Что такое ордината точки единичной окружности
Алгебра
Лучшие условия по продуктам Тинькофф по этой ссылке
Дарим 500 ₽ на баланс сим-карты и 1000 ₽ при сохранении номера
. 500 руб. на счет при заказе сим-карты по этой ссылке
Лучшие условия по продуктам
ТИНЬКОФФ по данной ссылке
План урока:
Числовая и единичная окружность
В средней школе мы уже познакомились с координатной, или числовой прямой. Так называют абстрактную прямую, на которой выбрана точка отсчета, определен единичный отрезок, а также задано направление, в котором следует откладывать положительные числа. С помощью координатной прямой удается наглядно представлять сложение и вычитание как положительных, так и отрицательных чисел, решать задачи, связанные с перемещением по прямой, и делать многое другое.
Однако порою приходится рассматривать задачи, связанные с движением по окружности, а также складывать и вычитать углы. Здесь математикам помогает другая абстракция – числовая окружность. Пусть два гонщика (Вася и Петя) едут по круговой трассе, чья протяженность составляет 1 км. За минуту Вася проехал 1250 м, а Петя преодолел только 500 м. Попытаемся показать их положение графически.
Построим на координатной плоскости окружность с центром в начале координат длиной 1 км. Будем считать, старт находится в крайней правой точке трассы, на пересечении оси Ох и окружности. Также условимся, что гонщики едут против часовой стрелки. Тогда получим такую картинку:
Петя проедет ровно половину окружности и окажется в крайней левой точке трассы. Вася же за минуту успел сделать полный круг (1 км) и проехать ещё 250 м, а потому оказался в верхней точке.
Теперь предположим, что Петя стоит на месте, а Вася проехал ещё 250 м (четверть круга). В результате оба пилота оказались в одной точке, но проехали они разное расстояние! Получается, что по положению гонщика невозможно однозначно определить, сколько именно метров он проехал.
Заметим, что очень удобно характеризовать положение точки на числовой окружности с помощью угла. Достаточно соединить точку отрезком с началом координат. Полученный отрезок образует с прямой Ох некоторый угол α:
В тригонометрии предпочитают использовать особую числовую прямую, радиус которой равен единице. По ряду причин, которые станут ясны чуть позже, с ней очень удобно работать. Такую фигуру называют единичной окружностью.
Выглядит единичная окружность так:
Откладывание углов на единичной окружности
Положение каждой точки на единичной окружности можно указать с помощью угла. Пусть надо найти точку, соответствующую углу 60°. Для этого просто строим угол следующим образом:
Углы, которые откладывают на единичной окружности, называют углами поворота. В данном случае можно утверждать, что точке А соответствует угол поворота, равный 60°.
Отложить можно и угол, больший 90° и даже 180°. Выглядеть они будут примерно так:
Углы можно складывать друг с другом и вычитать. Предположим, нам надо построить угол, равный сумме углов 120° и 110°. Для этого сначала совершить поворот на 120°, а потом от полученного отрезка отложить ещё один угол в 110°:
Ясно, что возможно построить любой угол в диапазоне от 0° до 360°. А можно ли отложить угол, который будет больше 360°? В обычной планиметрии мы не работаем с такими углами, однако в тригонометрии они существуют. Действительно, мы же можем, например, сложить углы 250° и 140°. В итоге получится 250 + 140 = 390°:
В результате мы совершили полный оборот (360°) и вдобавок повернули отрезок ещё на 30°. Получается, что углам в 390° и 30° соответствует одна и та же точка.
Углы можно и вычитать друг из друга. Для этого вычитаемый угол надо отложить в противоположном направлении – не против часовой, а по часовой стрелке. Например, вычитая из 150° угол в 70°, придем в точку, соответствующую 150 – 70 = 80°:
Из арифметики мы помним, что вычитание можно заменить прибавлением противоположного (то есть отрицательного) числа:
Получается, что отложив угол 70° по часовой стрелке, мы прибавили к 150° отрицательный угол (– 70°). То есть на единичной окружности можно откладывать отрицательные углы! Для их получения поворот надо осуществлять по часовой стрелке. Например, угол – 60° будет выглядеть так:
Итак, мы можем откладывать и положительные, и отрицательные углы, а также углы, большие 360°. Вообще в тригонометрии угол может быть равен любому действительному числу. На единичной окружности можно отложить углы величиной 1000°, 1000000° и (– 999999999°) и любые другие, самые большие и самые малые углы. В этом смысле единичная окружность схожа с координатной прямой. Разница лишь в том, что на прямой разным числам всегда соответствуют разные точки, а на окружности разным углам могут соответствовать одни и те же точки.
