камней, и они порой оплавляются очень сильно. Если говорить о пожаре в здании, то все строение может быть полностью уничтоженным, даже каменное.

Самое страшное, на мой взгляд, это лесные пожары, которые мало того, что уничтожают огромные площади леса, дак страдают и животные и люди. Лесная флора может восстанавливаться очень медленно. Самый наглядный пример — катастрофа в Австралии в 2020 году. Тогда погибло очень много животных и насекомых. Не скажу точно, но некоторые виды животных были в красной книге и их вид погиб полностью. Представляете кокая это трагедия? Вымерли несколько видов животных!

Так же пострадали и люди, выгорели целые поселения. Такие пожары случаются и у нас в России. Выгорают целые деревни. Но самое печально, что причиной таких возгораний чаще всего являются сами люди. Мы просто неуважительно к нему относимся, а он не прощает ошибок. Так, из-за непотушенного костра, брошенного окурка, разбитой бутылки и тому подобное, страдает растительность, животный мир и сами люди.

Бывают пожары и природные, когда сильная засуха провоцирует самовозгорание некоторых предметов или гроза в сухую погоду. А если есть еще и ветер, то все удачно складывается для пожара. Некоторые считают, что во влажном климате не бывает пожаров — на самом деле бывают и влага им не помеха. Там такие температуры, что влага никак не тушит огонь и вот тогда очень тяжело его тушить.

Но от этой плазмы есть и польза, причем очень существенная. Огонь обогревает наши квартиры и дома. На огне мы любим жарить шашлыки, рыбу и готовить другие блюда. Некоторые продукты мы не можем кушать без термической обработки Машины с двигателем внутреннего сгорания (а их большая часть даже в 21 веке) двигаются при помощи огня.

Интересные факты об огне

Совсем недавно, посмотрел передачу про развитие человечества и был сильно удивлен одному факту. Да, это факт, который признается большинством ученых. Дело в том, что огонь позволил нашему предку поумнеть! А знаете как? По сути просто.

Дело в том, что у наших предков был мозг меньше, чем у нас сегодня. Не сказать что они тупые, но особо то их ничего не интересовало, как выжить и дать потомство. Еще до того, как древние племена приручили огонь, они находили трупы животных после сильных пожаров. Кушали их и скорее всего понимали, что так вкуснее и проще. А вот когда уже могли сами поддерживать костры, то пищу научились обрабатывать уже сами.

Что такое огонь плазма. Смотреть фото Что такое огонь плазма. Смотреть картинку Что такое огонь плазма. Картинка про Что такое огонь плазма. Фото Что такое огонь плазма

Дело в том, что когда человек кушает сырую пищу, то желудочно кишечному тракту необходимо много энергии, чтобы переработать ее. Но когда мясо обработали на костре,то кишечник ее усваивать быстрее и с меньшим потреблением энергии. Ученые считают, что это и дало толчок к развитию мозга, которое и приводит к развитию человечества в целом.

Кроме того, только благодаря приручению этой стихии человечество начало развивать промышленность и остальные отросли.

А еще, я задавался вопросом, мол есть ли огонь в космосе? И как там это происходит? Дело в том, что для огня нужна не только высокая температура и кислород (реакция окисления), но еще и гравитация. Когда есть возгорание, то горячие массы вещества поднимаются вверх, а снизу поступает снова холодный воздух с новой порцией кислорода. Сильно конечно утрировал, но механизм таков. Без гравитации такое невозможно. А в космосе еще и кислорода нет…. или есть, но пространство сильно разряжено… В общем интересно стало)))

Оказалось что не только мне интересно, но и многим ученым. На орбите было проведено много интересных экспериментов. В частности выяснилось, что обязательно нужен окислитель, в нашем случае это кислород, а вот при отсутствии гравитации огонь выглядит непривычно. Он принимает форму сферы. И когда кислород заканчивается, сфера пропадает, но вот процесс горения еще остается…. Это и ученые пока объяснить не могут.

Но выяснили, что в космосе все предметы имеют разные температуры возгорания, причем они ниже, чем на земле. При этом же перекинуться с одного предмета на другой не может, как раз из-за разных температур возгорания. Был проведен даже эксперимент, в отработанном аппарате, который должен был упасть на землю, подожгли тряпку. Она сгорела полностью, но вот больше ничего не подожгла.

