Что такое органическая и неорганическая природа
Органические и неорганические вещества – что это и отличия
Органические и неорганические вещества – эти термины знакомы каждому человеку из школьной программы по биологии или химии. Также о них слышали садоводы. Что представляют собой и чем отличаются подобные вещества, способны объяснить не все. Для того чтобы лучше разобраться в особенностях и понять нюансы, рекомендуется сначала дать определение для каждого из рассматриваемых понятий, а затем провести сравнение по ключевым характеристикам.
Определение понятий
Органические вещества – соединения, которые имеют сложную химическую структуру (молекулярное строение). Они имеют невысокую температуру плавления, при воздействии высоких температур распадаются на несколько простых компонентов. Реакция протекает с выделением углекислого газа и воды. В молекулах присутствуют углерод и водород. Происхождение природное.
Неорганические вещества – химические соединения, имеющие простое молекулярное строение и небольшую массу. Температуры плавления высокие. Разложение происходит длительное время. Природа происхождения как биологическая, так и искусственная (промышленность).
Сравнение
Некоторые отличия между органикой и неорганическими веществами стала понятна из приведенных определений, но для более подробного разбора и выявления отличий, следует провести сравнение. Органика распадается за короткий промежуток времени на простые составные элементы – белки, углеводы, липиды. Разнообразие органики – результат наличия в ее молекулах углерода. Органические вещества способны к процессу изометрии. В результате образуются соединения, которые имеют одинаковый набор атомов в молекулах. Достичь разнообразия в этом случае позволяет различное положение атомов в молекулах образовавшихся веществ. Самыми распространенными являются такие соединения, как фруктоза и глюкоза. В них находится одинаковый набор атомов, но расположение отличается, поэтому свойства этих компонентов и их работа в химических реакциях различаются.
Неорганические вещества, самым распространенным из которых является вода, обладают небольшой молекулярной массой. Неорганики по современной классификации насчитывается всего около 100 тысяч, против органических соединений, которых представлено более 18 млн. Неорганические составляющие не способы к процессам изометрии. К неорганике также относятся различные металлы, соли, оксиды, различные смеси и простые вещества.
Выводы
Проведя сравнение, можно с уверенностью сказать, что различия между органическими и неорганическими веществами выражены в особенностях молекулярной структуры. Температура плавления и скорость разложения также являются факторами, указывающими на различия между рассматриваемыми понятиями. Наличие таких составляющих как водород и углерод характерны для органических соединений. Происхождение неорганики не всегда природное, многие компоненты являются плодом технических, производственных и научных изысканий. Общее количество неорганических веществ составляет по современной классификации 100 тысяч. Органика же превосходит числом, таких элементов в классификации представлено более чем в 10 раз больше. Органика имеет сложную структуру молекулярной сетки, неорганика — простую. Для того чтобы запустить процессы разложения в первом случае не требуется нагрева до высоких температур (например, мясо портиться при комнатной температуре, а для плавления металлов требуется длительный нагрев).
В состав молекул всех органических веществ входит углерод, но нужно учитывать и особенности этой группы компонентов. Так в карбидах или цианидах нет этого элемента. Уникальным свойством углерода является способность образовывать цепочки из атомов. Благодаря подобной способности соединений из одного и того же атомного набора может появляться очень много.
От неорганической природы к органической
Исследования ведутся представителями различных наук во многих аспектах, один из них заключается в стремлении «объяснить возникновение жизни из неорганической природы».
Нуклеиновые кислоты, образующиеся из нуклеотидов посредством химической связи, включают в себя пуриновые и пиримидиновые основания, аденин, тимин, цитозин, гуанин и урацил и относятся к химическим соединениям.
Выявление закономерностей и установление основного закона химической эволюции порой сопровождалось непреодолимыми трудностями, которые были связаны с молекулярными (микроскопическими) размерами объектов эволюции и с отсутствием возможности прямого наблюдения морфологических особенностей индивидуальных объектов (что мы имеем в случае биологической эволюции). Поэтому в химии и не могло быть случайного накопления сведений о таких объектах и их систематике в результате прямых наблюдений. В ней могло было быть только теоретическое видение этих объектов, аналогичное тому, как мы «видим» атомы и молекулы веществ, и основанное на обобщениях проявлений их физических и химических свойств.