Ещё раз отметим, что один полный оборот равен 360°. Если отложить на окружности произвольную точку А, которой соответствует угол α, а потом добавить к α ещё 360°, то мы попадем в ту же самую точку:
С точки зрения тригонометрии те углы поворота, которые соответствуют одной точке на единичной окружности, равны друг другу. Поэтому можно записать формулу:
Естественно, при вычитании 360° из угла мы тоже совершим полный поворот, только по часовой стрелке, поэтому верна и другая запись:
Угол, не изменится и в том случае, если мы совершим не один, а два полных оборота, то есть добавим к нему 2•360° = 720°. Можно добавлять к углу два, три, четыре полных поворота, но он не изменится от этого. Обозначим буквой n количество оборотов, которые мы добавляем к углу. Естественно, что n – целое число. Справедливой будет формула:
Например, верны следующие равенства:
15° + 3•360° = 15° + 1080° = 1095°
100° + 10•360° = 100° + 3600° = 3700°
1000° = 1000° – 2•360° = 1000° – 720° = 280°
Очевидно, что любой точке на окружности соответствует какой-то угол α из промежутка 0 ≤ α 1 5
1. Определение тригонометрических функций | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Через единичную окружность (R = 1) | Через произвольную окружность (R — радиус окружности) | Через прямоугольный треугольник (для острых углов) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
tg α = y/x = sin α / cos α |
ctg α = x/y = cos α / sin α |
sin (числа α) = sin (угла в α радиан)
cos (числа α) = cos (угла в α радиан)
tg (числа α) = tg (угла в α радиан)
ctg (числа α) = ctg (угла в α радиан)
tg α = yA —
ордината соответствующей точки линии тангенсов
СВ — линия котангенсов (СВ || Oх)
ctg α = xB —
абсцисса соответствующей точки линии котангенсов
Объяснение и обоснование
1. Определение тригонометрических функций. Из курса геометрии вам известно определение тригонометрических функций острого угла в прямоугольном треугольнике. Напомним их.
Синусом острого угла α в прямоугольном треугольнике называется отношение длины противолежащего катета к длине гипотенузы: sin α = a / c (рис. 61).
Косинусом острого угла α в прямоугольном треугольнике называется отношение длины прилежащего катета к длине гипотенузы: cos α = b / c.
Тангенсом острого угла α в прямоугольном треугольнике называется отношение длины противолежащего катета к длине прилежащего: tg α = a / b.
Котангенсом острого угла α в прямоугольном треугольнике называется отношение длины прилежащего катета к длине противолежащего: ctg α = b / a.
В курсе геометрии было обосновано, что синус и косинус острого угла зависят только от величины угла и не зависят от длин сторон треугольника и его расположения, то есть синус и косинус (а таким образом, и тангенс, и котангенс) являются функциями величины угла, которые называются тригонометрическими функциями.
Для сокращения формулировок мы будем использовать термин «тригонометрическая функция угла», понимая, что рассматривается «тригонометрическая функция величины угла» (при этом величина угла может быть выражена как в радианах, так и в градусах).
Также в курсе геометрии с использованием окружности с центром в начале координат было введено определение тригонометрических функций для углов от 0° до 180°. Эти определения можно применить для нахождения тригонометрических функций любых углов. Напомним их (но теперь будем рассматривать любые углы α от –∞ до +∞).
* Это следует из того, что две концентрические окружности гомотетичны (центр гомотетии — точка О, а коэффициент гомотетии k — отношение радиусов этих окружностей), тогда и точки Pα на этих окружностях также будут гомотетичны. Таким образом, при переходе от одной окружности к другой в определениях тригонометрических функций числитель и знаменатель соответствующей дроби умножаются на k, а значение дроби не изменяется. |
Окружность радиуса 1 с центром в начале координат будем называть единичной окружностью.
Пусть при повороте на угол α точка P0 (1; 0) переходит в точку Pα (x; y)
(то есть при повороте на угол α радиус OP0 переходит в радиус OPα) (рис. 63).
Синусом угла α называется ордината точки Pα (x; y) единичной окружности:
Косинусом угла α называется абсцисса точки Pα (x; y) единичной окружности:
Тангенсом угла α называется отношение ординаты точки Pα (x; y) единичной окружности к ее абсциссе, то есть отношение sin α / cos α.
Таким образом, tg α = sin α / cos α (где cos α ≠ 0).
Заметим, что при cos α = 0 значение функции tg α не определено, а значение функции ctg α не определено при sin α = 0.
Пользуясь этими определениями, найдем синус, косинус, тангенс и котангенс угла 2π / 3 радиан.
