Что такое определяемое понятие в математике
Определение математического понятия.
Так, например, треугольник обладает такими свойствами: имеет три стороны; три внутренних угла; шесть попарно равных внешних углов и это далеко не все свойства. Математику не интересует, какого цвета треугольник, из какого материала он изготовлен, не ставится задача нахождения массы этого объекта и т.д., перечисленные свойства изучаются другими науками. Более того в природе нет отдельно существующего объекта «треугольник». Если мы вырежем из листа бумаги «треугольник», то с «точки зрения» математики это треугольная призма каждая из двух параллельных граней, которой и есть треугольник. Здесь объект треугольник является частью другого объекта, название которого треугольная призма, но эти объекты не могут существовать друг без друга.
Предложения в которых, что-то утверждается в данный момент являются либо истинными либо ложными, к стати одновременно истинными и ложными они быть не могут. Подобные предложения называются суждениями. Утверждения о наличии или отсутствии у данного объекта какого-либо свойства также называются суждениями.
Вот примеры суждений:
Суждениями являются также предложения, указывающие на отношения или связи объектов, например:
А вот вопросы, восторги, восхваления, восклицания или требования не являются, суждениями.
Среди свойств какого-либо объекта имеются существенные и несущественные для его определения.
Свойство является существенным, если оно присуще этому объекту и без него он не может существовать. Несущественные свойства, как правило, не влияет на существование объекта. Заметим, что при решении конкретных задач несущественные вообще свойства объектов могут иметь и существенное значение для решения данной задачи.
Чтобы иметь представление о каком либо объекте, достаточно знать его существенные свойства. В этом случае говорят, что мы имеем понятие об этом объекте. Следовательно, понятие — это целостная совокупность суждений о существенных свойствах соответствующего объекта. Эта совокупность взаимосвязанных свойств объекта (поэтому она называется целостной) называется содержанием понятия об этом объекте. Заметим, что когда говорят о математическом объекте, то обычно имеют в виду все множество объектов, обозначаемых одним термином (названием).
Так, когда говорят о математическом объекте — треугольнике, то имеют в виду все геометрические фигуры, являющиеся треугольниками. Множество всех треугольников составляет объем понятия о треугольнике. Точно так же множество всех натуральных чисел составляет объем понятий о натуральном числе. Следовательно, объем понятия — это множество всех объектов, обозначаемых одним и тем же термином. Итак, всякое понятие имеет определенный объем и содержание. Они взаимосвязаны: чем больше объем понятия, тем меньше его содержание, и наоборот: чем меньше объем, тем больше содержание понятия.
Так, например, объем понятия «равнобедренный треугольник» меньше объема понятия «треугольник», ибо в объем первого понятия входят не все треугольники, а лишь равнобедренные. А вот содержание первого понятия, очевидно, больше содержания второго, ибо равнобедренный треугольник обладает не только всеми свойствами треугольника, но и особыми свойствами, присущими только равнобедренным треугольникам.
В содержание понятия о каком-либо математическом объекте входят много различных существенных свойств этого объекта. Однако, для того чтобы распознать объект, установить, принадлежит ли он к данному понятию или нет, достаточно проверить наличие у него лишь некоторых существенных свойств. Указание этих существенных свойств объекта понятия, которые достаточны для распознавания этого объекта, называется определением понятия.
Всякое определение математического понятия строится обычно так: сначала указывается название объекта этого понятия, затем перечисляются такие его существенные свойства, которые позволяют установить, является ли тот или иной предмет объектом данного понятия или нет.
Например, определение параллелограмма: «Параллелограммом называется четырехугольник, противоположные стороны которого параллельны». Как видим, это определение построено так: Сначала указано название объекта определяемого понятия — параллелограмм, затем указаны такие его свойства: 1) параллелограмм — это четырехугольник; 2) противоположные стороны параллельны. Первое свойство — это указание того более общего понятия, к которому принадлежит определяемое понятие. Это более общее понятие называется родовым по отношению к определяемому понятию. В данном случае родовым понятием для параллелограмма является четырехугольник. Второе свойство — это указание видового свойства, которое отличает параллелограмм от других видов четырехугольника. Вот еще пример определения: «Четными числами называются такие натуральные числа, которые кратны числу 2». Это определение, так же как и предыдущее, построено по такой схеме:
В данном случае мы имеем: название определяемого понятия — четные числа, родовое понятие — натуральные числа, видовые отличия — кратны числу 2.