Направленность эволюции химической формы движения материи проявляется в постепенном усложнении веществ, образовании предбиологических систем и зарождении в их недрах живого. Сложность уровня организации химических веществ возрастает, т.е. они эволюционируют от наиболее простых соединений к сложным высокомолекулярным образованиям за счет способности к саморазвитию, самоорганизации. Самоорганизация выступает как процесс образования качественно новых систем более высокого уровня организации.
Трудности, связанные с исследованием химической эволюции, заключаются в том, что проблема химической эволюции оказалась в стороне от магистральных путей развития химии не только потому, что она была заложена успехами структурных и кинетических теорий в преобразовании вещества, но и потому, что общие горизонты химии, или уровень ее иерархии отраслей науки, не позволяют дать должную оценку этой проблемы как проблемы эволюционной, естественно-исторической. Химия не знала ни принципов актуализма, которые развивались в геологии, ни эволюционного учения, ставшего теоретической основой биологии. Химия не могла поэтому найти критериев направленности в развитии изучаемых ею субстанциальных форм, не имела возможности по существу указать ступени эволюции вещества и тем более не имела никаких данных для определения движущих сил эволюции. Кроме перечисленного, при изучении химической эволюции возникает проблема, которая, пожалуй, в такой степени не встречается ни в одной из наук и заключается в том, что нет возможности вывести критерий сложности для химической материи в целом.
Определить критерий сложности в химии можно только для отдельных классов соединений, потому что в этой науке не существует единой классификации веществ. Вещества разделяются на органические и неорганические соединения. Органические вещества, в свою очередь, делятся на классы алифатических, карбоциклических и гетероциклических
В качестве критериев сложности химических элементов предложены два основополагающих признака:
1) способность образовывать многоатомные структуры, в особенности длинные цепи;
2) способность вступать во взаимодействие с тем или иным качественным многообразием элементов. Сложность химического элемента определяется прежде всего тем, какое количество элементов может интегрироваться на базе этого элемента, т.е. какое количество элементов входит в состав образуемых им соединений.
Во-первых, при указанной выше плотности ядер гелия (альфа-частиц) в каждом кубическом сантиметре содержится много. Во-вторых, для осуществления слияния трёх ядер гелия необходимо, чтобы ядро углерода имело возбуждённый уровень с энергией 7,7 МэВ, так как при взаимодействии трёх альфа-частиц выделяется именно столько энергии. И такой уровень у атома углерода, действительно, есть. Интересным является то, что астрофизики настаивали на существовании этого эффекта задолго до открытия его физиками. Так как тепловая энергия внутри звёзд оказалась близкой к необходимой, то синтез ядер углерода шёл достаточно интенсивно. И, наконец, ядро углерода образовалось. Но если оно присоединит ещё одну альфа-частицу, то образуется ядро кислорода ( 16 О). Возникает угроза того, что углерода может и не быть вследствие выгорания его и превращения в кислород. Но углерод не может полностью сгореть внутри звезды, потому что резонансная энергия ядер атомов кислорода ниже тепловой энергии ядер углерода. По выражению английского астрофизика Ф. Хойла, «всё здесь выглядит нарочно подстроенным».
При изучении химических процессов внешнее определяет состояние всей системы, поскольку постоянные условия могут поддерживать сколь угодно долго состояние химического равновесия или вызывать в результате внешнего воздействия любые изменения. Для начала любой, самой простой реакции требуется внешнее воздействие. Необходимость внешней энергии для поддержания химического процесса на планете связана с тем, что сам по себе он конечен, ограничен, склонен к затуханию. К внешним факторам, оказывающим влияние на химическую эволюцию, относятся конкретные для каждого случая температура, давление, катализаторы, сами химические соединения и различного рода излучения. При этом следует отметить, что внешние факторы могут влиять на химические соединения какого-то одного уровня и не оказывать такого же воздействия на соединения другого уровня. Но самое главное в том, что когда начинается процесс химического взаимодействия под влиянием внешних факторов, то они становятся условиями протекания процесса и из внешних становятся внутренними. В любом случае взаимодействие внешних и внутренних факторов приводит к возникновению качественно новых систем с более высоким уровнем организации, а направление химической эволюции определяется в основном, если не постоянно, теми ограничениями, которые присущи самим реагирующим молекулам.