Аналогично находятся значения синуса, косинуса, тангенса и котангенса углов, градусные и радианные меры которых указаны в верхней строке таблицы 19 (с. 156).
Укажем, что таким образом можно найти тригонометрические функции только некоторых углов. Тригонометрические функции произвольного угла обычно находят с помощью калькулятора или таблиц.
2. Тригонометрические функции числового аргумента. Введенные определения позволяют рассматривать не только тригонометрические функции углов, но и тригонометрические функции числовых аргументов, если рассматривать тригонометрические функции числа α как соответствующие тригонометрические функции угла в α радиан. То есть:
синус числа α — это синус угла в α радиан;
косинус числа α — это косинус угла в α радиан.
Например: sin π/6 = sin (π/6 радиан) = sin 30° = 1/2 (см. также пункт 2 табл. 7).
α | градусы | 0 º | 30 º | 45 º | 60 º | 90 º | 180 º | 270 º | 360 º |
радианы | 0 | π/6 | π/4 | π/3 | π/2 | π | 3π/2 | 2π | |
sin α | 0 | 1/2 | √2/2 | √3/2 | 1 | 0 | -1 | 0 | |
cos α | 1 | √3/2 | √2/2 | 1/2 | 0 | -1 | 0 | 1 | |
tg α | 0 | √3/3 | 1 | √3 | — | 0 | — | 0 | |
ctg α | — | √3 | 1 | √3/3 | 0 | — | 0 | — |
3. Линии тангенсов и котангенсов. Для решения некоторых задач полезно иметь представление о линиях тангенсов и котангенсов.
♦ Проведем через точку P0 единичной окружности прямую AP0, параллельную оси Oy (рис. 65). Эта прямая называется линией тангенсов.
Пусть α — произвольное число (или угол), для которого cos α ≠ 0. Тогда точка Pα не лежит на оси Oy и прямая OPα пересекает линию тангенсов в точке A. Поскольку прямая OPα проходит через начало координат, то ее уравнение имеет вид y = kx. Но эта прямая проходит через точку Pα с координатами (cos α; sin α), значит, координаты точки Pα удовлетворяют уравнению прямой y = kx, то есть sin α = k cos α. Отсюда k = sin α / cos α = tg α. Следовательно, прямая OPα имеет уравнение
y = (tg α) x. Прямая AP0 имеет уравнение x = 1. Чтобы найти ординату точки A, достаточно в уравнение прямой OPα подставить x = 1. Получаем yA = tg α. Таким образом,
тангенс угла (числа) α — это ордината соответствующей точки на линии тангенсов.◊
Аналогично вводится и понятие линии котангенсов: это прямая CB (рис. 66), которая проходит через точку C (0; 1) единичной окружности параллельно оси Ox.
Если α — произвольное число (или угол), для которого sin α ≠ 0 (то есть точка Pα не лежит на оси Ox), то прямая OPα пересекает линию котангенсов в некоторой точке B (xB; 1).
Аналогично вышеизложенному обосновывается, что xB = ctg α, таким образом,
котангенс угла (числа) α — это абсцисса соответствующей точки на линии котангенсов.
Вопросы для контроля
1. Сформулируйте определения тригонометрических функций острого угла в прямоугольном треугольнике.
2. Сформулируйте определения тригонометрических функций произвольного угла:
а) используя окружность радиуса R с центром в начале координат;
б) используя единичную окружность.
3. Что имеют в виду, когда говорят о синусе, косинусе, тангенсе и котангенсе числа α?
Упражнения
1°. Постройте на единичной окружности точку Pα, в которую переходит точка P0 (1; 0) единичной окружности при повороте на угол α. В какой координатной четверти находится точка Pα в заданиях 3–6?
1) α = 3π; 2) α = –4π; 3) α=7π/6;
4) α=−3π/4; 5) α=4π/3; 6) α=7π/4.
2. Найдите значение sin α, cos α, tg α, ctg α (если они существуют) при:
1) α = 3π; 2) α = –4π; 3) α=−π/2;
4) α=5π/2; 5*) α=−5π/6; 6*) α=3π/4.
3°. Пользуясь определением синуса и косинуса, с помощью единичной окружности укажите знаки sin α и cos α, если:
1) α=6π/5; 2) α=−π/6; 3) α=5π/6;
4*. Пользуясь линией тангенсов, укажите знак tg α, если:
1) α=4π/3; 2) α=−3π/4; 3) α=11π/6;
5*. Пользуясь линией котангенсов, укажите знак сtg α, если:
1) α=−4π/3; 2) α=3π/4; 3) α=−11π/6;
Единичная числовая окружность на координатной плоскости
п.1. Понятие тригонометрии
Базовым объектом изучения в тригонометрии является угол.
Предметом изучения тригонометрии как раздела математики выступают:
1) взаимосвязи между углами и сторонами треугольника, которые называют тригонометрическими функциями;
2) использование тригонометрических функций в геометрии.
п.2. Числовая окружность
Мы уже знакомы с числовой прямой (см. §16 справочника для 8 класса) и координатной плоскостью (см. §35 справочника для 7 класса), с помощью которых создаются графические представления числовых промежутков и функций. Это удобный инструмент моделирования, с помощью которого можно провести анализ, начертить график, найти область допустимых значений и решить задачу.
Для работы с углами и их функциями существует аналогичный инструмент – числовая окружность.
Отметим на числовой окружности углы 30°, 45°, 90°, 120°, 180°, а также –30°, –45°, –90°, –120°, –180°. |
п.3. Градусная и радианная мера угла
Углы можно измерять в градусах или в радианах.
Известно, что развернутый угол, дуга которого равна половине окружности, равен 180°. Прямой угол, дуга которого равна четверти окружности, равен 90°. Тогда полная, замкнутая дуга окружности составляет 360°.
Приписывание развернутому углу меры в 180°, а прямому 90°, достаточно произвольно и уходит корнями в далёкое прошлое. С таким же успехом это могло быть 100° и 50°, или 200° и 100° (что, кстати, предлагалось одним из декретов во времена французской революции 1789 г.).
В целом, более обоснованной и естественной для измерения углов является радианная мера.
30° | 45° | 60° | 90° | 120° | 135° | 150° | 180° | 270° | 360° |
\(\frac<\pi><6>\) | \(\frac<\pi><4>\) | \(\frac<\pi><3>\) | \(\frac<\pi><2>\) | \(\frac<2\pi><3>\) | \(\frac<3\pi><4>\) | \(\frac<5\pi><6>\) | \(\pi\) | \(\frac<3\pi><2>\) | \(2\pi\) |
п.4. Свойства точки на числовой окружности
Построим числовую окружность. Обозначим O(0;0), A(1;0)
Отметим на числовой окружности точки, соответствующие \(\frac<\pi><6>,\ \frac<13\pi><6>,\ \frac<25\pi><6>\), и \(-\frac<11\pi><6>\). Все четыре точки совпадают, т.к. \begin |
п.5. Интервалы и отрезки на числовой окружности
Каждому действительному числу соответствует точка на числовой окружности. Соответственно, числовые промежутки (см. §16 справочника для 8 класса) получают свои отображения в виде дуг.
п.6. Примеры
Пример 1. Точка E делит числовую окружность во второй четверти в отношении 1:2.
Чему равны дуги AE, BE, EC, ED в градусах и радианах?
Угловая мера четверти 90°. При делении в отношении 1:2 получаем дуги 30° и 60° соответственно: \begin
Пример 2. Найдите на числовой окружности точку, соответствующую данному числу: \(-\frac<\pi><2>;\ \frac<3\pi><4>;\ \frac<7\pi><6>;\ \frac<7\pi><4>\).
Находим соответствующие углы в градусах и откладываем с помощью транспортира (положительные – против часовой стрелки, отрицательные – по часовой стрелке), отмечаем соответствующие точки на числовой окружности. \begin |
Пример 3. Найдите на числовой окружности точку, соответствующую данному числу: \(-\frac<11\pi><2>;\ 5\pi;\ \frac<17\pi><6>;\ \frac<27\pi><4>\).
Пример 4. В какой четверти числовой окружности находится точка, соответствующая числу: 2; 4; 5; 7.
Сравниваем каждое число с границами четвертей: \begin |
\(\frac\pi2\lt 2\lt \pi \Rightarrow \) угол 2 радиана находится во 2-й четверти
\(\pi\lt 4\lt \frac<3\pi> <2>\Rightarrow \) угол 4 радиана находится в 3-й четверти
\(\frac<3\pi><2>\lt 5\lt 2\pi \Rightarrow \) угол 5 радиана находится в 4-й четверти
\(7\gt 2\pi\), отнимаем полный оборот: \(0\lt 7-2\pi\lt \frac\pi2\Rightarrow\) угол 7 радиан находится в 1-й четверти.
Пример 5. Изобразите на числовой окружности множество точек \((k\in\mathbb
Пример 6. Изобразите на числовой окружности дуги, соответствующие числовым промежуткам.
- Что такое семенной подвой яблони
- Что такое нейромидин таблетки