Определение понятий по этой схеме называется определением через род и видовые отличия.
Иногда в математике встречаются и другие способы определения понятий. Рассмотрим, например, определение треугольника: «Треугольником называется фигура, которая состоит из трех точек, не лежащих на одной прямой, и трех попарно соединяющих их отрезков». В этом определении указано родовое понятие для треугольника — фигура, а в качестве видового отличия указан способ построения такой фигуры, которая является треугольником: нужно взять три точки, не лежащие на одной прямой, и соединить каждую их пару отрезком. Такое определение называется генетическим (от слова генезис — происхождение).
Вот еще пример генетического определения: «Симметрией относительно точки называется такое преобразование фигуры F в фигуру F’, при котором каждая точка X фигуры F переходит в точку X’ фигуры F’, построенной следующим образом: на продолжении отрезка ОХ за точку О откладывается отрезок ОХ’, равный ОХ». Здесь в качестве видовых отличий преобразования симметрии относительно точки от других видов преобразований указан способ построения точек фигуры F’, симметричной фигуре F относительно точки О.
Встречаются в математике и такие определения, в которых указывается, как можно получить объекты определяемого понятия один за другим по порядку. Например, определение арифметической прогрессии дается таким образом: «Числовая последовательность, каждый член которой, начиная со второго, равен предшествующему члену, сложенному с одним и тем же числом, называется арифметической прогрессией». Здесь определяемое понятие — арифметическая прогрессия, родовое понятие — числовая последовательность, в качестве видового отличия указан способ получения всех членов прогрессии, начиная со второго, состоящий в том, что для получения какого-либо члена надо к предшествующему члену прибавить одно и то же число. Это определение можно записать в виде следующей формулы:
Такое определение называется индуктивным (от слова индукция — наведение на умозаключение от частного к общему) или рекуррентным (от слова рекурсия — возвращение).
Однако не все математические понятия могут быть логически определены указанными выше способами. Действительно, каждое определение математического понятия сводит определяемое понятие к более широкому (более общему, т. е. имеющему больший объем) родовому понятию, определение родового понятия сводит его к еще более широкому понятию и т. д. Очевидно, что этот процесс сведения одних понятий к более широким, более общим понятиям должен иметь конец, он не может быть бесконечным. Иными словами, в конечном итоге определения понятий мы должны прийти к таким понятиям, которые уже не сводимы к другим, т. е. они логически не определяемы. Такие понятия в математике называются первичными или основными.
Например, определяя параллелограмм, мы сводим его к понятию четырехугольника, определяя четырехугольник, мы сводим его к понятию многоугольника, затем к понятию геометрической фигуры, которая сводится при определении к понятию точки. Понятие точки уже является не определяемым, т. е. первичным. Первичными понятиями в математике, кроме точки, являются понятия прямой, плоскости, принадлежать, числа, множества, (совокупность) и некоторые другие.
Овладевая каким либо понятием, необязательно математическим, нужно понимать, что этот процесс сложен и длителен, состоит из нескольких этапов. На начальном этапе нужно произвести анализ свойств изучаемого объекта или его модели, выделить существенные войства и объеденить их в одно множество. Далее происходит длительный процесс запоминания этого множества и привязки его именно к этому объекту. На последнем этапе следует ннаучиться умению строить определение понятий каким-либо способом.
С точки зрения языка вербальные определения являются повествовательными предложениями, но не являются высказываниями в смысле математической логики. Относительно этих предложений не имеет смысла говорить истинны они или ложны. С логической точки зрения вербальные определения ближе к повелительным, чем повествовательным предложениям.
Рассмотрим некоторые способы вербальных определений.
1. Определение понятий через род и видовое отличие. Этот способ определения является наиболее распространенным, ему принадлежит ведущая роль в классической логике Аристотеля, поэтому его часто называют классическими. Логическая структура определений через род и видовое отличие проста, четко выражена и поэтому вполне доступна учащимся уже в начальных классах школы.
Уже из приведенных примеров видна их общая структура. В определении указываются: некоторое множество (род), которому принадлежит определяемое понятие; свойство, которое выделяет определяемый объект из объектов этого же рода (видовое отличие).
2. Генетическое определение понятий.
