Что такое операционная система каковы ее основные функции и виды
Операционная система — что это такое, функции
Операционная система является неотъемлемой частью практически любого сложного компьютерного устройства. Мы видим ее на компьютерах, на смартфонах и даже на телевизорах.
ОС открывает множество возможностей для устройства, на котором она используется. Поэтому довольно важно знать, что она из себя представляет, на что способна и ее назначение.
Прошлый материал был посвящен тому, как сделать значок мой компьютер на рабочем столе Windows 10. Сейчас мы подробно разберем, что такое операционная система, дадим ей определение и рассмотрим зачем она нужна.
Что такое операционная система
Операционная система (ОС, OS) — это целый комплекс программного обеспечения, позволяющее управлять ресурсами устройства, на которое она установлена. Так, ОС полностью управляет всей начинкой/железом компьютера, ноутбука или, к примеру, смартфона. Она позволяет пользователю взаимодействовать с устройством и обеспечивает эффективное распределение вычислительных ресурсов между процессами.
ОС предоставляет разработчикам программного обеспечения простой интерфейс для создания программ, который значительно упрощает разработку. Важно отметить, что программы пишутся исключительно под отдельную OS. Подробно мы уже рассматривали это в материале — программа, что это.
В большинстве устройств именно операционная система является основной частью системного программного обеспечения. И, в зависимости от самой ОС, может предоставлять пользователю разный функционал. А чаще всего, к примеру, Windows позволяет пользователю самому устанавливать программное обеспечение и по желанию расширять возможности/функционал своего компьютера или ноутбука.
На данный момент самыми распространенными являются Windows и Unix, подобные системы, тот же Linux, Mac OS, Android, IOS и другие.
Интересно! Типы ОС мы подробно рассмотрели в материале — виды операционных систем. Там вы найдете всю нужную информацию с иллюстрированными картинками.
Стоит отметить, что не во всех устройствах используются ОС. К примеру, в простой технике она просто не нужна. Это те же магнитолы, простые приставки, кухонная техника. Т.е. в той, где по сути выполняется одна простая программа при включении.
А вот, если уже нужно выполнение нескольких разных программ, единый механизм хранения данных, вариативность и графический интерфейс, то ОС уже необходима.
Ядром операционной системы называется самая важная ее часть, которая управляет выполнением процессов и всеми ресурсами компьютера/устройства. Оно предоставляет запускаемым процессам доступ к этим ресурсам и координирует их работу.
Назначение операционной системы
Выделим два главных назначения, зачем она вообще нужна на компьютере, смартфоне или другом сложном компьютерном устройстве.
1. Управление всей начинкой/железом устройства. Обеспечивает его работу, взаимосвязь, контролирует все процессы.
2. Позволяет пользователю взаимодействовать с устройством на понятном ему языке. В зависимости от устройства, тип взаимодействия может отличаться. Современные OS обладают графической оболочкой и предоставляют управление разными способами.
Благодаря ОС у нас есть возможность вообще пользоваться различными девайсами и компьютерами, устанавливать на них программы и приложения.
Функции операционной системы
Функции ОС зависят от того, какие возможности вложили в нее разработчики и от установленного железа в устройстве/компьютере. Но есть самые основные, присущие всем ОС:
Также есть и множество дополнительных функций, которые уже зависят от типа ОС. К примеру, многопользовательский режим, сетевые операции или режим защиты.
Немного истории появления операционных систем
С появлением первых компьютеров, операторы оборудования для выполнения определенных операций вводили команды/код на машинном языке. Это были довольно длинные и сложные строчки кода, которые приходилось каждый раз вводить вручную.
Чтобы минимизировать их и упростить обращение с ПК, разрабатывались специальные служебные программы и библиотеки к ним. Так, у операторов появилась возможность избавиться от многократного ввода одних и тех же длинных строчек кода, за счет запуска этих программ. Это были 1 940-е года, именно эти служебные программы и принято считать предшественниками нынешних операционных систем.
Нужен был полноценный комплекс программного обеспечения, который позволял пользователю управлять компьютером максимально просто и значительно увеличивал бы эффективность работы. Так, уже в 1 950 годах были сформированы идеи, которые будут определять функционал будущих ОС. Это:
Первые ОС, типа MS-DOS не обладали графическим интерфейсом и использовались в большинстве своем только узким кругом лиц. С появлением же первой Windows в 1 985 году все изменилось, ею было удобно пользоваться, она была с графическим интерфейсом. Именно тогда компьютеры и стали набирать популярность.