По сравнению с молекулами, макромолекулы отличаются очень большим количеством групп из химически связанных атомов и тем, каким образом они связаны между собой. Различие существует и в том, что в молекуле изменение одного атома влечет за собой изменение свойств всей молекулы, а у макромолекулы количество химически связанных атомов можно уменьшить или увеличить, но свойства ее при этом почти не меняются. Это объясняется тем, что на уровне макромолекул возникает новое качество, характеризуемое более высоким уровнем организации, на котором образуются различные конфигурации одной и той же молекулы путем поворота, свертывания атомных цепей и их изгиба, что влечет за собой возможность создания мостиковых групп и сближение удельных функциональных групп. Подобные изменения конфигураций макромолекул лежат в основе механизмов биохимических процессов. Общую природу с этими явлениями представляют собой денатурация и ренатурация белка, а также закручивание и раскручивание спиралей нуклеиновых кислот и некоторые иммунохимические процессы. Установлено, что изменение конфигурации макромолекулы обусловливает передачу нервного импульса, большое количество ферментативных реакций и мышечное сокращение.
В основе химической эволюции заложена тенденция саморазвития, внутренне обусловленная существованием противоположностей в химических соединениях. В структуре всех органических соединений заложена как бы двойственная природа, заключающаяся в том, что они одновременно являются основанием и кислотой, и это противоречие обусловливает большое разнообразие их свойств и возможностей взаимодействий и превращений. Кроме этого, для соединений органической химии характерно наличие противоположных процессов синтеза и распада, полимеризации и деполимеризации, электрофильных и нуклеофильных превращений. Прослеживается общее для всей материи единство устойчивости и изменчивости, покоя и процесса.
Познание основных закономерностей зарождения и развития макромолекул позволяет выявить основные тенденции перехода от химических структур к биологическим.
Двойственная природа химических соединений обусловлена двойственной реакционной способностью вещества, определяющей направление реакции. Реакционная способность, объединяя в себе состав, строение и те факторы, которые вступают в силу только после начала химического процесса, являются выражением внутренней возможности вещества. На основе возможностей, которые объединяет в себе реакционная способность, происходит большое количество реакций и образование новых веществ, совершенно не соответствующих структуре исходных. Таким образом, происходит образование веществ с более высоким уровнем организации, усложнение вещества в ходе химической эволюции.
Белковые вещества являются полипептидами, содержащими около двадцати различных аминокислотных остатков, соединенных друг с другом в произвольной последовательности и образующих бесчисленное множество изомеров. Из 20 различных аминокислот можно образовать 2 439 902 008 176 640 000 комбинаций. Последовательность аминокислот определяют физические, физико-химические и биологические свойства белков, т.е. белки обладают и химической, и биологической индивидуальностью. То же относится и к нуклеиновым кислотам, которые являются полимерами, построенными из мономеров нуклеотидов.
Между химической и биологической формами движения прослеживается структурно-генетическая связь, эволюционный переход от более низкой формы движения материи к более высокой. Соответственно трансформируются и законы, характерные для химической формы движения материи, одни из них вообще перестают действовать или не имеют уже важного значения, другие же приобретают еще большее значение, и область их применения увеличивается. На каждой ступени господствуют другие законы, т.е. другие формы проявления одного и того же универсального движения. Таким образом, абсолютно всеобщим значением обладает одно лишь движение.
«информация, рассматриваемая как отраженное разнообразие взаимодействующих систем, выступает в неорганических системах не как причина самоорганизации, а как ее следствие. Поэтому причину и направление самоорганизации в неорганической природе необходимо усматривать в исходном, развертывающемся и становящемся взаимодействии, одной из главнейших сторон которого и выступает информация, но не в информации самой по себе».
В результате различного рода взаимодействий происходит усложнение вещества, образование систем с новым качеством, что обусловливает одну из специфических черт химической науки, отличающую ее от других областей знания. К характерной черте химического процесса относится образование нового качества.
Химическую эволюцию на молекулярном уровне можно представить в виде ряда этапов, характеризущихся усложнением вещества от простейших неорганических и органических молекул к малым биомолекулам, затем к сложным органическим соединениям и биополимерам, далее происходит образование надмолекулярных систем биополимеров, а их усложнение приводит к образованию живого. Молекулярный аспект химической эволюции выявляет усложнение химических веществ на основе их самоорганизации, а затем начинают проявляться основные принципы самоорганизации, характерные для биологической формы движения материи. Закономерности перехода от неживого к живому осуществляются только через усложнение химизма, через химические превращения, которые лежат в основе биологических закономерностей.
Огромную роль в химической эволюции сыграл катализ. Катализом называется изменение скорости химических реакций под действием катализаторов, веществ изменяющих скорость химических реакций, участвующих в промежуточном химическом взаимодействии, но восстанавливающих свой химический состав после каждого цикла взаимодействия Именно участие в процессах эволюции каталитических систем, особенно воды, смогло обеспечить не только ускорение тех или иных химических процессов, но и усложнение химических веществ.
Органические и неорганические вещества
Органические и неорганические вещества или соединения.
Органические и неорганические вещества или соединения – это две большие химические группы, которые в основном отличаются наличием или отсутствием углеводородов и их производных.
Органические вещества:
Органические вещества включают в себя химические соединения с содержанием углерода и водорода. По составу их можно разделить на: углеводороды, кислородосодержащие и азотосодержащие вещества.
Органические вещества характеризуются в основном своей легкой плавкостью, ковалентной связью, соединениями (у которых похожий состав и молекулярная масса, но при этом разные физико-механические свойства), горючестью и явлением гомологии.
Органические соединения между собой отличаются строением углеродной цепи, и могут быть построены, как с открытой цепью атомов, так и с замкнутой. Те, что имеют строение с замкнутой цепью, относят к циклическим соединениям, которое подразделяются на предельные и непредельные, другие – к ациклическим, которые в свою очередь могут быть карбоциклическими и гетероциклическими.
Циклические соединения характеризуются кольцеобразной формой, при связи трех или более атомов. Ациклические соединения отличаются от циклических тем, что атомы углерода в них выстроены в прямые или разветвленные цепи.
Для того чтобы понять, к какому классу отнести то или иное органическое соединение, ориентируются на старшую функциональную группу – структурный фрагмент органической молекулы, который способствует определению химического состава данной молекулы.
В зависимости от типа функциональной группы они подразделяются на классы соединений: углеводороды, галогеноводороды, спирты, фенолы, простые эфиры, амины, нитросоединения, альдегиды, кетоны, карбоновые кислоты, сложные эфиры, амиды карбоновых кислот, тиолы и сульфоновые кислоты.
Неорганические вещества:
Неорганические вещества в основном в своем составе не имеют углеродного строения, как органические, но исключением являются вещества, содержащие углерод, которые традиционно относят к неорганическим: карбиды, карбонаты, некоторые оксиды углерода, цианиды и другие.
Неорганические вещества в большей своей массе характеризуются высокими температурами плавления, ионной связью, сложным разложением, отсутствием углеродного скелета и небольшой молекулярной массой.
Неорганические соединения делятся на простые вещества, которые в своем составе имеют атомы одного элемента и сложные вещества, состоящие из атомов двух или более элементов.
К группе простых веществ относятся: металлы, неметаллы, аморфные простые вещества и благородные газы. Кстати, периодическая таблица Менделеева позволяет быстро сориентироваться по веществам, относящимся к металлам и неметаллам.
Группа сложных веществ включает в себя: оксиды, гидроксиды, соли и бинарные соединения. Они в свою очередь имеют подразделение:
Химическая промышленность:
Отрасли химической промышленности могут в себя включать обработку, как органических, так и неорганических химических соединений.
Химическая промышленность в целом подразделяется на: горно-химическую промышленность, основную химию, химию органического синтеза, химико-фармацевтическую промышленность и бытовую химию.
§ 1. Системность неорганической природы
Согласно современным представлениям, вся неорганическая природа в самом общем виде делится на две системы: поле и вещество. Онтологическая сущность физического поля в /настоящее время еще четко не определена, что, естественно, затрудняет его описание.
Правда, в последнее время ряд ученых возвращается к идее некоей пронизывающей все и вся субстанции типа эфира ‘• Так, Э. Хенли и В. Тирринг представляют поле как некую непрерывную основу, заполняющую простран-
1 См., например, П. Н. Кропоткин. Теория тяготения К. А. Путилова и кинематическая теория Лоренца. — «Поле и материя». Сборник статей по физике и геофизике, посвященный памяти профессора К. А. Путилова. М., 1971:
Каждое конкретное поле в свою очередь имеет определенную структуру, т. е. тоже системно.
О том, что является элементом конкретного поля, сказать сейчас с достоверностью нельзя. Очевидно, каждое конкретное поле имеет свои определенные уровни, иначе говоря, оно как система развивается, скажем, от состояния «вакуума» до четко выраженного квантового состояния. А квант поля представляет собой элементарную частицу. Можно сказать, что элементарная частица — предел развития материи поля. В таком случае квант не может быть элементом конкретного поля, ибо он есть высшее его развитие. Скорее всего элементами конкретного поля являются узловые «точки» структуры элементарных частиц.
1 См. Э. Хенли и В. Тирринг. Элементарная квантовая теория поля.
2 См. там же, стр. 24, 81.
3 См. Д. //. Блохинцев. Проблемы структуры элементарных ча стиц. — «Философские проблемы физики’ элементарных частиц». М, 1963, стр. 48.
4 См. Я. П. Терлецкий. Принцип причинности и второе начало термодинамики. — «Доклады Академии наук СССР», т. 133, 1960, № 2; его же. К. статистической теории нелинейного поля. — «До клады Академии наук СССР», т. 133, 1960, № 3.
Но очевидно, ближе к истине все же идея о составном характере элементарных частиц. Если принять мысль о частице как высшей форме развития материи поля, то естественно предположить существование определенных кирпичиков — назовем их «полянами», — которые и образуют элементарную частицу. «Поляны» в таком случае являются тем, из чего состоит физическое поле вообще, т. е. они элементы системы поля. Их взаимодействие — «полевая» форма движения и приводит в конечном счете к образованию элементарной частицы того или иного типа. Конечно, и «поляны» и «полевая» форма движения сложны по структуре и в свою очередь представляют собой системы- Впрочем, в данном случае для нас неважно, что именно образует элементарную частицу — керн и облака элементарных частиц различных видов, «поляны» или определенные состояния поля, — важно, что эти материальные образования являются системами. В целом идея о сложности элементарных частиц, о том, что каждая из них — система, состоящая из различного количества различным образом взаимодействующих и по-разному пространственно расположенных, но тождественных по своей сущности «кирпичиков» материи особого качества, весьма плодотворна. Она позволяет объяснить взаимопревращаемость частиц и открывает путь к дальнейшему проникновению в глубь материи.
Но элементарная частица — это не только квант поля, но и то, что лежит в основе качественно новой системы —-вещества.
1 Я. П. Терлецкий. К вопросу о пространственной структуре эле ментарных частиц. —• «Философские проблемы физики элементарных частиц», стр. 107.
2 В. С. Барашенков, Д. И. Блохинцев. Ленинская идея неисчер паемости материи в современной физике [Материалы к Второму Все союзному совещанию по философским вопросам современного есте ствознания, посвященному 100-летию со дня рождения В. И. Ленина]. М., 1970, стр. 22.
Вещество — чрезвычайно сложная, глубоко дифференцированная, многоуровневая система. Поэтому ограничимся здесь простым схематическим изложением представлений о формах его существования.
Если элементарная частица выступает и как завершающая форма существования физического поля ‘, и как элемент качественно новой вещественной системы, то две и более взаимодействующие элементарные частицы уже дают систему, которая может быть названа мельчайшей частичкой вещества.
Группа атомов, переходящая без изменений из одного химического соединения в другое, определяется как радикал. Все эти группы являются системами. «Атомы и молекулы представляют собой системы. » 4 — подчеркивает В. А. Фок.
Взаимодействие атомов одного типа образует химический элемент. Взаимодействие атомов или молекул разных типов образует сложное химическое соединение — минерал.
Минералы являются элементами такой системы, как горная порода. Горные породы образуют литосферу — оболочку Земли.
1 О понятии завершающей формы существования материальных образований будет подробно сказано в последующих главах.
2 М. X. Карапетьянц и С. И. Дракин. Строение вещества. М., 1967, стр. 101.
* В. А. Фок. Квантовая физика и строение материи. Л., 1965, стр. 3.
Земля в свою очередь является сложной материальной системой, состоящей из различных подсистем: ядра, мантии, лито-, гидро- и атмосфер. Она как планета выступает наряду с другими планетами элементом солнечной системы.
Солнечная система входит в такую грандиозную космическую систему, как Галактика. Взаимодействующие галактики образуют системы галактик, в свою очередь входящих в Метагалактику, и т. д.
Изложение столь известных, элементарных истин необходимо, ибо приходится встречаться с отрицанием системности неорганической природы. Неорганическая природа, в представлении отдельных ученых, особенно та ее часть, с которой мы находимся в непосредственном контакте, как, например, лито-, гидро- и атмосферы, еще недавно выступала как нечто бесформенное, хаотическое, неразвивающееся- В действительности неорганическая природа есть саморазвивающаяся система, состоящая из саморазвивающихся систем различного уровня организации.