Генетические или конструктивные определения являются частным случаем определений через род и видовое отличие. В таких определениях видовое отличие указывает на происхождение определяемого объекта (отношения) или на способ его образования.
Рассмотрим следующее определение: «Циклоидой называется кривая линия, которую описывает любая точка окружности, катящейся по прямой без скольжения». Родовым здесь является понятие «кривая линия», а видовое отличие указывает на способ образования определяемой кривой.
3. Рекурсивные определения.
В последнее время в математике, ее приложениях, а также в других науках все чаще встречаются, так называемые, рекурсивные определения. В таких определениях указываются некоторые основные элементы из объема понятия и даются правила, позволяющие получать новые элементы из уже имеющихся. Примером рекурсивного определения является определение 2.6 логической формулы. Рекурсивные определения находят особенно широкое применение в языках программирования на ЭВМ.
Определения объектов и отношений путем указания их свойств называются дискрипциями. Примером дискрипции является определение 3.28 из §10. «Бинарное отношение р на множестве Xназывается отношением эквивалентности, если оно обладает свойствами: рефлексивности («хÎХ)(хрх); симметричности («х, у Î Х)(хру Þ урх) ; транзитивности («x, у, z Î Х)(хру Ù ypz Þ xpz)«
Здесь родовым является понятие » бинарное отношение», а видовое отличие представлено перечислением свойств определяемого отношения.
5. Аксиоматические определения.
Если какое-то понятие вводится с помощью списка аксиом, описывающих свойства этого понятия, то такое определение называется аксиоматическим. Примером аксиоматического определения является следующее: «Умножением натуральных чисел называется алгебраическая операция, определенная на множестве N натуральных чисел и удовлетворяющая аксиомам: 1) («а Î N)( a * 1 = а) ; 2) («a, bÎN) (a*b’ = a*b+a)»
7.4. Корректные и некорректные определения.
Для того, чтобы определения могли служить построению какой-либо научной теории, они должны удовлетворять определенным требованиям. Одним из самых важных таких требований является требование соразмерности определения. Это означает, что объем определяемого понятия должен совпадать с объемом определяющего понятия. Большинство ошибок в определениях приводит к нарушению соразмерности его частей.
Таким образом, ни одно из приведенных предложений не является определением, так как в обоих случаях нарушено требование соразмерности.
Другим важным требованием, предъявляемым к определениям, является отсутствие порочного круга. Нарушение этого требования проявляется в том, что определяемое понятие содержится в определяющем или в цепочке последовательных определений используются термины, ранее определенные через определяемое. Поэтому, если указанное требование не выполняется, то процедура определения понятий «зацикливается» и не сводится к исходным понятиям.
В качестве примеров рассмотрим предложения:
2) «Шаром называется часть пространства, ограниченная сферой», «Сферой называется граница шара».
Следующим требованием, выполнение которого необходимо для определений, является отсутствие омонимии. Каждый термин в качестве определяемого должен встречаться не более одного раза. При нарушении этого условия нарушается однозначность определения, один и тот же термин будет обозначать различные объекты или отношения. Нарушение этого требования особенно опасно в начале изучения курса, так как создает неразбериху и вызывает дополнительные трудности при его усвоении.
В математической литературе до сих пор сохраняются некоторые омонимии. Например, слово «цифра» понимается как символ для записи числа и как соответствующее однозначное число.
При определении понятий желательно выполнение еще одного условия. Формулировка определения не должна содержать лишних свойств, которые можно вывести из других свойств, указанных в том же определении.
Рассмотрим в качестве примера определение: «Натуральное число называется простым, если оно имеет только два делителя и делится только на себя и единицу».
Совершенно очевидно, что условие «иметь только два делителя» вытекает из условия «делиться только на себя и на единицу», и наоборот, а поэтому одно из этих условий является лишним.
Если определение удовлетворяет перечисленным выше условиям, то его называют корректным.
Чтобы распечатать файл, скачайте его (в формате Word).
Математические понятия
Лекция 5. Математические понятия
1. Объем и содержание понятия. Отношения между понятиями
2. Определение понятий. Определяемые и неопределяемые понятия.
3. Способы определения понятий.