Интересно! Первой самой популярной операционной системой в мире стала Windows 95. А сейчас это место принадлежит Windows 10.
В заключение
Эта была основная информация по этой теме, которую необходимо знать. С развитием технологий, они будут меняться и улучшаться, но одно ясно точно — эта часть IT индустрии не исчезнет никогда.
wiki.vspu.ru
портал образовательных ресурсов
Операционные системы
Операционная система,(англ. operating system, OS ) — комплекс управляющих и обрабатывающих программ, которые, с одной стороны, выступают как интерфейс между устройствами вычислительной системы и прикладными программами, а с другой стороны — предназначены для управления устройствами, управления вычислительными процессами, эффективного распределения вычислительных ресурсов между вычислительными процессами и организации надёжных вычислений. Это определение применимо к большинству современных операционных систем общего назначения.
В логической структуре типичной вычислительной системы операционная система занимает положение между устройствами с их микроархитектурой, машинным языком и, возможно, собственными (встроенными) микропрограммами — с одной стороны — и прикладными программами с другой.
Разработчикам программного обеспечения операционных систем позволяет абстрагироваться от деталей реализации и функционирования устройств, предоставляя минимально необходимый набор функций (см. интерфейс программирования приложений).
В большинстве вычислительных систем операционная система является основной, наиболее важной (а иногда и единственной) частью системного программного обеспечения. С 1990-х годов наиболее распространёнными операционными системами являются системы семейства Microsoft Windows и системы класса UNIX (особенно Linux и Mac OS ).
Функции операционных систем
Основные функции: Выполнение по запросу программ (ввод и вывод данных, запуск и остановка других программ, выделение и освобождение дополнительной памяти и др.). Загрузка программ в оперативную память и их выполнение. Стандартизованный доступ к периферийным устройствам (устройства ввода-вывода). Управление оперативной памятью (распределение между процессами, организация виртуальной памяти). Управление доступом к данным на энергонезависимых носителях (таких как жёсткий диск, оптические диски и др.), организованным в той или иной файловой системе. Обеспечение пользовательского интерфейса. Сохранение информации об ошибках системы.
Дополнительные функции: Параллельное или псевдопараллельное выполнение задач (многозадачность). Эффективное распределение ресурсов вычислительной системы между процессами. Разграничение доступа различных процессов к ресурсам. Организация надёжных вычислений (невозможности одного вычислительного процесса намеренно или по ошибке повлиять на вычисления в другом процессе), основана на разграничении доступа к ресурсам. Взаимодействие между процессами: обмен данными, взаимная синхронизация. Защита самой системы, а также пользовательских данных и программ от действий пользователей (злонамеренных или по незнанию) или приложений. Многопользовательский режим работы и разграничение прав доступа (см. аутентификация, авторизация).
Компоненты операционной системы:
Командный процессор (интерпретатор)
Понятие операционной системы
Существуют две группы определений операционной системы: «набор программ, управляющих оборудованием» и «набор программ, управляющих другими программами». Обе они имеют свой точный технический смысл, который связан с вопросом, в каких случаях требуется операционная система.
Есть приложения вычислительной техники, для которых операционные системы излишни. Например, встроенные микрокомпьютеры, содержащиеся во многих бытовых приборах, автомобилях (иногда по десятку в каждом), простейших сотовых телефонах, постоянно исполняют лишь одну программу, запускающуюся по включении. Многие простые игровые приставки — также представляющие собой специализированные микрокомпьютеры — могут обходиться без операционной системы, запуская при включении программу, записанную на вставленном в устройство «картридже» или компакт-диске.
Таким образом, современные универсальные операционные системы можно охарактеризовать, прежде всего, как: использующие файловые системы (с универсальным механизмом доступа к данным), многопользовательские (с разделением полномочий), многозадачные (с разделением времени).
Многозадачность и распределение полномочий требуют определённой иерархии привилегий компонентов самой операционной системе. В составе операционной системы различают три группы компонентов: ядро, содержащее планировщик; драйверы устройств, непосредственно управляющие оборудованием; сетевая подсистема, файловая система; системные библиотеки; оболочка с утилитами.
Большинство программ, как системных (входящих в операционную систему), так и прикладных, исполняются в непривилегированном («пользовательском») режиме работы процессора и получают доступ к оборудованию (и, при необходимости, к другим ресурсам ядра, а также ресурсам иных программ) только посредством системных вызовов. Ядро исполняется в привилегированном режиме: именно в этом смысле говорят, что система (точнее, её ядро) управляет оборудованием.
В определении состава операционной системы значение имеет критерий операциональной целостности (замкнутости): система должна позволять полноценно использовать (включая модификацию) свои компоненты. Поэтому в полный состав операционной системы включают и набор инструментальных средств (от текстовых редакторов до компиляторов, отладчиков и компоновщиков).
Ядро операционной системы
Ядро — центральная часть операционной системы, управляющая выполнением процессов, ресурсами вычислительной системы и предоставляющая процессам координированный доступ к этим ресурсам. Основными ресурсами являются процессорное время, память и устройства ввода-вывода. Доступ к файловой системе и сетевое взаимодействие также могут быть реализованы на уровне ядра.
Как основополагающий элемент операционной системы, ядро представляет собой наиболее низкий уровень абстракции для доступа приложений к ресурсам вычислительной системы, необходимым для их работы. Как правило, ядро предоставляет такой доступ исполняемым процессам соответствующих приложений за счёт использования механизмов межпроцессного взаимодействия и обращения приложений к системным вызовам ОС.
Описанная задача может различаться в зависимости от типа архитектуры ядра и способа её реализации.
Объекты ядра ОС: Процессы Файлы События Потоки Семафоры Мьютексы Каналы Файлы, проецируемые в памяти
Эволюция операционных систем и основные идеи
Предшественником операционных систем следует считать служебные программы (загрузчики и мониторы), а также библиотеки часто используемых подпрограмм, начавшие разрабатываться с появлением универсальных компьютеров 1-го поколения (конец 1940-х годов). Служебные программы минимизировали физические манипуляции оператора с оборудованием, а библиотеки позволяли избежать многократного программирования одних и тех же действий (осуществления операций ввода-вывода, вычисления математических функций и т. п.).
В 1950—1960-х годах сформировались и были реализованы основные идеи, определяющие функциональность ОС: пакетный режим, разделение времени и многозадачность, разделение полномочий, реальный масштаб времени, файловые структуры и файловые системы.
Пакетный режим
Необходимость оптимального использования дорогостоящих вычислительных ресурсов привела к появлению концепции «пакетного режима» исполнения программ. Пакетный режим предполагает наличие очереди программ на исполнение, причём система может обеспечивать загрузку программы с внешних носителей данных в оперативную память, не дожидаясь завершения исполнения предыдущей программы, что позволяет избежать простоя процессора.
Разделение времени и многозадачность
Уже пакетный режим в своём развитом варианте требует разделения процессорного времени между выполнением нескольких программ.
Необходимость в разделении времени (многозадачности, мультипрограммировании) проявилась ещё сильнее при распространении в качестве устройств ввода-вывода телетайпов (а позднее, терминалов с электронно-лучевыми дисплеями) (1960-е годы). Поскольку скорость клавиатурного ввода (и даже чтения с экрана) данных оператором много ниже, чем скорость обработки этих данных компьютером, использование компьютера в «монопольном» режиме (с одним оператором) могло привести к простою дорогостоящих вычислительных ресурсов.
Разделение времени позволило создать «многопользовательские» системы, в которых один (как правило) центральный процессор и блок оперативной памяти соединялся с многочисленными терминалами. При этом часть задач (таких как ввод или редактирование данных оператором) могла исполняться в режиме диалога, а другие задачи (такие как массивные вычисления) — в пакетном режиме.
Разделение полномочий
Распространение многопользовательских систем потребовало решения задачи разделения полномочий, позволяющей избежать возможности изменения исполняемой программы или данных одной программы в памяти компьютера другой программой (намеренно или по ошибке), а также изменения самой системы прикладной программой.
Реализация разделения полномочий в операционных системах была поддержана разработчиками процессоров, предложивших архитектуры с двумя режимами работы процессора — «реальным» (в котором исполняемой программе доступно всё адресное пространство компьютера) и «защищённым» (в котором доступность адресного пространства ограничена диапазоном, выделенном при запуске программы на исполнение).
Реальный масштаб времени
Применение универсальных компьютеров для управления производственными процессами потребовало реализации «реального масштаба времени» («реального времени») — синхронизации исполнения программ с внешними физическими процессами.
Включение функции реального масштаба времени позволило создавать решения, одновременно обслуживающие производственные процессы и решающие другие задачи (в пакетном режиме и/или в режиме разделения времени).
Файловые системы и структуры
Постепенная замена носителей с последовательным доступом (перфолент, перфокарт и магнитных лент) накопителями произвольного доступа (на магнитных дисках).
Файловая система — способ хранения данных на внешних запоминающих устройствах.
Существующие операционные системы
UNIX, стандартизация операционных систем и POSIX
К концу 1960-х годов отраслью и научно-образовательным сообществом был создан целый ряд операционных систем, реализующих все или часть очерченных выше функций. К ним относятся Atlas (Манчестерский университет), CTTS и ITSS (Массачусетский технологический институт, MIT), THE (Эйндховенский технологический университет), RS4000 (Университет Орхуса) и др. (всего эксплуатировалось более сотни различных ОС).
Эклектичный характер разработки операционных систем привёл к нарастанию кризисных явлений, прежде всего, связанных с чрезмерными сложностью и размерами создаваемых систем. Системы были плохо масштабируемыми (более простые не могли использовать все возможности крупных вычислительных систем; более развитые неоптимально исполнялись на малых или не могли исполняться на них вовсе) и полностью несовместимыми между собой, их разработка и совершенствование затягивались.
Задуманная и реализованная в 1969 году Кеном Томпсоном при участии нескольких коллег (включая Денниса Ритчи и Брайана Кернигана), операционная система UNIX (первоначально UNICS, что обыгрывало название MULTICS) вобрала в себя многие черты более ранних систем, но обладала целым рядом свойств, отличающих её от большинства предшественниц: простая метафорика (два ключевых понятия: вычислительный процесс и файл); компонентная архитектура: принцип «одна программа — одна функция» плюс мощные средства связывания различных программ для решения возникающих задач («оболочка»); минимизация ядра (кода, выполняющегося в «реальном» (привилегированном) режиме процессора) и количества системных вызовов; независимость от аппаратной архитектуры и реализация на машиннонезависимом языке программирования (язык программирования Си стал побочным продуктом разработки UNIX); унификация файлов.
UNIX, благодаря своему удобству прежде всего в качестве инструментальной среды (среды разработки), обрела популярность сначала в университетах, а затем и в отрасли, получившей прототип единой операционной системы, которая могла использоваться на самых разных вычислительных системах и, более того, могла быть быстро и с минимальными усилиями перенесена на любую вновь разработанную аппаратную архитектуру.
В конце 1970-х годов сотрудники Калифорнийского университета в Беркли внесли ряд усовершенствований в исходные коды UNIX, включая работу с протоколами TCP/IP. Их разработка стала известна под именем BSD (Berkeley Software Distribution).
Задачу разработать независимую (от авторских прав Bell Labs) реализацию той же архитектуры поставил и Ричард Столлман, основатель проекта GNU.
Благодаря конкурентности реализаций архитектура UNIX стала вначале фактическим отраслевым стандартом, а затем обрела статус и стандарта юридического — ISO/IEC 9945[2].
Операционные системы, следующие стандарту POSIX или опирающиеся на него, называют «POSIX-совместимыми» (чаще встречается словоупотребление «UNIX-подобные» или «семейство UNIX», но оно противоречит статусу торгового знака «UNIX», принадлежащего консорциуму The Open Group и зарезервированному для обозначения только операционных систем, строго следующих стандарту). Сертификация на совместимость со стандартом платная, из-за чего некоторые системы не проходили этот процесс, однако считаются POSIX-совместимыми по существу.
К UNIX-подобным относятся операционные системы, основанные на последней версии UNIX, выпущенной Bell Labs (System V), на разработках университета Беркли (FreeBSD, OpenBSD, NetBSD), на основе Solaris (OpenSolaris, BeleniX, Nexenta), а также Linux, разработанная в части утилит и библиотек проектом GNU и в части ядра — сообществом, возглавляемым Линусом Торвальдсом.
Стандартизация операционных систем преследует цель упрощения замены самой системы или оборудования при развитии вычислительной системы или сети и упрощении переноса прикладного программного обеспечения (строгое следование стандарту предполагает полную совместимость программ на уровне исходного текста; из-за профилирования стандарта и его развития некоторые изменения бывают всё же необходимы, но перенос программы между POSIX-совместимыми системами обходится на порядки дешевле, чем между альтернативными), а также преемственность опыта пользователей.
Самым заметным эффектом существования этого стандарта стало эффективное разворачивание Интернета в 1990-х годах.
Пост-UNIX-архитектуры операционных систем
Коллектив, создавший UNIX, развил концепцию унификации объектов операционной системы, включив в исходную концепцию UNIX «устройство — это тоже файл» также и процессы, и любые другие системные, сетевые и прикладные сервисы, создав новую концепцию: «что угодно — это файл». Эта концепция стала одним из основных принципов системы Plan9 (название было позаимствовано из фантастического триллера «План 9 из открытого космоса» Эдварда Вуда-младшего), призванной преодолеть принципиальные недостатки дизайна UNIX и сменившей «рабочую лошадку» UNIX System V на компьютерах сети Bell Labs в 1992 году.
Кроме реализации всех объектов системы в виде файлов и размещения их на едином и персональном для каждого терминала вычислительной сети пространстве (namespace), были пересмотрены другие архитектурные решения UNIX. Например, в Plan9 отсутствует понятие «суперпользователь», и, соответственно, исключаются любые нарушения режима безопасности, связанные с нелегальным получением прав суперпользователя в системе. Для представления (хранения, обмена) информации Роб Пайк и Кен Томпсон разработали универсальную кодировку UTF-8, на сегодняшний день ставшую стандартом де-факто. Для доступа к файлам используется единый универсальный протокол 9P, по сети работающий поверх сетевого протокола (TCP или UDP). Таким образом, для прикладного ПО сети не существует — доступ к локальным и к удалённым файлам единообразен. 9P — байт-ориентированный протокол, в отличие от других подобных протоколов, являющихся блок-ориентированными. Это также результат работы концепции: доступ побайтно — к унифицированным файлам, а не поблочно — к разнообразным и сильно изменяющимися с развитием технологий устройствам. Для контроля доступа к объектам не требуется иных решений, кроме уже существующего в операционной системе контроля доступа к файлам. Новая концепция системы хранения избавила администратора системы от изнурительного труда по сопровождению архивов и предвосхитила современные системы управления версиями файлов.
Операционные системы, созданные на базе или идеях UNIX, такие как всё семейство BSD и системы GNU/Linux, постепенно перенимают новые идеи из Bell Labs. Возможно, эти новые идеи ждёт большое будущее и признание ИТ-разработчиков.
Новые концепции были использованы Робом Пайком в «Inferno».
На основе Plan9 в Испании разрабатываются системы Off++ и Plan B, носящие экспериментальный характер.
К попыткам создать пост-UNIX-архитектуру можно также отнести разработку системы программирования и операционной среды Оберон в Швейцарском федеральном технологическом институте (ETH Zurich) под руководством профессора Никлауса Вирта.
Операционные системы могут быть классифицированы по базовой технологии (UNIX-подобные, пост-UNIX/потомки UΝΙΧ), типу лицензии (проприетарная или открытая), развивается ли в настоящее время (устаревшие или современные), по назначению (универсальные, ОС встроенных систем, ОС PDA, ОС реального времени, для рабочих станций или для серверов), а также по множеству других признаков.
Что такое операционная система? Функции, история, виды
Функции операционной системы
Операционная система выполняет большое число функций, к которым, в первую очередь, следует отнести:
Немного истории
Одной из первых операционных систем, разработанных для персонального компьютера, была операционная система MS DOS. Лишенная графического интерфейса, обладающая очень ограниченными возможностями, она практически завершила свое существование с появлением Windows.
Сначала графическая оболочка Windows 3.1 для MS DOS, а затем полноценные операционные системы — MS Windows 95, Windows NT 4.0, Windows 98, Windows ME, Windows 2000, Windows XP, Windows Vista, Windows 7, Windows 8, Windows 10 стали наиболее часто используемыми операционными системами для персональных компьютеров.
Почти одновременно с Windows появилась и начала завоевывать популярность операционная система Linux, перенявшая от операционной системы UNIX идеологию командной строки. С течением времени Linux развил графический интерфейс, не только не уступающий, но во многом превосходящий возможности графического интерфейса операционной системы Windows.
Сейчас все большее число пользователей отдают предпочтение бесплатной, динамично развивающейся операционной системе Linux, отказываясь от операционной системы Windows.
В 1987 году появилась совместно разработанная фирмами Microsoft и IBM операционная система OS/2, или, как ее называют, «полуось». С 1990 года фирма Microsoft отошла от разработки OS/2, и в настоящий момент только IBM продолжает поддерживать OS/2.
Существуют и другие операционные системы, ориентированные на работу на IBM-совместных персональных компьютерах. В персональных компьютерах Macintosh применяется операционная система MacOS.
Виды операционных систем
Операционные системы бывают:
Подробнее об операционных системах можно прочитать на официальных сайтах фирм производителей: