Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ

ГСомСтрия. Π£Ρ€ΠΎΠΊ 5. ΠžΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ

Π‘ΠΌΠΎΡ‚Ρ€ΠΈΡ‚Π΅ бСсплатныС Π²ΠΈΠ΄Π΅ΠΎ-ΡƒΡ€ΠΎΠΊΠΈ Π½Π° ΠΊΠ°Π½Π°Π»Π΅ ЁТику ΠŸΠΎΠ½ΡΡ‚Π½ΠΎ.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ

Π’ΠΈΠ΄Π΅ΠΎ-ΡƒΡ€ΠΎΠΊΠΈ Π½Π° ΠΊΠ°Π½Π°Π»Π΅ ЁТику ΠŸΠΎΠ½ΡΡ‚Π½ΠΎ. Подпишись!

Π‘ΠΎΠ΄Π΅Ρ€ΠΆΠ°Π½ΠΈΠ΅ страницы:

ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ окруТности

ΠžΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ – гСомСтричСскоС мСсто Ρ‚ΠΎΡ‡Π΅ΠΊ, Ρ€Π°Π²Π½ΠΎΡƒΠ΄Π°Π»Π΅Π½Π½Ρ‹Ρ… ΠΎΡ‚ Π΄Π°Π½Π½ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠΈ.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ

ΠžΡ‚Ρ€Π΅Π·ΠΊΠΈ Π² окруТности

Радиус окруТности R – ΠΎΡ‚Ρ€Π΅Π·ΠΎΠΊ, ΡΠΎΠ΅Π΄ΠΈΠ½ΡΡŽΡ‰ΠΈΠΉ Ρ†Π΅Π½Ρ‚Ρ€ окруТности с Ρ‚ΠΎΡ‡ΠΊΠΎΠΉ Π½Π° окруТности.

Π₯ΠΎΡ€Π΄Π° a – ΠΎΡ‚Ρ€Π΅Π·ΠΎΠΊ, ΡΠΎΠ΅Π΄ΠΈΠ½ΡΡŽΡ‰ΠΈΠΉ Π΄Π²Π΅ Ρ‚ΠΎΡ‡ΠΊΠΈ Π½Π° окруТности.

Π”ΠΈΠ°ΠΌΠ΅Ρ‚Ρ€ d – Ρ…ΠΎΡ€Π΄Π°, проходящая Ρ‡Π΅Ρ€Π΅Π· Ρ†Π΅Π½Ρ‚Ρ€ окруТности, ΠΎΠ½ Ρ€Π°Π²Π΅Π½ Π΄Π²ΡƒΠΌ радиусам окруТности ( d = 2 R ).

O A – радиус, D E – Ρ…ΠΎΡ€Π΄Π°, B C – Π΄ΠΈΠ°ΠΌΠ΅Ρ‚Ρ€.

Π’Π΅ΠΎΡ€Π΅ΠΌΠ° 1:
Радиус, пСрпСндикулярный Ρ…ΠΎΡ€Π΄Π΅, Π΄Π΅Π»ΠΈΡ‚ ΠΏΠΎΠΏΠΎΠ»Π°ΠΌ эту Ρ…ΠΎΡ€Π΄Ρƒ ΠΈ Π΄ΡƒΠ³Ρƒ, ΠΊΠΎΡ‚ΠΎΡ€ΡƒΡŽ ΠΎΠ½Π° стягиваСт.

ΠšΠ°ΡΠ°Ρ‚Π΅Π»ΡŒΠ½Π°Ρ ΠΊ окруТности – прямая, ΠΈΠΌΠ΅ΡŽΡ‰Π°Ρ с ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒΡŽ ΠΎΠ΄Π½Ρƒ ΠΎΠ±Ρ‰ΡƒΡŽ Ρ‚ΠΎΡ‡ΠΊΡƒ.

Из ΠΎΠ΄Π½ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠΈ, Π»Π΅ΠΆΠ°Ρ‰Π΅ΠΉ Π²Π½Π΅ окруТности, ΠΌΠΎΠΆΠ½ΠΎ провСсти Π΄Π²Π΅ ΠΊΠ°ΡΠ°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ ΠΊ Π΄Π°Π½Π½ΠΎΠΉ окруТности.

Π’Π΅ΠΎΡ€Π΅ΠΌΠ° 2:
ΠžΡ‚Ρ€Π΅Π·ΠΊΠΈ ΠΊΠ°ΡΠ°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Ρ…, ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½Π½Ρ‹Ρ… ΠΈΠ· ΠΎΠ΄Π½ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠΈ, Ρ€Π°Π²Π½Ρ‹ ( A C = B C ).

Π’Π΅ΠΎΡ€Π΅ΠΌΠ° 3:
ΠšΠ°ΡΠ°Ρ‚Π΅Π»ΡŒΠ½Π°Ρ пСрпСндикулярна радиусу, ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½Π½ΠΎΠΌΡƒ ΠΊ Ρ‚ΠΎΡ‡ΠΊΠ΅ касания.

Π”ΡƒΠ³Π° Π² окруТности

Π’Π΅ΠΎΡ€Π΅ΠΌΠ° 4:
Π Π°Π²Π½Ρ‹Π΅ Ρ…ΠΎΡ€Π΄Ρ‹ ΡΡ‚ΡΠ³ΠΈΠ²Π°ΡŽΡ‚ Ρ€Π°Π²Π½Ρ‹Π΅ Π΄ΡƒΠ³ΠΈ.

Π£Π³Π»Ρ‹ Π² окруТности

Π’ окруТности сущСствуСт Π΄Π²Π° Ρ‚ΠΈΠΏΠ° ΡƒΠ³Π»ΠΎΠ²: Ρ†Π΅Π½Ρ‚Ρ€Π°Π»ΡŒΠ½Ρ‹Π΅ ΠΈ вписанныС.

Π¦Π΅Π½Ρ‚Ρ€Π°Π»ΡŒΠ½Ρ‹ΠΉ ΡƒΠ³ΠΎΠ» – ΡƒΠ³ΠΎΠ», Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ Π»Π΅ΠΆΠΈΡ‚ Π² Ρ†Π΅Π½Ρ‚Ρ€Π΅ окруТности.

∠ A O B – Ρ†Π΅Π½Ρ‚Ρ€Π°Π»ΡŒΠ½Ρ‹ΠΉ.

Если провСсти Π΄ΠΈΠ°ΠΌΠ΅Ρ‚Ρ€, Ρ‚ΠΎ ΠΎΠ½ Ρ€Π°Π·ΠΎΠ±ΡŒΡ‘Ρ‚ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π½Π° Π΄Π²Π΅ полуокруТности. Градусная ΠΌΠ΅Ρ€Π° ΠΊΠ°ΠΆΠ΄ΠΎΠΉ полуокруТности Π±ΡƒΠ΄Π΅Ρ‚ Ρ€Π°Π²Π½Π° градусной ΠΌΠ΅Ρ€Π΅ Ρ€Π°Π·Π²Π΅Ρ€Π½ΡƒΡ‚ΠΎΠ³ΠΎ ΡƒΠ³Π»Π°, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ Π½Π° Π½Π΅Ρ‘ опираСтся.

Вписанный ΡƒΠ³ΠΎΠ» – ΡƒΠ³ΠΎΠ», Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ Π»Π΅ΠΆΠΈΡ‚ Π½Π° окруТности, Π° стороны ΠΏΠ΅Ρ€Π΅ΡΠ΅ΠΊΠ°ΡŽΡ‚ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ.

∠ M A N = ∠ M B N = ∠ M C N = βˆͺ M N 2 = Ξ± 2

∠ M A N = ∠ M B N = βˆͺ M N 2 = 180 Β° 2 = 90 Β°

Π”Π»ΠΈΠ½Π° окруТности, Π΄Π»ΠΈΠ½Π° Π΄ΡƒΠ³ΠΈ

Но Π½Π΅Π²ΠΎΠΎΡƒΡ€ΡƒΠΆΠ΅Π½Π½Ρ‹ΠΌ Π³Π»Π°Π·ΠΎΠΌ Π²ΠΈΠ΄Π½ΠΎ, Ρ‡Ρ‚ΠΎ Π΄Π»ΠΈΠ½Ρ‹ Π΄ΡƒΠ³ Ρ€Π°Π·Π½Ρ‹Π΅. Если градусная ΠΌΠ΅Ρ€Π° Π΄ΡƒΠ³ΠΈ окруТности зависит Ρ‚ΠΎΠ»ΡŒΠΊΠΎ ΠΎΡ‚ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹ Ρ†Π΅Π½Ρ‚Ρ€Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ ΡƒΠ³Π»Π°, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ Π½Π° Π½Π΅Ρ‘ опираСтся, Ρ‚ΠΎ Π΄Π»ΠΈΠ½Π° Π΄ΡƒΠ³ΠΈ окруТности зависит Π΅Ρ‰Ρ‘ ΠΈ ΠΎΡ‚ радиуса самой окруТноси.

Π”Π»ΠΈΠ½Π° окруТности находится ΠΏΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅:

ΠŸΠ»ΠΎΡ‰Π°Π΄ΡŒ ΠΊΡ€ΡƒΠ³Π° ΠΈ Π΅Π³ΠΎ частСй

Π’Π΅ΠΏΠ΅Ρ€ΡŒ ΠΏΠΎΠ³ΠΎΠ²ΠΎΡ€ΠΈΠΌ ΠΏΡ€ΠΎ ΠΏΠ»ΠΎΡ‰Π°Π΄ΡŒ ΠΊΡ€ΡƒΠ³Π°, ΠΏΠ»ΠΎΡ‰Π°Π΄ΡŒ сСктора ΠΈ ΠΏΠ»ΠΎΡ‰Π°Π΄ΡŒ сСгмСнта.

ΠšΡ€ΡƒΠ³ – Ρ‡Π°ΡΡ‚ΡŒ пространства, которая находится Π²Π½ΡƒΡ‚Ρ€ΠΈ окруТности.

Π˜Π½Ρ‹ΠΌΠΈ словами, ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ – это Π³Ρ€Π°Π½ΠΈΡ†Π°, Π° ΠΊΡ€ΡƒΠ³ – это Ρ‚ΠΎ, Ρ‡Ρ‚ΠΎ Π²Π½ΡƒΡ‚Ρ€ΠΈ.

ΠŸΡ€ΠΈΠΌΠ΅Ρ€Ρ‹ окруТности Π² Ρ€Π΅Π°Π»ΡŒΠ½ΠΎΠΉ ΠΆΠΈΠ·Π½ΠΈ: вСлосипСдноС колСсо, ΠΎΠ±Ρ€ΡƒΡ‡, ΠΊΠΎΠ»ΡŒΡ†ΠΎ.

ΠŸΡ€ΠΈΠΌΠ΅Ρ€Ρ‹ ΠΊΡ€ΡƒΠ³Π° Π² Ρ€Π΅Π°Π»ΡŒΠ½ΠΎΠΉ ΠΆΠΈΠ·Π½ΠΈ: ΠΏΠΈΡ†Ρ†Π°, ΠΊΡ€Ρ‹ΡˆΠΊΠ° ΠΎΡ‚ ΠΊΠ°Π½Π°Π»ΠΈΠ·Π°Ρ†ΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ люка, плоская Ρ‚Π°Ρ€Π΅Π»ΠΊΠ°.

ΠŸΠ»ΠΎΡ‰Π°Π΄ΡŒ ΠΊΡ€ΡƒΠ³Π° находится ΠΏΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅: S = Ο€ R 2

Π‘Π΅ΠΊΡ‚ΠΎΡ€ – это Ρ‡Π°ΡΡ‚ΡŒ ΠΊΡ€ΡƒΠ³Π°, ограничСнная Π΄ΡƒΠ³ΠΎΠΉ ΠΈ двумя радиусами, ΡΠΎΠ΅Π΄ΠΈΠ½ΡΡŽΡ‰ΠΈΠΌΠΈ ΠΊΠΎΠ½Ρ†Ρ‹ Π΄ΡƒΠ³ΠΈ с Ρ†Π΅Π½Ρ‚Ρ€ΠΎΠΌ ΠΊΡ€ΡƒΠ³Π°.

ΠŸΡ€ΠΈΠΌΠ΅Ρ€Ρ‹ сСктора Π² Ρ€Π΅Π°Π»ΡŒΠ½ΠΎΠΉ ΠΆΠΈΠ·Π½ΠΈ: кусок ΠΏΠΈΡ†Ρ†Ρ‹, Π²Π΅Π΅Ρ€.

ΠŸΠ»ΠΎΡ‰Π°Π΄ΡŒ ΠΊΡ€ΡƒΠ³ΠΎΠ²ΠΎΠ³ΠΎ сСктора, ΠΎΠ³Ρ€Π°Π½ΠΈΡ‡Π΅Π½Π½ΠΎΠ³ΠΎ Ρ†Π΅Π½Ρ‚Ρ€Π°Π»ΡŒΠ½Ρ‹ΠΌ ΡƒΠ³Π»ΠΎΠΌ Ξ± находится ΠΏΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅: S Ξ± = Ο€ R 2 360 Β° β‹… Ξ±

Π‘Π΅Π³ΠΌΠ΅Π½Ρ‚ – это Ρ‡Π°ΡΡ‚ΡŒ ΠΊΡ€ΡƒΠ³Π°, ограничСнная Π΄ΡƒΠ³ΠΎΠΉ ΠΈ Ρ…ΠΎΡ€Π΄ΠΎΠΉ, ΡΡ‚ΡΠ³ΠΈΠ²Π°ΡŽΡ‰Π΅ΠΉ эту Π΄ΡƒΠ³Ρƒ.

ΠŸΡ€ΠΈΠΌΠ΅Ρ€Ρ‹ сСгмСнта Π² Ρ€Π΅Π°Π»ΡŒΠ½ΠΎΠΉ ΠΆΠΈΠ·Π½ΠΈ: ΠΌΠ°Ρ€ΠΌΠ΅Π»Π°Π΄ β€œΠ»ΠΈΠΌΠΎΠ½Π½Π°Ρ Π΄ΠΎΠ»ΡŒΠΊΠ°β€, Π»ΡƒΠΊ для ΡΡ‚Ρ€Π΅Π»ΡŒΠ±Ρ‹.

Π§Ρ‚ΠΎΠ±Ρ‹ Π½Π°ΠΉΡ‚ΠΈ ΠΏΠ»ΠΎΡ‰Π°Π΄ΡŒ сСгмСнта, Π½ΡƒΠΆΠ½ΠΎ спСрва Π²Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ ΠΏΠ»ΠΎΡ‰Π°Π΄ΡŒ ΠΊΡ€ΡƒΠ³ΠΎΠ²ΠΎΠ³ΠΎ сСктора, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ Π΄Π°Π½Π½Ρ‹ΠΉ сСгмСнт содСрТит, Π° ΠΏΠΎΡ‚ΠΎΠΌ Π²Ρ‹Ρ‡Π΅ΡΡ‚ΡŒ ΠΏΠ»ΠΎΡ‰Π°Π΄ΡŒ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ Ρ†Π΅Π½Ρ‚Ρ€Π°Π»ΡŒΠ½Ρ‹ΠΌ ΡƒΠ³Π»ΠΎΠΌ ΠΈ Ρ…ΠΎΡ€Π΄ΠΎΠΉ.

S = Ο€ R 2 360 Β° β‹… Ξ± βˆ’ 1 2 R 2 sin Ξ±

Π’Π΅ΠΎΡ€Π΅ΠΌΠ° синусов

Если Π²ΠΎΠΊΡ€ΡƒΠ³ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ»ΡŒΠ½ΠΎΠ³ΠΎ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° описана ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ, Ρ‚ΠΎ Π΅Ρ‘ радиус ΠΌΠΎΠΆΠ½ΠΎ Π½Π°ΠΉΡ‚ΠΈ ΠΏΡ€ΠΈ ΠΏΠΎΠΌΠΎΡ‰ΠΈ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΡ‹ синусов:

a sin ∠ A = b sin ∠ B = c sin ∠ C = 2 R Достаточно Π·Π½Π°Ρ‚ΡŒ ΠΎΠ΄Π½Ρƒ ΠΈΠ· сторон Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° ΠΈ синус ΡƒΠ³Π»Π°, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ Π½Π°ΠΏΡ€ΠΎΡ‚ΠΈΠ² Π½Π΅Ρ‘ Π»Π΅ΠΆΠΈΡ‚. Из этих Π΄Π°Π½Π½Ρ‹Ρ… ΠΌΠΎΠΆΠ½ΠΎ Π½Π°ΠΉΡ‚ΠΈ радиус описанной окруТности.

ΠŸΡ€ΠΈΠΌΠ΅Ρ€Ρ‹ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΉ Π·Π°Π΄Π°Π½ΠΈΠΉ ΠΈΠ· ΠžΠ“Π­

ΠœΠΎΠ΄ΡƒΠ»ΡŒ гСомСтрия: задания, связанныС с окруТностями.

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

ΠžΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ

ΠžΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ β€” гСомСтричСскоС мСсто всСх Ρ‚ΠΎΡ‡Π΅ΠΊ плоскости, Ρ€Π°Π²Π½ΠΎΡƒΠ΄Π°Π»Ρ‘Π½Π½Ρ‹Ρ… ΠΎΡ‚ Π·Π°Π΄Π°Π½Π½ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠΈ, Π½Π°Π·Ρ‹Π²Π°Π΅ΠΌΠΎΠΉ Ρ†Π΅Π½Ρ‚Ρ€ΠΎΠΌ, Π½Π° Π·Π°Π΄Π°Π½Π½ΠΎΠ΅ Π½Π΅ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ расстояниС, Π½Π°Π·Ρ‹Π²Π°Π΅ΠΌΠΎΠ΅ Π΅Ρ‘ радиусом.

Π‘ΠΎΠ΄Π΅Ρ€ΠΆΠ°Π½ΠΈΠ΅

Π”Ρ€ΡƒΠ³ΠΈΠ΅ опрСдСлСния

ΠžΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π΄ΠΈΠ°ΠΌΠ΅Ρ‚Ρ€Π° AB β€” это Ρ„ΠΈΠ³ΡƒΡ€Π°, состоящая ΠΈΠ· Ρ‚ΠΎΡ‡Π΅ΠΊ A, B ΠΈ всСх Ρ‚ΠΎΡ‡Π΅ΠΊ плоскости, ΠΈΠ· ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… ΠΎΡ‚Ρ€Π΅Π·ΠΎΠΊ AB Π²ΠΈΠ΄Π΅Π½ ΠΏΠΎΠ΄ прямым ΡƒΠ³Π»ΠΎΠΌ.

ΠžΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ β€” это Ρ„ΠΈΠ³ΡƒΡ€Π°, состоящая ΠΈΠ· всСх Ρ‚ΠΎΡ‡Π΅ΠΊ плоскости, для ΠΊΠ°ΠΆΠ΄ΠΎΠΉ ΠΈΠ· ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ расстояний Π΄ΠΎ Π΄Π²ΡƒΡ… Π΄Π°Π½Π½Ρ‹Ρ… Ρ‚ΠΎΡ‡Π΅ΠΊ Ρ€Π°Π²Π½ΠΎ Π΄Π°Π½Π½ΠΎΠΌΡƒ числу, ΠΎΡ‚Π»ΠΈΡ‡Π½ΠΎΠΌΡƒ ΠΎΡ‚ Π΅Π΄ΠΈΠ½ΠΈΡ†Ρ‹. (см. ΠžΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Аполлония)

Π’Π°ΠΊΠΆΠ΅ Ρ„ΠΈΠ³ΡƒΡ€Π°, состоящая ΠΈΠ· всСх Ρ‚Π°ΠΊΠΈΡ… Ρ‚ΠΎΡ‡Π΅ΠΊ, для ΠΊΠ°ΠΆΠ΄ΠΎΠΉ ΠΈΠ· ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… сумма ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΎΠ² расстояний Π΄ΠΎ Π΄Π²ΡƒΡ… Π΄Π°Π½Π½Ρ‹Ρ… Ρ‚ΠΎΡ‡Π΅ΠΊ Ρ€Π°Π²Π½Π° Π·Π°Π΄Π°Π½Π½ΠΎΠΉ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π΅, большСй ΠΏΠΎΠ»ΠΎΠ²ΠΈΠ½Ρ‹ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π° расстояния ΠΌΠ΅ΠΆΠ΄Ρƒ Π΄Π°Π½Π½Ρ‹ΠΌΠΈ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ.

БвязанныС опрСдСлСния

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ

Бвойства

ΠžΡΠ½ΠΎΠ²Π½Ρ‹Π΅ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ

ΠŸΠ»ΠΎΡ‰Π°Π΄ΡŒ ΠΊΡ€ΡƒΠ³Π° радиуса R:

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ

ΠŸΠ»ΠΎΡ‰Π°Π΄ΡŒ сСктора, ΠΎΠ³Ρ€Π°Π½ΠΈΡ‡Π΅Π½Π½ΠΎΠ³ΠΎ ΡƒΠ³Π»ΠΎΠΌ Ξ±, измСряСмым Π² градусах, радиусом R:

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ

ΠŸΠ»ΠΎΡ‰Π°Π΄ΡŒ сСгмСнта, ΠΎΠ³Ρ€Π°Π½ΠΈΡ‡Π΅Π½Π½ΠΎΠ³ΠΎ Π΄ΡƒΠ³ΠΎΠΉ окруТности ΡƒΠ³Π»ΠΎΠΌ Ξ±, Ρ…ΠΎΡ€Π΄ΠΎΠΉ:

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ

УравнСния

Π”Π΅ΠΊΠ°Ρ€Ρ‚ΠΎΠ²Ρ‹ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ

ΠžΠ±Ρ‰Π΅Π΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ окруТности записываСтся ΠΊΠ°ΠΊ:

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ

Π’ΠΎΡ‡ΠΊΠ° Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎβ€” Ρ†Π΅Π½Ρ‚Ρ€ окруТности, Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎβ€” Π΅Ρ‘ радиус.

Π£Ρ€Π°Π²Π½Π΅Π½ΠΈΠ΅ окруТности радиуса Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ краткос Ρ†Π΅Π½Ρ‚Ρ€ΠΎΠΌ Π² Π½Π°Ρ‡Π°Π»Π΅ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚:

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ

Π£Ρ€Π°Π²Π½Π΅Π½ΠΈΠ΅ окруТности, проходящСй Ρ‡Π΅Ρ€Π΅Π· Ρ‚Ρ€ΠΈ Ρ‚ΠΎΡ‡ΠΊΠΈ (с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ опрСдСлитСля) Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎΠΈ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ

ΠžΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Ρ‚Π°ΠΊΠΆΠ΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ парамСтричСского уравнСния:

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ

Π’ Π΄Π΅ΠΊΠ°Ρ€Ρ‚ΠΎΠ²ΠΎΠΉ систСмС ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π½Π΅ являСтся Π³Ρ€Π°Ρ„ΠΈΠΊΠΎΠΌ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ, Π½ΠΎ ΠΎΠ½Π° ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ описана ΠΊΠ°ΠΊ объСдинСниС Π³Ρ€Π°Ρ„ΠΈΠΊΠΎΠ² Π΄Π²ΡƒΡ… ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΡ… Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ:

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ

Если Ρ†Π΅Π½Ρ‚Ρ€ окруТности совпадаСт с Π½Π°Ρ‡Π°Π»ΠΎΠΌ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚, Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°ΡŽΡ‚ Π²ΠΈΠ΄:

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ

ΠŸΠΎΠ»ΡΡ€Π½Ρ‹Π΅ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹

ΠžΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ радиуса Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ краткос Ρ†Π΅Π½Ρ‚Ρ€ΠΎΠΌ Π² Ρ‚ΠΎΡ‡ΠΊΠ΅ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ:

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ

Если полярныС ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Ρ†Π΅Π½Ρ‚Ρ€Π° окруТности Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎΡ‚ΠΎ проходящая Ρ‡Π΅Ρ€Π΅Π· Π½Π°Ρ‡Π°Π»ΠΎ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ описываСтся ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ΠΌ:

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ

Если ΠΆΠ΅ Ρ†Π΅Π½Ρ‚Ρ€ являСтся Π½Π°Ρ‡Π°Π»ΠΎΠΌ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚, Ρ‚ΠΎ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ Π±ΡƒΠ΄Π΅Ρ‚ ΠΈΠΌΠ΅Ρ‚ΡŒ Π²ΠΈΠ΄:

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ

КомплСксная ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒ

На комплСксной плоскости ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ задаётся Ρ„ΠΎΡ€ΠΌΡƒΠ»ΠΎΠΉ:

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ

ΠΈΠ»ΠΈ Π² парамСтричСском Π²ΠΈΠ΄Π΅

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ

ΠšΠ°ΡΠ°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ ΠΈ Π½ΠΎΡ€ΠΌΠ°Π»ΠΈ

Π£Ρ€Π°Π²Π½Π΅Π½ΠΈΠ΅ ΠΊΠ°ΡΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠΉ ΠΊ окруТности Π² Ρ‚ΠΎΡ‡ΠΊΠ΅ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ краткоопрСдСляСтся ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ΠΌ

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ

Π£Ρ€Π°Π²Π½Π΅Π½ΠΈΠ΅ Π½ΠΎΡ€ΠΌΠ°Π»ΠΈ Π² Ρ‚ΠΎΠΉ ΠΆΠ΅ Ρ‚ΠΎΡ‡ΠΊΠ΅ ΠΌΠΎΠΆΠ½ΠΎ Π·Π°ΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΊΠ°ΠΊ

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ

ΠšΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€ΠΈΡ‡Π΅ΡΠΊΠΈΠ΅ ΠΈ ΠΎΡ€Ρ‚ΠΎΠ³ΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Π΅ окруТности

Π”Π²Π΅ окруТности, Π·Π°Π΄Π°Π½Π½Ρ‹Π΅ уравнСниями:

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ

ΡΠ²Π»ΡΡŽΡ‚ΡΡ концСнтричСскими (Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ ΠΈΠΌΠ΅ΡŽΡ‰ΠΈΠΌΠΈ ΠΎΠ±Ρ‰ΠΈΠΉ Ρ†Π΅Π½Ρ‚Ρ€) Π² Ρ‚ΠΎΠΌ ΠΈ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ Π² Ρ‚ΠΎΠΌ случаС, ΠΊΠΎΠ³Π΄Π° Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎΠΈ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ

Π”Π²Π΅ окруТности ΡΠ²Π»ΡΡŽΡ‚ΡΡ ΠΎΡ€Ρ‚ΠΎΠ³ΠΎΠ½Π°Π»ΡŒΠ½Ρ‹ΠΌΠΈ (Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ ΠΏΠ΅Ρ€Π΅ΡΠ΅ΠΊΠ°ΡŽΡ‰ΠΈΠ΅ΡΡ ΠΏΠΎΠ΄ прямым ΡƒΠ³Π»ΠΎΠΌ) Ρ‚ΠΎΠ³Π΄Π° ΠΈ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ Ρ‚ΠΎΠ³Π΄Π°, ΠΊΠΎΠ³Π΄Π° выполняСтся условиС

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ

Π‘ΠΌ. Ρ‚Π°ΠΊΠΆΠ΅

Π›ΠΈΡ‚Π΅Ρ€Π°Ρ‚ΡƒΡ€Π°

Π¦ΠΈΠΊΠ»ΠΎΠΈΠ΄Π° β€’ Π­ΠΏΠΈΡ†ΠΈΠΊΠ»ΠΎΠΈΠ΄Π° β€’ Π“ΠΈΠΏΠΎΡ†ΠΈΠΊΠ»ΠΎΠΈΠ΄Π° β€’ Π’Ρ€ΠΎΡ…ΠΎΠΈΠ΄Π° (Удлинённая + УкорочСнная Ρ†ΠΈΠΊΠ»ΠΎΠΈΠ΄Π°) β€’ Π­ΠΏΠΈΡ‚Ρ€ΠΎΡ…ΠΎΠΈΠ΄Π° (Удлинённая + УкорочСнная эпициклоида β€’ (Β«Π ΠΎΠ·Π°Β») β€’ Π“ΠΈΠΏΠΎΡ‚Ρ€ΠΎΡ…ΠΎΠΈΠ΄Π° β€’ Π‘ΠΊΠΎΡ€Π΅ΠΉΡˆΠ΅Π³ΠΎ спуска (Брахистохрона, Π΄ΡƒΠ³Π° Ρ†ΠΈΠΊΠ»ΠΎΠΈΠ΄Ρ‹)

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ ΠšΠΎΠ½ΠΈΡ‡Π΅ΡΠΊΠΈΠ΅ сСчСния
Π“Π»Π°Π²Π½Ρ‹Π΅ типыЭллипс β€’ Π“ΠΈΠΏΠ΅Ρ€Π±ΠΎΠ»Π° β€’ ΠŸΠ°Ρ€Π°Π±ΠΎΠ»Π°
Π’Ρ‹Ρ€ΠΎΠΆΠ΄Π΅Π½Π½Ρ‹Π΅Π’ΠΎΡ‡ΠΊΠ° β€’ ΠŸΡ€ΡΠΌΠ°Ρ β€’ ΠŸΠ°Ρ€Π° прямых
Частный случай ΡΠ»Π»ΠΈΠΏΡΠ°ΠžΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ
ГСомСтричСскоС ΠΏΠΎΡΡ‚Ρ€ΠΎΠ΅Π½ΠΈΠ΅ΠšΠΎΠ½ΠΈΡ‡Π΅ΡΠΊΠΎΠ΅ сСчСниС β€’ Π¨Π°Ρ€Ρ‹ Π”Π°Π½Π΄Π΅Π»Π΅Π½Π°
Π‘ΠΌ. Ρ‚Π°ΠΊΠΆΠ΅ΠšΠΎΠ½ΠΈΡ‡Π΅ΡΠΊΠ°Ρ константа
ΠœΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ° β€’ ГСомСтрия

ПолСзноС

Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ «ΠžΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ» Π² Π΄Ρ€ΡƒΠ³ΠΈΡ… словарях:

ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ β€” ΠΊΠΎΠ»ΡŒΡ†ΠΎ, эпицикл, кривая, ΠΌΠ΅ΡΡ‚Π½ΠΎΡΡ‚ΡŒ, ΠΎΠΊΠΎΠ»ΠΎΡ‚ΠΎΠΊ, ΠΎΠΊΡ€Π΅ΡΡ‚Π½ΠΎΡΡ‚ΡŒ, Π΄Π΅Ρ„Π΅Ρ€Π΅Π½Ρ‚, ΠΊΡ€ΡƒΠ³, ΠΎΠΊΡ€ΡƒΠ³Π° Π‘Π»ΠΎΠ²Π°Ρ€ΡŒ русских синонимов. ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ 1. см. ΠΊΡ€ΡƒΠ³. 2. см. ΠΎΠΊΡ€Π΅ΡΡ‚Π½ΠΎΡΡ‚ΡŒ … Π‘Π»ΠΎΠ²Π°Ρ€ΡŒ синонимов

ΠžΠšΠ Π£Π–ΠΠžΠ‘Π’Π¬ β€” ΠžΠšΠ Π£Π–ΠΠžΠ‘Π’Π¬, замкнутая плоская кривая, всС Ρ‚ΠΎΡ‡ΠΊΠΈ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²ΠΎ ΡƒΠ΄Π°Π»Π΅Π½Ρ‹ ΠΎΡ‚ Π΄Π°Π½Π½ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠΈ (Ρ†Π΅Π½Ρ‚Ρ€Π°). ΠžΡ‚Ρ€Π΅Π·ΠΎΠΊ R, ΡΠΎΠ΅Π΄ΠΈΠ½ΡΡŽΡ‰ΠΈΠΉ Ρ†Π΅Π½Ρ‚Ρ€ окруТности с ΠΊΠ°ΠΊΠΎΠΉ Π»ΠΈΠ±ΠΎ Π΅Ρ‘ Ρ‚ΠΎΡ‡ΠΊΠΎΠΉ (Π° Ρ‚Π°ΠΊΠΆΠ΅ Π΄Π»ΠΈΠ½Π° этого ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ°), называСтся радиусом; ΠΎΡ‚Ρ€Π΅Π·ΠΎΠΊ, ΡΠΎΠ΅Π΄ΠΈΠ½ΡΡŽΡ‰ΠΈΠΉ Π΄Π²Π΅ точки… … БоврСмСнная энциклопСдия

ΠžΠšΠ Π£Π–ΠΠžΠ‘Π’Π¬ β€” замкнутая плоская кривая, всС Ρ‚ΠΎΡ‡ΠΊΠΈ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²ΠΎ ΡƒΠ΄Π°Π»Π΅Π½Ρ‹ ΠΎΡ‚ Π΅Π΅ Ρ†Π΅Π½Ρ‚Ρ€Π° O. (рис.). РасстояниС R ΠΊΠ°ΠΆΠ΄ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠΈ окруТности Π΄ΠΎ Π΅Π΅ Ρ†Π΅Π½Ρ‚Ρ€Π° называСтся радиусом. ΠŸΡ€ΡΠΌΠ°Ρ АВ, ΡΠΎΠ΅Π΄ΠΈΠ½ΡΡŽΡ‰Π°Ρ Π»ΡŽΠ±Ρ‹Π΅ Π΄Π²Π΅ Ρ‚ΠΎΡ‡ΠΊΠΈ окруТности, называСтся Π΅Π΅ Ρ…ΠΎΡ€Π΄ΠΎΠΉ, Ρ…ΠΎΡ€Π΄Π° CD,… … Π‘ΠΎΠ»ΡŒΡˆΠΎΠΉ ЭнциклопСдичСский ΡΠ»ΠΎΠ²Π°Ρ€ΡŒ

ΠžΠšΠ Π£Π–ΠΠžΠ‘Π’Π¬ β€” ΠžΠšΠ Π£Π–ΠΠžΠ‘Π’Π¬, расстояниС, измСряСмоС ΠΏΠΎ ΠΊΡ€Π°ΡŽ плоской гСомСтричСской Ρ„ΠΈΠ³ΡƒΡ€Ρ‹, ΠΈΠΌΠ΅Π½ΡƒΠ΅ΠΌΠΎΠΉ ΠΊΡ€ΡƒΠ³ΠΎΠΌ, для ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ это расстояниС опрСдСляСтся ΠΊΠ°ΠΊ 2pr, Π³Π΄Π΅ r радиус. Π˜Π·Ρ€Π΅Π΄ΠΊΠ° этот Ρ‚Π΅Ρ€ΠΌΠΈΠ½ ΠΏΡ€ΠΈΠΌΠ΅Π½ΡΡŽΡ‚ Ρ‚Π°ΠΊΠΆΠ΅ ΠΊ Π΄Ρ€ΡƒΠ³ΠΈΠΌ Ρ„ΠΈΠ³ΡƒΡ€Π°ΠΌ … Научно-тСхничСский энциклопСдичСский ΡΠ»ΠΎΠ²Π°Ρ€ΡŒ

ΠžΠšΠ Π£Π–ΠΠžΠ‘Π’Π¬ β€” ΠžΠšΠ Π£Π–ΠΠžΠ‘Π’Π¬, окруТности, ΠΆΠ΅Π½. 1. Замкнутая кривая, всС Ρ‚ΠΎΡ‡ΠΊΠΈ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ Ρ€Π°Π²Π½ΠΎ ΡƒΠ΄Π°Π»Π΅Π½Ρ‹ ΠΎΡ‚ Ρ‚ΠΎΡ‡ΠΊΠΈ, Π½Π°Π·Ρ‹Π²Π°Π΅ΠΌΠΎΠΉ Ρ†Π΅Π½Ρ‚Ρ€ΠΎΠΌ; замкнутая кривая, ΠΎΠ³Ρ€Π°Π½ΠΈΡ‡ΠΈΠ²Π°ΡŽΡ‰Π°Ρ ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒ ΠΊΡ€ΡƒΠ³Π° (ΠΌΠ°Ρ‚.). 2. Линия измСрСния ΠΊΡ€ΡƒΠ³ΠΎΠΎΠ±Ρ€Π°Π·Π½Ρ‹Ρ… повСрхностСй ΠΈ ΠΏΡ€Π΅Π΄ΠΌΠ΅Ρ‚ΠΎΠ². Π―ΠΌΠ° ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² дСсяти… … Π’ΠΎΠ»ΠΊΠΎΠ²Ρ‹ΠΉ ΡΠ»ΠΎΠ²Π°Ρ€ΡŒ Ушакова

ΠžΠšΠ Π£Π–ΠΠžΠ‘Π’Π¬ β€” ΠžΠšΠ Π£Π–ΠΠžΠ‘Π’Π¬, ΠΈ, ΠΆΠ΅Π½. 1. Π’ ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅: замкнутая Π½Π° плоскости кривая, всС Ρ‚ΠΎΡ‡ΠΊΠΈ ΠΊ Ρ€ΠΎΠΉ Ρ€Π°Π²Π½ΠΎ ΡƒΠ΄Π°Π»Π΅Π½Ρ‹ ΠΎΡ‚ Ρ†Π΅Π½Ρ‚Ρ€Π°. 2. Линия измСрСния ΠΎΠΊΡ€ΡƒΠ³Π»Ρ‹Ρ…, ΠΊΡ€ΡƒΠ³ΠΎΠΎΠ±Ρ€Π°Π·Π½Ρ‹Ρ… повСрхностСй ΠΈ ΠΏΡ€Π΅Π΄ΠΌΠ΅Ρ‚ΠΎΠ². О. Π²ΠΎΠ΄ΠΎΡ‘ΠΌΠ°. Π’ΠΎΡ€ΠΎΠ½ΠΊΠ° пяти ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² Π² окруТности. 3. ΠžΠΊΡ€ΡƒΠΆΠ°ΡŽΡ‰Π°Ρβ€¦ … Π’ΠΎΠ»ΠΊΠΎΠ²Ρ‹ΠΉ ΡΠ»ΠΎΠ²Π°Ρ€ΡŒ ОТСгова

ΠžΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ β€” кривая линия, всС Ρ‚ΠΎΡ‡ΠΊΠΈ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ находятся Π½Π° одинаковомрасстоянии ΠΎΡ‚ ΠΎΠ΄Π½ΠΎΠΉ Π²Π½ΡƒΡ‚Ρ€Π΅Π½Π½Π΅ΠΉ Ρ‚ΠΎΡ‡ΠΊΠΈ, Π½Π°Π·Ρ‹Π²Π°Π΅ΠΌΠΎΠΉ Ρ†Π΅Π½Ρ‚Ρ€ΠΎΠΌ. ΠŸΡ€ΡΠΌΡ‹Π΅,ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½Π½Ρ‹ΠΉ ΠΈΠ· Ρ†Π΅Π½Ρ‚Ρ€Π° ΠΊ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌ О., Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ΡΡ paΠ΄ΠΈΡƒcaΠΌΠΈ. ΠŸΡ€ΡΠΌΠ°Ρ,проходящая Ρ‡Ρ€Π΅Π· Π΄Π²Π΅ Ρ‚ΠΎΡ‡ΠΊΠΈ О. ΠΈ ограничСнная этими Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ,… … ЭнциклопСдия Π‘Ρ€ΠΎΠΊΠ³Π°ΡƒΠ·Π° ΠΈ Π•Ρ„Ρ€ΠΎΠ½Π°

ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ β€” β€” [А.Π‘.Π“ΠΎΠ»ΡŒΠ΄Π±Π΅Ρ€Π³. Англо русский энСргСтичСский ΡΠ»ΠΎΠ²Π°Ρ€ΡŒ. 2006 Π³.] Π’Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠΈ энСргСтика Π² Ρ†Π΅Π»ΠΎΠΌ EN round … Π‘ΠΏΡ€Π°Π²ΠΎΡ‡Π½ΠΈΠΊ тСхничСского ΠΏΠ΅Ρ€Π΅Π²ΠΎΠ΄Ρ‡ΠΈΠΊΠ°

ΠžΠšΠ Π£Π–ΠΠžΠ‘Π’Π¬ β€” замкнутая плоская кривая, всС Ρ‚ΠΎΡ‡ΠΊΠΈ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ находятся Π½Π° ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²ΠΎΠΌ расстоянии ΠΎΡ‚ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠΈ О, Π»Π΅ΠΆΠ°Ρ‰Π΅ΠΉ Π² плоскости этой ΠΊΡ€ΠΈΠ²ΠΎΠΉ ΠΈ Π½Π°Π·Ρ‹Π²Π°Π΅ΠΌΠΎΠΉ Π΅Ρ‘ Ρ†Π΅Π½Ρ‚Ρ€ΠΎΠΌ. РасстояниС ΠΎΡ‚ любой Ρ‚ΠΎΡ‡ΠΊΠΈ окруТности Π΄ΠΎ Π΅Ρ‘ Ρ†Π΅Π½Ρ‚Ρ€Π° измСряСтся ΠΎΡ‚Ρ€Π΅Π·ΠΊΠΎΠΌ, называСмым… … Π‘ΠΎΠ»ΡŒΡˆΠ°Ρ политСхничСская энциклопСдия

ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ β€” ΠΈ; ΠΆ. 1. ΠœΠ°Ρ‚Π΅ΠΌ. Замкнутая Π½Π° плоскости кривая, всС Ρ‚ΠΎΡ‡ΠΊΠΈ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ Ρ€Π°Π²Π½ΠΎ ΡƒΠ΄Π°Π»Π΅Π½Ρ‹ ΠΎΡ‚ Ρ†Π΅Π½Ρ‚Ρ€Π°. 2. Линия измСрСния ΠΎΠΊΡ€ΡƒΠ³Π»Ρ‹Ρ…, ΠΊΡ€ΡƒΠ³ΠΎΠΎΠ±Ρ€Π°Π·Π½Ρ‹Ρ… повСрхностСй ΠΈ ΠΏΡ€Π΅Π΄ΠΌΠ΅Ρ‚ΠΎΠ². О. ΠΎΠ·Π΅Ρ€Π°. Π’ΠΎΡ€ΠΎΠ½ΠΊΠ° Ρ‚Ρ€Ρ‘Ρ… ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² Π² окруТности. 3. Устар. ΠžΠΊΡ€ΡƒΠΆΠ°ΡŽΡ‰Π°Ρ ΠΌΠ΅ΡΡ‚Π½ΠΎΡΡ‚ΡŒ, ΠΎΠΊΡ€ΡƒΠ³Π°. ◁ Π’ … ЭнциклопСдичСский ΡΠ»ΠΎΠ²Π°Ρ€ΡŒ

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

Всё ΠΏΡ€ΠΎ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΈ ΠΊΡ€ΡƒΠ³

ΠšΡ€ΡƒΠ³ΠΎΠΌ называСтся Ρ‡Π°ΡΡ‚ΡŒ плоскости, ограничСнная ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒΡŽ ΠΈ Π²ΠΊΠ»ΡŽΡ‡Π°ΡŽΡ‰Π°Ρ Π΅Π΅ Ρ†Π΅Π½Ρ‚Ρ€.

ΠžΡ‚Ρ€Π΅Π·ΠΎΠΊ, ΡΠΎΠ΅Π΄ΠΈΠ½ΡΡŽΡ‰ΠΈΠΉ Π΄Π²Π΅ Ρ‚ΠΎΡ‡ΠΊΠΈ окруТности, называСтся Ρ…ΠΎΡ€Π΄ΠΎΠΉ. Π₯ΠΎΡ€Π΄Π°, проходящая Ρ‡Π΅Ρ€Π΅Π· Ρ†Π΅Π½Ρ‚Ρ€ окруТности, прСдставляСт собой Π΄ΠΈΠ°ΠΌΠ΅Ρ‚Ρ€. Π”ΠΈΠ°ΠΌΠ΅Ρ‚Ρ€ окруТности Ρ€Π°Π²Π΅Π½ Π΅Π΅ ΡƒΠ΄Π²ΠΎΠ΅Π½Π½ΠΎΠΌΡƒ радиусу: D = 2R.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ

Π’ΠΎΡ‡ΠΊΠ° пСрСсСчСния Π΄Π²ΡƒΡ… Ρ…ΠΎΡ€Π΄ Π΄Π΅Π»ΠΈΡ‚ ΠΊΠ°ΠΆΠ΄ΡƒΡŽ Ρ…ΠΎΡ€Π΄Ρƒ Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠΈ, ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²ΠΎ: a1a2 = b1b2

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ

ΠšΠ°ΡΠ°Ρ‚Π΅Π»ΡŒΠ½Π°Ρ ΠΊ окруТности всСгда пСрпСндикулярна радиусу, ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½Π½ΠΎΠΌΡƒ Π² Ρ‚ΠΎΡ‡ΠΊΡƒ касания.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ

ΠžΡ‚Ρ€Π΅Π·ΠΊΠΈ ΠΊΠ°ΡΠ°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… ΠΊ окруТности, ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½Π½Ρ‹Π΅ ΠΈΠ· ΠΎΠ΄Π½ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠΈ, Ρ€Π°Π²Π½Ρ‹: AB = AC, Ρ†Π΅Π½Ρ‚Ρ€ окруТности Π»Π΅ΠΆΠΈΡ‚ Π½Π° биссСктрисС ΡƒΠ³Π»Π° BAC.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ

ΠšΠ²Π°Π΄Ρ€Π°Ρ‚ ΠΊΠ°ΡΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠΉ Ρ€Π°Π²Π΅Π½ ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΡŽ сСкущСй Π½Π° Π΅Π΅ внСшнюю Ρ‡Π°ΡΡ‚ΡŒ

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ

Π”ΡƒΠ³ΠΎΠΉ называСтся Ρ‡Π°ΡΡ‚ΡŒ окруТности, Π·Π°ΠΊΠ»ΡŽΡ‡Π΅Π½Π½Π°Ρ ΠΌΠ΅ΠΆΠ΄Ρƒ двумя Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ.

ΠœΠ΅Ρ€ΠΎΠΉ Π΄ΡƒΠ³ΠΈ (Π² градусах ΠΈΠ»ΠΈ Ρ€Π°Π΄ΠΈΠ°Π½Π°Ρ…) являСтся Ρ†Π΅Π½Ρ‚Ρ€Π°Π»ΡŒΠ½Ρ‹ΠΉ ΡƒΠ³ΠΎΠ», ΠΎΠΏΠΈΡ€Π°ΡŽΡ‰ΠΈΠΉΡΡ Π½Π° Π΄Π°Π½Π½ΡƒΡŽ Π΄ΡƒΠ³Ρƒ.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ

Вписанный ΡƒΠ³ΠΎΠ» это ΡƒΠ³ΠΎΠ», Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ Π»Π΅ΠΆΠΈΡ‚ Π½Π° окруТности, Π° cΡ‚ΠΎΡ€ΠΎΠ½Ρ‹ ΡƒΠ³Π»Π° ΠΏΠ΅Ρ€Π΅ΡΠ΅ΠΊΠ°ΡŽΡ‚ Π΅Π΅.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ

Вписанный ΡƒΠ³ΠΎΠ» Ρ€Π°Π²Π΅Π½ ΠΏΠΎΠ»ΠΎΠ²ΠΈΠ½Π΅ Ρ†Π΅Π½Ρ‚Ρ€Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ, Ссли ΠΎΠ±Π° ΡƒΠ³Π»Π° ΠΎΠΏΠΈΡ€Π°ΡŽΡ‚ΡΡ Π½Π° ΠΎΠ΄Π½Ρƒ ΠΈ Ρ‚Ρƒ ΠΆΠ΅ Π΄ΡƒΠ³Ρƒ окруТности.
Π’Π½ΡƒΡ‚Ρ€Π΅Π½Π½ΠΈΠ΅ ΡƒΠ³Π»Ρ‹, ΠΎΠΏΠΈΡ€Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Π½Π° ΠΎΠ΄Π½Ρƒ ΠΈ Ρ‚Ρƒ ΠΆΠ΅ Π΄ΡƒΠ³Ρƒ, Ρ€Π°Π²Π½Ρ‹.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ

Π‘Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠΌ ΠΊΡ€ΡƒΠ³Π° называСтся гСомСтричСская Ρ„ΠΈΠ³ΡƒΡ€Π°, ограничСнная двумя радиусами ΠΈ Π΄ΡƒΠ³ΠΎΠΉ, Π½Π° ΠΊΠΎΡ‚ΠΎΡ€ΡƒΡŽ ΠΎΠΏΠΈΡ€Π°ΡŽΡ‚ΡΡ Π΄Π°Π½Π½Ρ‹Π΅ радиусы.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ

ΠŸΠ΅Ρ€ΠΈΠΌΠ΅Ρ‚Ρ€ сСктора: P = s + 2R.

ΠŸΠ»ΠΎΡ‰Π°Π΄ΡŒ сСктора: S = Rs/2 = ПR 2 Π°/360Β°.

Π‘Π΅Π³ΠΌΠ΅Π½Ρ‚ΠΎΠΌ ΠΊΡ€ΡƒΠ³Π° называСтся гСомСтричСская Ρ„ΠΈΠ³ΡƒΡ€Π°, ограничСнная Ρ…ΠΎΡ€Π΄ΠΎΠΉ ΠΈ стягиваСмой Сю Π΄ΡƒΠ³ΠΎΠΉ.

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ: ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅, свойства, Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹

Π’ Π΄Π°Π½Π½ΠΎΠΉ ΠΏΡƒΠ±Π»ΠΈΠΊΠ°Ρ†ΠΈΠΈ ΠΌΡ‹ рассмотрим ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΈ свойства ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΠΈΠ· основных гСомСтричСских ΠΎΠ±ΡŠΠ΅ΠΊΡ‚ΠΎΠ² – окруТности. Π’Π°ΠΊΠΆΠ΅ ΠΏΡ€ΠΈΠ²Π΅Π΄Π΅ΠΌ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹, с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… ΠΌΠΎΠΆΠ½ΠΎ Π½Π°ΠΉΡ‚ΠΈ Π΅Π΅ радиус, Π΄ΠΈΠ°ΠΌΠ΅Ρ‚Ρ€ ΠΈ Π΄Π»ΠΈΠ½Ρƒ.

ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ окруТности

ΠžΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ – это замкнутая кривая Π½Π° плоскости, состоящая ΠΈΠ· Ρ‚ΠΎΡ‡Π΅ΠΊ, Ρ€Π°Π²Π½ΠΎΡƒΠ΄Π°Π»Π΅Π½Π½Ρ‹Ρ… ΠΎΡ‚ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π½ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠΈ. Данная Ρ‚ΠΎΡ‡ΠΊΠ° называСтся Ρ†Π΅Π½Ρ‚Ρ€ΠΎΠΌ окруТности.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ

Радиус окруТности (R) – это ΠΎΡ‚Ρ€Π΅Π·ΠΎΠΊ, ΡΠΎΠ΅Π΄ΠΈΠ½ΡΡŽΡ‰ΠΈΠΉ Π»ΡŽΠ±ΡƒΡŽ Ρ‚ΠΎΡ‡ΠΊΡƒ, Π»Π΅ΠΆΠ°Ρ‰ΡƒΡŽ Π½Π° окруТности, с Π΅Π΅ Ρ†Π΅Π½Ρ‚Ρ€ΠΎΠΌ.

Π”ΠΈΠ°ΠΌΠ΅Ρ‚Ρ€ окруТности (d) – это линия (Ρ…ΠΎΡ€Π΄Π°), проходящая Ρ‡Π΅Ρ€Π΅Π· Ρ†Π΅Π½Ρ‚Ρ€ окруТности ΠΈ ΡΠΎΠ΅Π΄ΠΈΠ½ΡΡŽΡ‰Π°Ρ Π΄Π²Π΅ ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½Ρ‹Π΅ Ρ‚ΠΎΡ‡ΠΊΠΈ, Π»Π΅ΠΆΠ°Ρ‰ΠΈΠ΅ Π½Π° Π½Π΅ΠΉ.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ

ΠŸΡ€ΠΈΠΌΠ΅Ρ‡Π°Π½ΠΈΠ΅: НС стоит ΠΏΡƒΡ‚Π°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ с ΠΊΡ€ΡƒΠ³ΠΎΠΌ, Ρ‚.ΠΊ. ΠΊΡ€ΡƒΠ³ – это мноТСство Ρ‚ΠΎΡ‡Π΅ΠΊ плоскости, ΠΎΠ³Ρ€Π°Π½ΠΈΡ‡Π΅Π½Π½Ρ‹Ρ… ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒΡŽ (Ρ‚.Π΅. Π»Π΅ΠΆΠ°Ρ‰ΠΈΡ… Π²Π½ΡƒΡ‚Ρ€ΠΈ окруТности).

Бвойства окруТности

Бвойство 1

Π§Π΅Ρ€Π΅Π· Ρ‚Ρ€ΠΈ Ρ‚ΠΎΡ‡ΠΊΠΈ Π½Π° плоскости, Π½Π΅ Π»Π΅ΠΆΠ°Ρ‰ΠΈΠ΅ Π½Π° ΠΎΠ΄Π½ΠΎΠΉ прямой, ΠΌΠΎΠΆΠ½ΠΎ провСсти ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ, ΠΏΡ€ΠΈΡ‡Π΅ΠΌ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ ΠΎΠ΄Π½Ρƒ.

Бвойство 2

Π’ΠΎΡ‡ΠΊΠ° касания Π΄Π²ΡƒΡ… окруТностСй (C) Π»Π΅ΠΆΠΈΡ‚ Π½Π° ΠΎΠ΄Π½ΠΎΠΉ прямой (AB), которая ΠΏΡ€ΠΎΡ…ΠΎΠ΄ΠΈΡ‚ Ρ‡Π΅Ρ€Π΅Π· ΠΈΡ… Ρ†Π΅Π½Ρ‚Ρ€Ρ‹.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Ρ‚ΠΊΠΎ

Бвойство 3

Π˜Π·ΠΎΠΏΠ΅Ρ€ΠΈΠΌΠ΅Ρ‚Ρ€ΠΈΡ‡Π΅ΡΠΊΠΎΠ΅ нСравСнство: Из всСх Π·Π°ΠΌΠΊΠ½ΡƒΡ‚Ρ‹Ρ… ΠΊΡ€ΠΈΠ²Ρ‹Ρ… ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²ΠΎΠΉ Π΄Π»ΠΈΠ½Ρ‹ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΎΠ³Ρ€Π°Π½ΠΈΡ‡ΠΈΠ²Π°Π΅Ρ‚ ΠΎΠ±Π»Π°ΡΡ‚ΡŒ с самой большой ΠΏΠ»ΠΎΡ‰Π°Π΄ΡŒΡŽ.

Π€ΠΎΡ€ΠΌΡƒΠ»Ρ‹

1. Π”ΠΈΠ°ΠΌΠ΅Ρ‚Ρ€ окруТности (d):

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

Π”ΠΎΠ±Π°Π²ΠΈΡ‚ΡŒ ΠΊΠΎΠΌΠΌΠ΅Π½Ρ‚Π°Ρ€ΠΈΠΉ

Π’Π°Ρˆ адрСс email Π½Π΅ Π±ΡƒΠ΄Π΅Ρ‚ ΠΎΠΏΡƒΠ±Π»ΠΈΠΊΠΎΠ²Π°Π½. ΠžΠ±ΡΠ·Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ поля ΠΏΠΎΠΌΠ΅Ρ‡Π΅Π½Ρ‹ *