Понятия, которые изучаются в начальном курсе математики, обычно представляют в виде четырех групп. В первую включаются понятия, связанные с числами и операциями над ними: число, сложение, слагаемое, больше и др. Во вторую входят алгебраические понятия: выражение, равенство, уравнения и др. Третью группу составляют геометрические понятия: прямая, отрезок, треугольник и т.д. Четвертую группу образуют понятия, связанные с величинами и их измерением.
Чтобы изучать все разнообразие понятий, надо иметь представление о понятии как логической категории и особенностях математических понятий.
В логике понятиярассматривают как форму мысли, отражающую объекты (предметы и явления) в их существенных и общих свойствах. Языковой формой понятия является слово (термин) или группа слов.
Составить понятие об объекте – это значит уметь отличить его от других сходных с ним объектов. Математические понятия обладают рядом особенностей. Главная заключается в том, что математические объекты, о которых необходимо составить понятие, в реальности не существуют. Математические объекты созданы умом человека. Это идеальные объекты, отражающие реальные предметы или явления. Например, в геометрии изучают форму и размеры предметов, не принимая во внимание другие свойства: цвет, массу, твердость и т.д. От всего этого абстрагируются. Поэтому в геометрии вместо слова «предмет» говорят «геометрическая фигура».
Результатом абстрагирования являются и такие математические понятия, как «число» и «величина».
Вообще математические объекты существуют лишь в мышлении человека и в тех знаках и символах, которые образуют математический язык.
К сказанному можно добавить, что, изучая пространственные формы и количественные отношения материального мира, математика не только пользуется различными приемами абстрагирования, но и само абстрагирование выступает как многоступенчатый процесс. В математике рассматривают не только понятия, появившиеся при изучении реальных предметов, но и понятия, возникшие на основе первых. Например, общее понятие функции как соответствия является обобщением понятий конкретных функции, т.е. абстракцией от абстракций.
Всякий математический объект обладает определенными свойствами. Например, квадрат имеет четыре стороны, четыре прямых угла, равные диагонали. Можно указать и другие его свойства.
Среди свойств объекта различают существенные и несущественные. Свойство считают существенным для объекта, если оно присуще этому объекту и без него он не может существовать. Например, для квадрата существенными являются все свойства, названные выше. Несущественно для квадрата АВСD свойство «сторона АВ горизонтальна».
Когда говорят о математическом понятии, то обычно имеют в виду множество объектов, обозначаемых одним термином(словом или группой слов). Так, говоря о квадрате, имеют в виду все геометрические фигуры, являющиеся квадратами. Считают, что множество всех квадратов составляет объем понятия «квадрат».
Вообще, объем понятия – это множество всех объектов, обозначаемых одним термином.
Любое понятие имеет не только объем, но и содержание.
Содержание понятия – это множество всех существенных свойств объекта, отраженных в этом понятии.
Рассмотрим, например, понятие «прямоугольник».
Объем понятия – это множество различных прямоугольников, а в его содержание входят такие свойства прямоугольников, как «иметь четыре прямых угла», «иметь равные противоположные стороны», «иметь равные диагонали» и т.д.
Между объемом понятия и его содержанием существует взаимосвязь: если увеличивается объем понятия, то уменьшается его содержание, и наоборот. Так, например, объем понятия «квадрат» является частью объема понятия «прямоугольник», а в содержании понятия «квадрат» содержится больше свойств, чем в содержании понятия «прямоугольник» («все стороны равны», «диагонали взаимно перпендикулярны» и др.).
Любое понятие нельзя усвоить, не осознав его взаимосвязи с другими понятиями. Поэтому важно знать, в каких отношениях могут находиться понятия, и уметь устанавливать эти связи.
Отношения между понятиями тесно связаны с отношениями между их объемами, т.е. множествами.
Условимся понятия обозначать строчными буквами латинского алфавита: а, b, c, d, …, z.
Пусть заданы два понятия а и b. Объемы их обозначим соответственно А и В.
Если А ⊂ В (А ≠ В), то говорят, что понятие а – видовое по отношению к понятию b, а понятие b – родовое по отношению к понятию а.
Если А = В, то говорят, что понятия А и В тождественны.
Например, тождественны понятия «равносторонний треугольник» и «равнобедренный треугольник», так как их объемы совпадают.
Рассмотрим подробнее отношение рода и вида между понятиями.
2. Во-вторых, для данного понятия часто можно указать несколько родовых понятий. Так, для понятия «прямоугольник» родовыми являются понятия «четырехугольник», «параллелограмм», «многоугольник». Среди указанных можно указать ближайшее. Для понятия «прямоугольник» ближайшим является понятие «параллелограмм».
3. В-третьих, видовое понятие обладает всеми свойствами родового понятия. Например, квадрат, являясь видовым понятием по отношению к понятию «прямоугольник», обладает всеми свойствами, присущими прямоугольнику.
Так как объем понятия – множество, удобно, устанавливая отношения между объемами понятий, изображать их при помощи кругов Эйлера.
Установим, например, отношения между следующими парами понятий а и b, если:
1) а – «прямоугольник», b – «ромб»;
2) а – «многоугольник», b – «параллелограмм»;
3) а – «прямая», b – «отрезок».
Отношения между множествами отображены на рисунке соответственно
2. Определение понятий. Определяемые и неопределяемые понятия.
Появление в математике новых понятий, а значит, и новых терминов, обозначающих эти понятия, предполагает их определение.
Определениемобычно называют предложение, разъясняющее суть нового термина (или обозначения). Как правило, делают это на основе ранее введенных понятий. Например, прямоугольник можно определить так: «Прямоугольником называется четырехугольник, у которого все углы прямые». В этом определении есть две части – определяемое понятие (прямоугольник) и определяющее понятие (четырехугольник, у которого все углы прямые). Если обозначить через а первое понятие, а через b – второе, то данное определение можно представить в таком виде:
а есть (по определению) b.
Слова «есть (по определению)» обычно заменяют символом ⇔, и тогда определение выглядит так:
Читают: «а равносильно b по определению». Можно прочитать эту запись еще и так: «а тогда и только тогда, когда b.
Определения, имеющие такую структуру, называются явными. Рассмотрим их подробнее.
Обратимся ко второй части определения «прямоугольник».
В нем можно выделить:
1) понятие «четырехугольник», которое является родовым по отношению к понятию «прямоугольник».
2) свойство «иметь все углы прямые», которое позволяет выделить из всевозможных четырехугольников один вид – прямоугольники; поэтому его называют видовым отличием.
Вообще видовое отличие – это свойства (одно или несколько), которые позволяют выделить определяемые объекты из объема родового понятия.
Итоги нашего анализа можно представить в виде схемы:
Знак «+» используется как замена частица «и».
Нам известно, что любое понятие имеет объем. Если понятие а определено через род и видовое отличие, то о его объеме – множестве А – можно сказать, что в нем содержатся такие объекты, которые принадлежат множеству С (объему родового понятия с) и обладают свойством Р:
Так как определение понятия через род и видовое отличие является по существу условным соглашением о введении нового термина для замены какой-либо совокупности известных терминов, то об определении нельзя сказать, верное оно или неверное; его не доказывают и не опровергают. Но, формулируя определения, придерживаются ряда правил. Назовем их.
1. Определение должно быть соразмерным. Это означает, что объемы определяемого и определяющего понятий должны совпадать.
2. В определении (или их системе) не должно быть порочного круга. Это означает, что нельзя определять понятие через само себя.
3. Определение должно быть ясным. Требуется, например, чтобы значения терминов, входящих в определяющее понятие, были известны к моменту введения определения нового понятия.
4. Одно и то же понятие определить через род и видовое отличие, соблюдая сформулированные выше правила, можно по-разному. Так, квадрат можно определить как:
а) прямоугольник, у которого соседние стороны равны;
б) прямоугольник, у которого диагонали взаимно перпендикулярны;
в) ромб, у которого есть прямой угол;
г) параллелограмм, у которого все стороны равны, а углы прямые.
Различные определения одного и того же понятия возможны потому, что из большого числа свойств, входящих в содержание понятия, в определение включаются только некоторые. И тогда из возможных определений выбирают одно, исходят из того, какое из них проще и целесообразнее для дальнейшего построения теории.
Назовем ту последовательность действий, которую мы должны соблюдать, если хотим воспроизвести определение знакомого понятия или построить определение нового:
1. Назвать определяемое понятие (термин).
2. Указать ближайшее родовое понятие (по отношению к определяемому) понятие.
3. Перечислить свойства, выделяющие определяемые объекты из объема родового, т.е сформулировать видовое отличие.
4. Проверить, выполнены ли правила определения понятия (соразмерно ли оно, нет ли порочного круга и т.д.).
Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