Правда это не означает, что пожар не опасен там. Дело в том, что для людей самое опасное при пожаре в невесомости — истощение кислорода, появление ядовитых веществ в воздухе (в следствии горения) и отказ оборудования по причине перегорания.

Кроме того, если на земле этот процесс окисления происходит быстро, то в невесомости он замедлен, как я понял из-за того, что сам окислитель не сильно быстро подходит к возгоранию. Так же, в вакууме горения нет, если только не созданы другие благоприятные условия для окисления. Но это уже совсем другая и очень сложная тема, ведь тогад могут гореть и металлы, к примеру.

Выводы

Мы смогли выяснить, что Огонь — это низкотемпературная плазма. а значит это материя. Причем в это состояние переходит именно газ, который выделяется из горючего материала при сильном нагревании… если изначально это вещество не было самим газом)))

Так же это процесс окисления, который происходит быстро и с выделением побочных продуктов, как углекислый газ и других компонентов. А вот в невесомости созданы немного другие условия там процесс немного замедлен и имеет другую, необычную форму.

Возгорание как разрушает, так и помогает развиваться. По сути, без огня мы бы и остались первобытными людьми. А так же благодаря ему мы имеем все блага цивилизации, которые используем сегодня и сейчас.

Огонь очень удивителен и необычен с точки зрения науки. Им и правда можно любоваться бесконечно…

Вот и все, что сегодня хотелось Вам рассказать, но это лишь немного, что известно человечеству. Пишите комментарии ниже, поправляйте и задавайте вопросы. Будем разбираться вместе.

Читайте нас так же на нашем канале в Дзен и Одноклассниках. Пока пока и до новых выпусков.

Источник

Плазма, свойства, виды, получение и применение

Плазма, свойства, виды, получение и применение.

Что такое огонь плазма. Смотреть фото Что такое огонь плазма. Смотреть картинку Что такое огонь плазма. Картинка про Что такое огонь плазма. Фото Что такое огонь плазмаЧто такое огонь плазма. Смотреть фото Что такое огонь плазма. Смотреть картинку Что такое огонь плазма. Картинка про Что такое огонь плазма. Фото Что такое огонь плазмаЧто такое огонь плазма. Смотреть фото Что такое огонь плазма. Смотреть картинку Что такое огонь плазма. Картинка про Что такое огонь плазма. Фото Что такое огонь плазмаЧто такое огонь плазма. Смотреть фото Что такое огонь плазма. Смотреть картинку Что такое огонь плазма. Картинка про Что такое огонь плазма. Фото Что такое огонь плазмаЧто такое огонь плазма. Смотреть фото Что такое огонь плазма. Смотреть картинку Что такое огонь плазма. Картинка про Что такое огонь плазма. Фото Что такое огонь плазмаЧто такое огонь плазма. Смотреть фото Что такое огонь плазма. Смотреть картинку Что такое огонь плазма. Картинка про Что такое огонь плазма. Фото Что такое огонь плазмаЧто такое огонь плазма. Смотреть фото Что такое огонь плазма. Смотреть картинку Что такое огонь плазма. Картинка про Что такое огонь плазма. Фото Что такое огонь плазмаЧто такое огонь плазма. Смотреть фото Что такое огонь плазма. Смотреть картинку Что такое огонь плазма. Картинка про Что такое огонь плазма. Фото Что такое огонь плазмаЧто такое огонь плазма. Смотреть фото Что такое огонь плазма. Смотреть картинку Что такое огонь плазма. Картинка про Что такое огонь плазма. Фото Что такое огонь плазмаЧто такое огонь плазма. Смотреть фото Что такое огонь плазма. Смотреть картинку Что такое огонь плазма. Картинка про Что такое огонь плазма. Фото Что такое огонь плазмаЧто такое огонь плазма. Смотреть фото Что такое огонь плазма. Смотреть картинку Что такое огонь плазма. Картинка про Что такое огонь плазма. Фото Что такое огонь плазмаЧто такое огонь плазма. Смотреть фото Что такое огонь плазма. Смотреть картинку Что такое огонь плазма. Картинка про Что такое огонь плазма. Фото Что такое огонь плазма

Плазма – это четвертое агрегатное состояние вещества, образуемое сильно нагретым ионизированным газом, состоящим из электронов и ионов.

Плазма, определение, понятие, характеристики:

Плазма, которая содержит электроны и положительные ионы, называют электронно-ионной плазмой. Если в плазме рядом с заряженными частицами имеются и нейтральные молекулы, то ее называют частично ионизированной. Плазма, состоящая только из заряженных частиц, называется полностью ионизированной.

Наиболее типичные формы плазмы:

Наиболее типичные формы плазмы представлены ниже в таблице:

Искусственно созданная плазма:Земная природная плазма:

Космическая и астрофизическая плазма:

– плазменная панель (телевизор, монитор),

– вещество внутри люминесцентных (в том числе компактных ) и неоновых ламп,

– плазменные ракетные двигатели,

– газоразрядная корона озонового генератора,

– управляемый термоядерный синтез,

– электрическая дуга в дуговой лампе и в дуговой сварке,

– дуговой разряд от трансформатора Теслы,

– воздействие на вещество лазерным излучением

Яркая сфера ядерного взрыва

– молния,

– огни святого Эльма,

– языки пламени (низкотемпературная плазма)

– солнце и другие звезды (те, которые существуют за счет термоядерных реакций),

– космическое пространство (пространство между планетами, звездами и галактиками),

– межзвездные туманности

Виды плазмы. Классификация плазмы:

Плазма может быть:

– искусственной и естественной.

Примеры естественной плазмы: планетарная туманность, межпланетная плазма, ионосфера Земли, хромосфера Солнца и звезд, солнечный протуберанец, солнечная спикула, солнечный ветер, солнечная корона, фотосфера Солнца и звезд, хромосферная вспышка, молния.

высокотемпературной (температура миллион градусов Kельвина и выше) и низкотемпературной (температура меньше миллиона градусов Kельвина).

У низкотемпературной плазмы средняя энергия электронов меньше характерного потенциала ионизации атома ( электрическим зарядом, которые либо самопроизвольно образуются в плазме в результате различных процессов, либо вводятся в плазму извне, то она называется пылевой плазмой. Пылевая плазма является частным случаем низкотемпературной плазмы.

Низкотемпературная плазма в соответствии с физическими свойствами может быть стационарной, нестационарной, квазистационарной, равновесной, неравновесной, идеальной, неидеальной.

Высокотемпературная плазма также называется еще горячей плазмой. Горячая плазма почти всегда полностью ионизирована (степень ионизации

полностью ионизированной и частично ионизированной.

Отношение числа ионизованных атомов к полному их числу в единице объёма называют степенью ионизации плазмы. Степень ионизации плазмы в большой степени обуславливает её свойства, в том числе электрические и электромагнитные.

Степень ионизации определяется по следующей формуле:

где α – степень ионизации, ni – концентрация ионов, а na – концентрация нейтральных атомов.

Очевидно, что максимальное значение α равно 1 (или 100 %). Плазму со степенью ионизации 1 (или 100 %) называют полностью ионизованной плазмой.

Субстанции со степенью ионизации менее 1 (или менее 100 %), называют частично ионизированной плазмой;

– идеальной и неидеальной. Данные виды характерны только для низкотемпературной плазмы.

Когда в условной сфере собирается возможный максимум взаимодействующих частиц, плазма становится идеальной. Если же диссипативные процессы имеют место, идеальность нарушается.

Так, если в сфере радиуса Дебая (rD) находится много заряженных частиц и для нее выполняется условие: N ≈ 4π·n·r 3 D / 3 ≫1, плазма называется идеальной плазмой,

где rD – радиус Дебая, n – концентрация всех частиц плазмы, N – параметр идеальности.

При N ⩽ 1 говорят о неидеальной плазме.

В идеальной плазме потенциальная энергия взаимодействия частиц мала по сравнению с их тепловой энергией;

равновесной и неравновесной. Данные виды характерны только для низкотемпературной плазмы.

Равновесной плазмой называется низкотемпературная плазма, если её компоненты находятся в состоянии термодинамического равновесия, т. е. температура электронов, ионов и нейтральных частиц совпадает. Равновесная плазма обычно имеет температуру больше нескольких тысяч градусов Kельвина.

В неравновесной плазме температура электронов существенно превышает температуру других компонентов. Это происходит из-за различия в массах нейтральных частиц, ионов и электронов, которое затрудняет процесс обмена энергией.

Плазменные субстанции, создаваемые искусственным путем, изначально не имеют термодинамического равновесия. Равновесие появляется лишь при существенном разогреве вещества, а значит увеличении количества хаотических столкновений частиц друг с другом, что возможно лишь при уменьшении переносимой ими энергии ;

стационарной, нестационарной и квазистационарной. Данные виды характерны только для низкотемпературной плазмы.

Стационарная низкотемпературная плазма обладает большим временем жизни по сравнению с временами релаксации в ней. Нестационарная (импульсная) низкотемпературная плазма живёт ограниченное время, определяемое как временем установления равновесия в плазме, так и внешними условиями. Низкотемпературная плазма, время жизни которой превышает характерное время переходных процессов, называется квазистационарной плазмой. Примером квазистационарной плазмы является газоразрядная плазма;

классической и вырожденной. Классической плазмой, называют такую, где расстояние между частицами много больше длины де-Бройля. В такой плазме частицы можно рассматривать как точечные заряды.

Вырожденная плазма – плазма, в которой сравнима длина де-Бройля с расстоянием между частицами. В такой плазме необходимо учитывать квантовые эффекты взаимодействия между частицами;

однокомпонентной и многокомпонентной (в зависимости от наполняемых ее ионов);

кварк-глюонной. Кварк-глюонная плазма – андронная среда с перемешанными цветными зарядами (кварками, антикварками и глюонами), образуется, когда сталкиваются тяжелые ультрарелятивистские частицы в среде с высокой энергетической плотностью;

криогенной. Криогенная плазма – это плаз­ма, ох­ла­ж­дён­ная до низ­ких (крио­ген­ных) тем­пе­ра­тур. Например, путем погружения в ванну с жидким азотом или гелием ;

газоразрядной. Газоразрядная плазма – плазма, возникающая при газовом разряде;

– плазмой твердых тел. Плазму твердых тел формируют электроны и дырки полупроводников при компенсации их зарядов ионами кристаллических решеток;

– лазерной. Лазерная плазма возникает от оптического пробоя, создаваемого мощным лазерным излучением при облучении вещества.

Существуют и другие подвиды плазменной субстанции.

Свойства плазмы:

Основное свойство плазменной субстанции заключается в ее высокой электрической проводимости, существенно превосходящей показатели в других агрегатных состояниях.

На плазму оказывает влияние электромагнитное поле, позволяющее сформировать нужную форму, количество слоев и плотность. Заряженные частицы движутся вдоль и поперек направления электромагнитного поля, их движение бывает поступательным или вращательным. Данное свойство плазмы называется также взаимодействие плазмы с внешним электромагнитным полем или электромагнитное свойство плазмы.

Несмотря на высокую электрическую проводимость она (плазма) квазинейтральна – частицы с положительным и отрицательным зарядами имеют практически равную объемную плотность.

Чтобы сохранить свойства плазмы, с ней не должны контактировать более холодные и плотные среды.

Условия – критерии признания плазмой система с заряженными частицами:

Любая система с заряженными частицами соответствует определению плазмы при наличии следующих условий-критериев:

достаточной плотности наполняющих ее электронов, ионов и других структурных единиц вещества, чтобы каждая из них взаимодействовала с целой системой близкорасположенных заряженных частиц. Для коллективного взаимодействия заряженных частиц их расположение должно быть максимально близким и находиться в сфере влияния (сфере радиусом Дебая).

Условие считается выполненным, если число заряженных частиц в сфере влияния (сфера радиусом Дебая) достаточно для возникновения коллективных эффектов.

Математически это условие можно выразить так:

r 3 D·N ≫ 1, где r 3 D – сфера радиусом Дебая, N – концентрация заряженных частиц;

приоритета внутренних взаимодействий. Это означает, что радиус дебаевского экранирования должен быть мал по сравнению с характерным размером плазмы. Условие выполняется, когда поверхностные эффекты в сравнении со значительными внутренними эффектами плазмы становятся ничтожно малы и ими пренебрегают.

Математически это условие можно выразить так:

rD / L ≪ 1, где rD –радиус Дебая, L – характерный размер плазмы;

появления плазменной частоты . Данный критерий означает, что среднее время между столкновениями частиц велико по сравнению с периодом плазменных колебаний. Условие выполняется при возникновении плазменных колебаний, превосходящих молекулярно-кинетические.

Параметры плазмы:

У четвертого состояния вещества выделяют следующие параметры:

концентрацию входящих в нее частиц.

В плазме все составляющие ее компоненты хаотически движутся. Чтобы измерить их концентрацию в единице объема, сначала разделяют входящие в нее частицы по группам (электроны, ионы, остальные нейтральные), потом по сортам сами ионы, и находят значения для каждого вида отдельно (ne, ni и na), где ne – концентрация свободных электронов, ni – концентрация ионов, na – концентрация нейтральных атомов;

степень и кратность ионизации.

Для того, чтобы превратить вещество в плазму его необходимо ионизировать. Степень ионизации пропорциональна числу атомов, отдавших или поглотивших электроны, и больше всего зависит от температуры. Отношение числа ионизованных атомов к полному их числу в единице объёма называют степенью ионизации плазмы. Степень ионизации плазмы в большой степени обуславливает её свойства, в том числе электрические и электромагнитные.

Степень ионизации определяется по следующей формуле:

где α – степень ионизации, ni – концентрация ионов, а na – концентрация нейтральных атомов.

α – это безразмерный параметр, показывающий, сколько атомов вещества смогли отдать или поглотить электроны. Понятно, что αmax = 1 (100%), а усредненный заряд его ионов, называемый также кратностью ионизации (Z) будет находиться в пределах ne = ni, где ne – концентрация свободных электронов.

При αmax плазма полностью ионизирована, что характерно в основном для «горячей» субстанции – высокотемпературной плазмы.

температуру. Разные вещества переходят в состояние плазмы при разной температуре, что объясняется строением внешних электронных оболочек атомов вещества: чем легче атом отдает электрон, тем ниже температура перехода в плазменное состояние.

Отличие плазмы от газа:

Плазма – своеобразная производная газа, получаемая при его ионизации. Однако у них существуют определенные отличия.

Прежде всего, это наличие электрической проводимости. У обычного газа (например, воздуха) она стремится к нулю. Большинство газов – хорошие изоляторы, пока не повергнуты дополнительным воздействиям. Плазма же является отличным проводником.

Из-за чрезвычайно малого электрического поля плазменная субстанция зависима от магнитных полей, что не характерно для газов. Это приводит к филаментированию и расслоению. А преобладание электрических и магнитных сил над гравитационными создает коллективные эффекты внутренних столкновений частиц в веществе.

В газах составляющие их частицы идентичны. Их тепловое движение осуществляется на небольшие расстояния за счет гравитационного притяжения. Структура плазмы состоит из электронов, ионов и нейтральных частиц, отличных своим зарядом и независимых между собой. У них может быть разная скорость и температура. В итоге появляются волны и неустойчивость.

Взаимодействие составляющих в газах двухчастичное (очень редко трехчастичное). В плазме оно коллективное: близкое расположение частиц дает возможность всем группам взаимодействовать сразу и со всеми.

При столкновениях частиц в газах скорости движения молекул распределяются согласно теории Максвелла. По ней только у немногих из них они относительно высокие. В плазме такое движение происходит под действием электрических полей, и оно бывает не только максвелловским. Нередко наличие больших скоростей приводит к двухтемпературным распределениям и появлению убегающих электронов.

Для исчерпывающего описания четвертого состояния не подходят гладкие математические функции и вероятностный подход. Поэтому применяют несколько математических моделей (как правило, не менее трех). Обычно это флюидная, жидкостная и Particle-In-Cell (метод частиц в ячейках). Но информация, полученная даже таким образом, бывает неполной и требует дальнейших уточнений.

Получение (создание) плазмы:

В лабораторных условиях существует несколько способов получения плазмы. Первый способ заключается в сильном нагреве выбранного вещества, а конкретная температура перехода в состояние плазмы зависит от строения электронных оболочек его атомов. Чем проще электронам покинуть свои орбиты, тем меньший нагрев потребуется веществу для трансформации в плазменное состояние. Воздействию же могут быть подвергнуты любые субстанции: твердые, жидкие, газообразные.

Также требуемое – плазменное состояние вещества можно создать радиоактивным облучением, сильным сжатием, лазерным облучением, резонансным излучением и пр. способами.

Применение плазмы:

В природе противодействующая солнечному ветру магнитосферная плазма Земли защищает земной шар от разрушительного влияния космоса. Субстанция ионосферы образует полярные сияния, молнии и коронные разряды.

Открытие четвертого состояния вещества способствовало и развитию многих народнохозяйственных отраслей. Свойства ионосферы отражать радиоволны помогли наладить дальнюю связь, передавать данные на большие расстояния.

Лабораторные газовые разряды позволили создать газоразрядные источники света ( люминесцентные и другие лампы ), усовершенствованные телевизионные панели и мультимедийные экраны.

Контролируемой магнитным полем плазменной струей стали обрабатывать, резать и сваривать материалы.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *