Что такое органика и неорганика

Разница между органическими и неорганическими веществами

В химии традиционно принято выделять 2 типа веществ — органические и неорганические. В чем заключается их специфика?

Что представляют собой органические вещества?

Понятие «органические вещества» в химии соответствует соединениям, которые в большинстве своем характеризуются:

Распространенные органические вещества — белки, углеводы, липиды. Всего в современной химии классифицировано порядка 18 млн соответствующих соединений. Как считают исследователи, именно по причине наличия в молекулах органических веществ углерода возможно столь огромное их разнообразие. Данный химический элемент способен образовывать самый широкий спектр связей с другими элементами.

Главным образом только органическим веществам свойственна изомерия — формирование соединений с одинаковым набором атомов в молекулах, но разным их расположением, вследствие чего образуются фактически различные вещества с точки зрения физических и химических свойств.

Что такое органика и неорганика. Смотреть фото Что такое органика и неорганика. Смотреть картинку Что такое органика и неорганика. Картинка про Что такое органика и неорганика. Фото Что такое органика и неорганика

Так, в числе самых распространенных изомеров — глюкоза и фруктоза. Они состоят из молекул с одинаковым набором атомов, но с разным расположением. По основным свойствам глюкоза и фруктоза совпадают, но и различий между ними также довольно много, и потому они рассматриваются как 2 разных вещества.

Что представляют собой неорганические вещества?

Понятие «неорганические вещества» в химии соответствует соединениям, которые характеризуются, в свою очередь:

Углерод и водород присутствуют далеко не во всех неорганических соединениях. Не всегда соответствующие вещества имеют биологическое происхождение.

Неорганических соединений в современной химии классифицировано ощутимо меньше, чем органических, — порядка 100 тыс. Изомерия для данных веществ не свойственна.

Что такое органика и неорганика. Смотреть фото Что такое органика и неорганика. Смотреть картинку Что такое органика и неорганика. Картинка про Что такое органика и неорганика. Фото Что такое органика и неорганика

Одно из самых распространенных в мире неорганических веществ — вода. Ее молекула состоит из атомов кислорода и водорода, которые по отдельности — как газы — также могут рассматриваться как неорганические вещества. Другие часто встречающиеся типы соответствующих веществ — металлы, соли, различные бинарные соединения.

Сравнение

Есть не одно отличие органических веществ от неорганических. Разницу между ними можно проследить с точки зрения:

Общее количество неорганических веществ — 100 тыс. — заметно уступает числу органических — 18 млн, если следовать распространенным в современной химии классификациям.

Определив, в чем разница между органическими и неорганическими веществами, отразим выводы в небольшой таблице.

Источник

Органические и неорганические вещества

Органические и неорганические вещества или соединения.

Что такое органика и неорганика. Смотреть фото Что такое органика и неорганика. Смотреть картинку Что такое органика и неорганика. Картинка про Что такое органика и неорганика. Фото Что такое органика и неорганикаЧто такое органика и неорганика. Смотреть фото Что такое органика и неорганика. Смотреть картинку Что такое органика и неорганика. Картинка про Что такое органика и неорганика. Фото Что такое органика и неорганикаЧто такое органика и неорганика. Смотреть фото Что такое органика и неорганика. Смотреть картинку Что такое органика и неорганика. Картинка про Что такое органика и неорганика. Фото Что такое органика и неорганикаЧто такое органика и неорганика. Смотреть фото Что такое органика и неорганика. Смотреть картинку Что такое органика и неорганика. Картинка про Что такое органика и неорганика. Фото Что такое органика и неорганикаЧто такое органика и неорганика. Смотреть фото Что такое органика и неорганика. Смотреть картинку Что такое органика и неорганика. Картинка про Что такое органика и неорганика. Фото Что такое органика и неорганикаЧто такое органика и неорганика. Смотреть фото Что такое органика и неорганика. Смотреть картинку Что такое органика и неорганика. Картинка про Что такое органика и неорганика. Фото Что такое органика и неорганикаЧто такое органика и неорганика. Смотреть фото Что такое органика и неорганика. Смотреть картинку Что такое органика и неорганика. Картинка про Что такое органика и неорганика. Фото Что такое органика и неорганикаЧто такое органика и неорганика. Смотреть фото Что такое органика и неорганика. Смотреть картинку Что такое органика и неорганика. Картинка про Что такое органика и неорганика. Фото Что такое органика и неорганикаЧто такое органика и неорганика. Смотреть фото Что такое органика и неорганика. Смотреть картинку Что такое органика и неорганика. Картинка про Что такое органика и неорганика. Фото Что такое органика и неорганикаЧто такое органика и неорганика. Смотреть фото Что такое органика и неорганика. Смотреть картинку Что такое органика и неорганика. Картинка про Что такое органика и неорганика. Фото Что такое органика и неорганикаЧто такое органика и неорганика. Смотреть фото Что такое органика и неорганика. Смотреть картинку Что такое органика и неорганика. Картинка про Что такое органика и неорганика. Фото Что такое органика и неорганикаЧто такое органика и неорганика. Смотреть фото Что такое органика и неорганика. Смотреть картинку Что такое органика и неорганика. Картинка про Что такое органика и неорганика. Фото Что такое органика и неорганика

Органические и неорганические вещества или соединения – это две большие химические группы, которые в основном отличаются наличием или отсутствием углеводородов и их производных.

Органические вещества:

Органические вещества включают в себя химические соединения с содержанием углерода и водорода. По составу их можно разделить на: углеводороды, кислородосодержащие и азотосодержащие вещества.

Органические вещества характеризуются в основном своей легкой плавкостью, ковалентной связью, соединениями (у которых похожий состав и молекулярная масса, но при этом разные физико-механические свойства), горючестью и явлением гомологии.

Органические соединения между собой отличаются строением углеродной цепи, и могут быть построены, как с открытой цепью атомов, так и с замкнутой. Те, что имеют строение с замкнутой цепью, относят к циклическим соединениям, которое подразделяются на предельные и непредельные, другие – к ациклическим, которые в свою очередь могут быть карбоциклическими и гетероциклическими.

Циклические соединения характеризуются кольцеобразной формой, при связи трех или более атомов. Ациклические соединения отличаются от циклических тем, что атомы углерода в них выстроены в прямые или разветвленные цепи.

Для того чтобы понять, к какому классу отнести то или иное органическое соединение, ориентируются на старшую функциональную группу – структурный фрагмент органической молекулы, который способствует определению химического состава данной молекулы.

В зависимости от типа функциональной группы они подразделяются на классы соединений: углеводороды, галогеноводороды, спирты, фенолы, простые эфиры, амины, нитросоединения, альдегиды, кетоны, карбоновые кислоты, сложные эфиры, амиды карбоновых кислот, тиолы и сульфоновые кислоты.

Неорганические вещества:

Неорганические вещества в основном в своем составе не имеют углеродного строения, как органические, но исключением являются вещества, содержащие углерод, которые традиционно относят к неорганическим: карбиды, карбонаты, некоторые оксиды углерода, цианиды и другие.

Неорганические вещества в большей своей массе характеризуются высокими температурами плавления, ионной связью, сложным разложением, отсутствием углеродного скелета и небольшой молекулярной массой.

Неорганические соединения делятся на простые вещества, которые в своем составе имеют атомы одного элемента и сложные вещества, состоящие из атомов двух или более элементов.

К группе простых веществ относятся: металлы, неметаллы, аморфные простые вещества и благородные газы. Кстати, периодическая таблица Менделеева позволяет быстро сориентироваться по веществам, относящимся к металлам и неметаллам.

Группа сложных веществ включает в себя: оксиды, гидроксиды, соли и бинарные соединения. Они в свою очередь имеют подразделение:

Химическая промышленность:

Отрасли химической промышленности могут в себя включать обработку, как органических, так и неорганических химических соединений.

Химическая промышленность в целом подразделяется на: горно-химическую промышленность, основную химию, химию органического синтеза, химико-фармацевтическую промышленность и бытовую химию.

Источник

Что такое органика и неорганика

Неорганическая химия.

Неорганическая химия — раздел химии, в котором изучают свойства различных химических элементов и соединения, которые они образуют, за исключением углеводородов (химических соединений углерода и водорода) и продуктов их замещения, представляющих собой так называемые органические молекулы.

Первые исследования в области неорганической химии были посвящены минералам. Ставилась цель извлечь из них различные химические элементы. Эти исследования позволили разделить все вещества на две большие категории: химические элементы и соединения.

Химические элементы — вещества, состоящие из одинаковых атомов (например, Fe, из которого состоит железный прут, или РЬ, из которого сделана свинцовая труба).

Химические соединения — это вещества, состоящие из различных атомов. Например, вода Н20, сульфат натрия Na2S04, гидроокись аммония NH4OH…

Атомы, входящие в состав химических элементов и соединений, делят на два класса — атомы металлов и атомы неметаллов.

Атомы неметаллов (азот N, кислород О, сера S, хлор CI.) имеют способность присоединять к себе электроны, забирая их у других атомов. Поэтому атомы неметаллов называют «электроотрицательными».

Атомы металлов, напротив, имеют тенденцию отдавать электроны другим атомам. Поэтому атомы металлов называют электроположительными. Это, например, железо Fe, свинец РЬ, медь Cu, цинк Zn. Вещества, состоящие из двух различных химических элементов обычно содержат атомы металла одного вида (обозначение соответствующего атолла помещается в начало химической формулы) и атомы неметалла также одного вида (в химической формуле обозначение соответствующего атома помещается после атома металла). Например, хлорид натрия NaCI. Если вещество не содержит атом металла, то в начало химической формулы помещается наименее электроотрицательный элемент, например аммиак NH3.

Система наименований неорганических химических соединений была утверждена в 1960 году Международным союзом IUPAC. Неорганические химические соединения называют, произнося сначала наименование наиболее электроотрицательного элемента (обычно неметалла). Например, соединение с химической формулой KCI называют хлоридом калия. Вещество H2S называется сероводородом, а СаО — оксидом кальция.

Органическая химия.

В начале своего развития эта химия исследовала вещества, входящие в живые организмы — растения и животные (белки, жиры, сахара), либо вещества разложившейся живой материи (нефть). Все эти вещества называли органическими.

Встречающиеся в природе органические вещества относят к различным группам: нефть и ее составляющие, белки, углеводы, жиры, гормоны, витамины и другие.

В начале 19 века были синтезированы первые искусственные органические молекулы. Используя неорганическую соль цианат аммония, Велер в 1828 году получил мочевину. Уксусная кислота была синтезирована Кольбе в 1845 году. Бертло получил этиловый спирт и муравьиную кислоту (1862 год).

Со временем химики научились синтезировать все большее и большее количество природных органических веществ. Были получены глицерин, ванилин, кофеин, никотин, холестерин.

Многие из синтезированных органических веществ не существуют в природе. Это пластмассы, моющие средства, искусственные волокна, многочисленные лекарства, красители, инсектициды.

Углерод образует больше соединений, чем какой либо другой элемент. Имея стабильную внешнюю электронную оболочку, углерод весьма мало склонен становиться положительно или отрицательно заряженным ионом. Эта электронная оболочка возникает в результате образования четырех связей, направленных к вершинам тетраэдра, в центре которого находится ядро атома углерода. Именно поэтому органические молекулы имеют специфическую структуру.

В органических молекулах атом углерода всегда участвует в четырех химических связях. Атомы углерода способны легко объединяться друг с другом, образуя длинные цепи или циклические структуры.

Атомы углерода в органических молекулах могут быть соединены между собой одинарными связями (так называемые насыщенные углеводороды) или кратными, точнее двойными, а также тройными связями (углеводороды ненасыщенные).

Международный союз IUPAC разработал систему наименований органических соединений. Эта система выявляет наиболее длинную неразветвленную углеродную цепь, тип химической связи между атомами углерода, а также наличие различных групп атомов (заместителей), прикрепленных к главной углеродной цепи.

Группы атомов углерода придают органическим молекулам, в которых они содержатся, специфические свойства. Последние позволяют различать многочисленные классы органических соединений, например: углеводороды (вещества из атомов углерода и водорода), спирты, органические кислоты.

Источник

Разница между органической и неорганической химией

В широком смысле, химию можно классифицировать как раздел физической науки, который объясняет происхождение, структуру и поведение материи и изменение материи от одной формы к другой. Неорганическая

Что такое органика и неорганика. Смотреть фото Что такое органика и неорганика. Смотреть картинку Что такое органика и неорганика. Картинка про Что такое органика и неорганика. Фото Что такое органика и неорганика

Содержание:

Разница между органической и неорганической химией

Эта статья объясняет,

1. Что такое неорганическая химия?
— определение, реакции, структура, свойства

2. Что такое органическая химия?
Определение, реакции, структура, свойства

3. В чем разница между неорганической и органической химией?

Что такое органика и неорганика. Смотреть фото Что такое органика и неорганика. Смотреть картинку Что такое органика и неорганика. Картинка про Что такое органика и неорганика. Фото Что такое органика и неорганика

Что такое неорганическая химия

Основным типом неорганических реакций являются реакции замещения и окислительно-восстановительные реакции. Что происходит в случае реакций замещения, так это то, что катионы и анионы между двумя соединениями обмениваются в зависимости от их реакционного потенциала. С другой стороны, окислительно-восстановительные реакции происходят из-за окисления и восстановления. Следовательно, металлы и их формы весьма значительны в неорганической химии, в том числе в области химии переходных металлов. Неорганические соединения обычно имеют более высокие температуры плавления. Другие методы, такие как перекристаллизация, электрохимия, рентгеновская кристаллография, химия на основе кислот, рН-химия, катализ и т. Д., Имеют дело с неорганической химией.

Что такое органика и неорганика. Смотреть фото Что такое органика и неорганика. Смотреть картинку Что такое органика и неорганика. Картинка про Что такое органика и неорганика. Фото Что такое органика и неорганика

Структура ионного каркаса в оксиде калия

Что такое органическая химия

Помимо металлоорганических соединений (соединений, которые включают органическую структуру плюс металлы), между органической химией и неорганической химией очень мало совпадений. Как уже упоминалось выше, органические молекулы состоят из углеводородов. Поэтому очень легко различить органическое и неорганическое соединение. До 19 го Века считалось, что органические молекулы были естественными и могут быть извлечены только из природы. Однако самый большой прорыв в органической химии произошел, когда Кекуле объяснил существование структуры бензола. Бензольное ядро ​​стало неотъемлемой частью органической химии.

Классификация и реакции органических соединений зависят от их функциональных групп. Длина углеродной цепи будет просто определять физические характеристики соединения. Органические соединения имеют тенденцию плавиться и кипеть, в отличие от неорганических соединений. Методы спектроскопии в основном используются для анализа органических соединений. Органическая химия широко используется в медицинской химии для открытия новых лекарств, химии питания, химии ароматов и ароматизаторов, нефти и т. Д.

Что такое органика и неорганика. Смотреть фото Что такое органика и неорганика. Смотреть картинку Что такое органика и неорганика. Картинка про Что такое органика и неорганика. Фото Что такое органика и неорганика

Шарообразная модель молекулы метана

Разница между органической и неорганической химией

Определение

Неорганическая химия имеет дело с неорганическими соединениями, обычно такими, которые имеют ионное основание.

Органическая химия занимается органическими соединениями из углеводородов.

Реакции

Неорганическая химия включает кислотно-основные реакции, реакции вытеснения, окислительно-восстановительные реакции и т. д.

Органическая химия включает реакции, которые зависят от функциональной группы, присутствующей на соединении.

Состав

Неорганическая химия в основном занимается солями и кристаллами.

Органическая химия имеет дело с маслами, жирами, сахарами и т. д.

Физические свойства

Неорганические молекулы имеют более высокие температуры плавления и деградируют вместо кипения.

Органические молекулы растопить и варить.

Источник

MOFs: наше будущее?

MOFs: наше будущее?

Структура ZIF-8

Автор
Редакторы

Статья на конкурс «био/мол/текст»: Химия — одна из основных существующих наук. Достижения, которая привносит она, используются во многих других сферах деятельности. Из этой статьи вы узнаете о таких соединениях, как металлоорганические каркасы (metal-organic frameworks, MOFs), и о том, что интересного они могут дать человеку.

Что такое органика и неорганика. Смотреть фото Что такое органика и неорганика. Смотреть картинку Что такое органика и неорганика. Картинка про Что такое органика и неорганика. Фото Что такое органика и неорганика

Конкурс «био/мол/текст»-2019

Эта работа опубликована в номинации «Свободная тема» конкурса «био/мол/текст»-2019.

Что такое органика и неорганика. Смотреть фото Что такое органика и неорганика. Смотреть картинку Что такое органика и неорганика. Картинка про Что такое органика и неорганика. Фото Что такое органика и неорганика

Генеральный спонсор конкурса и партнер номинации «Сколтех» — Центр наук о жизни Сколтеха.

Спонсор конкурса — компания «Диаэм»: крупнейший поставщик оборудования, реагентов и расходных материалов для биологических исследований и производств.

Что такое органика и неорганика. Смотреть фото Что такое органика и неорганика. Смотреть картинку Что такое органика и неорганика. Картинка про Что такое органика и неорганика. Фото Что такое органика и неорганика

Спонсором приза зрительских симпатий выступила компания BioVitrum.

Органика или неорганика?

Современная химическая наука поражает количеством разнообразных разделов, которые входят в ее состав. Но одними из основных разделов по-прежнему остаются неорганическая и органическая химии. Органическая химия — это, как известно, химия соединений углерода. А неорганическая химия — ветвь химии, изучающая другие элементы, кроме углерода, и их соединения. И кажется, что неорганика и органика — абсолютно разные разделы одной дисциплины; разве могут быть они связаны? Оказывается, могут! Существуют так называемые металлоорганические соединения, в которых присутствует связь металл-углерод. Химия данных соединений, соответственно, называется металлоорганической. В область рассмотрения металлоорганики часто также входят вещества, где углерод связан с бором, кремнием, мышьяком и фосфором. В связи с этим используется и более широкий термин — «элементоорганическая химия».

Металлоорганические соединения известны людям вот уже несколько веков. 27 августа 1758 года француз Луи Клоде Каде де Гассикур, фармацевт по профессии, представил в Королевскую академию наук статью о веществе, которое назвал дымящей жидкостью Кадэ. Как установил многим позже (аж через 80 лет) химик Бунзен, в этом веществе присутствует связь As—C. Само вещество представляет собой в основном (CH3As)2O, причудливо именуемое окисью какодила. Несколько позже — в первой половине XX века — мышьякорганические вещества стали активно использовать в качестве различных лекарственных средств (в силу малой токсичности самих веществ для человека), как тонизирующие и общеукрепляющие средства при болезнях, связанных с понижением уровня гемоглобина (например, туберкулеза или малярии). Другие мышьяксодержащие лекарства — сальварсан, неосальварсан, мафарсен — применяли в XX веке для лечения сифилиса (рис. 1 и 2) [1].

Что такое органика и неорганика. Смотреть фото Что такое органика и неорганика. Смотреть картинку Что такое органика и неорганика. Картинка про Что такое органика и неорганика. Фото Что такое органика и неорганика

Рисунок 1. Структуры сальварсана (слева) и неосальварсана (справа)

Что такое органика и неорганика. Смотреть фото Что такое органика и неорганика. Смотреть картинку Что такое органика и неорганика. Картинка про Что такое органика и неорганика. Фото Что такое органика и неорганика

Рисунок 2. Структура мафарсена

Так начинался путь металлорганической химии. Но что же мы наблюдаем сегодня? Чего достигли ученые, работая в этой области знаний? Давайте посмотрим.

Что такое MOFs и каковы их свойства?

Металлоорганика развивалась очень бурно, даже взрывообразно, после разработки мышьякорганических лекарств. Было синтезировано огромное количество металлорганических соединений, нашедших свое применение во многих областях: катализе и синтезе, биоанализе (например, в магнитно-резонансной томографии и иммуноанализе), в качестве препаратов против самых разнообразных болезней, в качестве биосенсоров и т.д. [1]. Огромным достижением данной области стало получение металлоорганических каркасов, которые по-английски называются metal-organic frameworks, или кратко — MOFs. У этих соединений есть и другие названия, к примеру, «металлорганические координационные полимеры». Слово «координационные» здесь указывает на то, что MOFs имеют координационные связи. Под координационной понимают связь, которая образуется тогда, когда атом некоторого соединения (называемого лигандом, от латинского слова ligare — связывать [2]) выступает в качестве донора пары электронов для металла, который принимает эти электроны (акцептор электронов) [3], [4]. Таким образом, становится ясно, что MOFs состоят из металлов, а точнее, из их ионов (или даже кластеров ионов), для которых был предложен термин «коннекторы», а также лигандов органического происхождения, называемых в данном случае также линкерами. Последние связаны друг с другом как раз посредством коннекторов. В качестве линкеров часто выступают остатки карбоновых кислот (карбоксилаты) или азотсодержащие гетероциклические соединения, часто имидазолат-ионы [5]. Получают же каркасные структуры взаимодействием кислот (или гетероциклов) с так называемыми неорганическими вторичными структурными блоками (secondary building units, SBU; рис. 3). Разнообразные блоки и линкеры представлены на рисунке 4.

Что такое органика и неорганика. Смотреть фото Что такое органика и неорганика. Смотреть картинку Что такое органика и неорганика. Картинка про Что такое органика и неорганика. Фото Что такое органика и неорганика

Рисунок 3. Получение различных металлорганических каркасов. Условные обозначения: BDC — 1,4-бензолдикарбоновая кислота; BTC — 1,3,5-бензолтрикарбоновая кислота. Черным цветом обозначен атом углерода С; красным — О; белым — Н; зеленым — Zn; салатовым — F; фиолетовым — Cr; синим — Cu.

Что такое органика и неорганика. Смотреть фото Что такое органика и неорганика. Смотреть картинку Что такое органика и неорганика. Картинка про Что такое органика и неорганика. Фото Что такое органика и неорганика

Рисунок 4. Неорганические вторичные структурные блоки (а) и органические линкеры (б). Черным окрашены атомы С; красным — О; зеленым — N; желтым — S; фиолетовым — P; светло-зеленым — Cl; голубые многогранники — ионы металлов.

Конечно, для синтеза MOFs, как, впрочем, и для синтеза многих других веществ, недостаточно просто смешать вещества. Требуются специальные условия. Методы синтеза изображены на рисунке 5. Как видим, здесь представлены такие методы получения металлорганических каркасов, как сольвотермальный (синтез под действием высокого давления, в кипящем растворителе), микроволновый (синтез по действием микроволнового излучения), сонохимический (синтез под действием ультразвука), механохимический, электрохимический и метод медленного выпаривания (не требует никаких излучений, электричества, механического воздействия). Для каждого способа на рисунке приведены время и температура [6].

Что такое органика и неорганика. Смотреть фото Что такое органика и неорганика. Смотреть картинку Что такое органика и неорганика. Картинка про Что такое органика и неорганика. Фото Что такое органика и неорганика

Рисунок 5. Методы получения металлоорганических каркасов

В ходе этого синтеза получаются пористые каркасные структуры, как это и изображено на рисунке 3. А пористость MOFs — это одно из главнейших их свойств, которое определяет в том числе биомедицинское значение рассматриваемых соединений. Пористость каркасов очень высокая и может достигать 90%. Размеры и форму пор можно контролировать, выбирая различные линкеры. Еще, выбирая способ приготовления MOFs, мы можем контролировать размер (от десятых долей миллиметра до нескольких нанометров) и форму самих кристаллов каркасов, что, безусловно, важно для различных областей применения [5]. Иными словами, получение MOFs — воистину творческий процесс!

MOFs: как применить?

Только представьте: к сегодняшнему дню синтезировано уже более чем 20 000 металлорганических каркасов [7]! Такое внимание ученых привлекают большие возможности этих соединений. Каркасы применимы и в энергетике, и в катализе, но мы рассмотрим именно их биомедицинское значение.

Основные направления использования MOFs разнообразны: адресная доставка лекарств, диагностика, биосенсоры. Пока что по всем этим направлениям идут интенсивные исследования, но уже достигнуты значительные результаты [8]. Обратимся к адресной доставке лекарственных средств.

Существует достаточное количество различных наноразмерных носителей для лекарств: это и полимерные носители, и липосомы (они представляют собой микроскопические сферические частицы, состоящие из фосфолипидов, похожих на фосфолипиды клеточных мембран), и углеродные материалы, различные неорганические наночастицы (золото, серебро, платина, оксиды металлов, оксид кремния) [10]. Так зачем нам еще и MOF?

Если использовать полимерные частицы или липосомы, то они часто бывают биосовместимыми, однако для них не всегда характерно контролируемое высвобождение лекарства, при котором достигается наибольший терапевтический эффект. Проблема при использовании наночастиц в качестве носителей лекарств в том, что эти наночастицы могут слипаться — собираться в агрегаты, — а также накапливаться в органах, например, печени или легких, что приводит к токсическим эффектам. Можно использовать и цеолиты — неорганические пористые вещества. Но они не вмещают в себя достаточное количество препарата и высвобождают его очень медленно. Недостаток цеолитов и в том, что они токсичны по отношению к клеткам человеческого организма [5], [11].

Металлорганические каркасы, чтобы вступить в ряды наноразмерных носителей лекарственных препаратов, конечно, должны обладать рядом свойств: низкой токсичностью, биоразлагаемостью, биосовместимостью и устойчивостью по отношению к воде. И MOFs c необходимыми характеристиками уже получены! К примеру, MIL-100 и MIL-101 (рис. 6) — одни из перспективных MOFs благодаря устойчивости к водной среде и очень низкой токсичности. В 2006 году MIL-101, состоящий из ионов хрома (III) и терефталат-ионов, был использован для доставки противовоспалительного лекарственного средства ибупрофена. В этот MOF удалось поместить целых 1,4 г препарата на 1 г каркаса. Ибупрофен высвобождается из пор MIL-101 в течение шести дней, а значит, можно использовать эту комбинацию соединений в качестве препарата пролонгированного (то есть длительного) действия, что позволило бы поддерживать необходимую дозу ибупрофена в организме [5], [8].

Что такое органика и неорганика. Смотреть фото Что такое органика и неорганика. Смотреть картинку Что такое органика и неорганика. Картинка про Что такое органика и неорганика. Фото Что такое органика и неорганика

Рисунок 6. Структуры MIL-100 и MIL-101

Впрочем, контролируемая доставка лекарства — непростая задача. Одно дело — поместить внутрь организма наноноситель с внедренным в него лекарством. Совсем другое — высвободить препарат в нужном месте. Но нет нерешаемых задач: ученые научились заставлять лекарства высвобождаться под действием какого-либо фактора. Общая схема подобной системы на основе MOF представлена на рис. 7. Видно, что MOF, нагруженный лекарством, проходит внутрь клетки. Затем на MOF действует какой-то фактор — внешний или внутренний. К внешним факторам относятся магнитное поле, температура, давление, свет, ионы. К внутренним — pH, концентрация АТФ, окислительно-восстановительный потенциал. После воздействия структура MOF меняется, и лекарство выходит из пор наружу.

Что такое органика и неорганика. Смотреть фото Что такое органика и неорганика. Смотреть картинку Что такое органика и неорганика. Картинка про Что такое органика и неорганика. Фото Что такое органика и неорганика

Рисунок 7. Схематичное изображение факторзависимой системы для высвобождения лекарств на основе MOF

Известнейшим примером является система прокаинамид/bioMOF-1. Антиаритмический препарат прокаинамид обычно существует в виде гидрохлорида, то есть в подкисленной форме. В этой форме благодаря наличию аминогруппы, способной присоединять протон от кислоты, вещество находится в виде положительно заряженной частицы, которая может связываться внутри пор с отрицательно заряженным bioMOF-1. Высвобождение прокаинамида из пор каркаса было протестировано в часто используемом в биологических исследованиях натрий-фосфатном буферном растворе, содержащем хлориды натрия и калия, а также гидрофосфат натрия Na2HPO4 и дигидрофосфат калия KH2PO4. В этом растворе имеются положительные заряженные ионы натрия. Эти ионы проникают в поры каркаса и взаимодействуют с ним, при этом вытесняя катионы прокаинамида. Таким образом, система прокаинамид/bioMOF-1 является ион-чувствительной. Уже протестированы и другие ион-чувствительные системы на основе MOFs, включающих в свой состав ионы железа, циркония, индия и др. [11], [12].

Удивительно, но в поры металлоорганических каркасов можно загружать не только низкомолекулярные лекарственные средства, но и более крупные молекулы, такие как витамины вроде B12 [5] и даже белки. При этом в некоторых случаях можно поместить не одну большую молекулу. Вот один из примеров подобного рода: в каркас с названием ZIF-8 поместили две молекулы — молекулу инсулина и молекулу фермента глюкозооксидазы. Инсулин применяется для лечения диабета I типа. Когда ZIF-8 попадает в организм, глюкозооксидаза превращает глюкозу в глюконовую кислоту, тем самым понижая pH. При этом ZIF-8, будучи pH-чувствительным, разлагается, высвобождая инсулин, регулирующий уровень глюкозы в крови [11].

В общем, как мы видим, адресная доставка лекарств с помощью MOF — это широчайшая область, предоставляющая самые разнообразные возможности. Но могут ли сами MOF быть лекарствами? Оказывается, могут. Ранее в этой статье был упомянут bioMOF-1. Почему же он bio? А потому, что в его основе находится биосовместимый ион цинка. Многие металлорганические каркасы конструируют из биологически активных линкеров (таких как аминокислоты, белки и пептиды, азотистые основания, углеводы) и коннекторов (ионов металлов: кальция, магния, железа, натрия и др.), дабы добиться биосовместимости. Подобные MOFs часто называют bioMOFs. Пример такого bioMOF — это MOF-705, который может выступать в качестве лекарственного препарата. Этот металлорганический каркас состоит из ионов натрия и органического линкера на основе L-аспарагиновой кислоты, которая является одной из незаменимых аминокислот. Последний компонент очень важен, ведь он стимулирует фермент глутаматсинтетазу, обезвреживающий токсичный для нас свободный аммиак, превращая его в нетоксичную форму — глутамин. Также L-аспарагиновая кислота выполняет и некоторые другие полезные функции в нашем организме, например, участвует в переносе ионов магния и кальция. Поэтому действие MOF-705 основано на том, что, попадая в кислую среду желудка, он разлагается на лекарственные компоненты [5].

Но довольно о доставке лекарственных средств. Давайте посмотрим, каким еще образом можно использовать металлорганические каркасы.

Иные стороны MOFs

MOFs могут найти применение и в такой области, как биосенсорика: они могут быть биочипами [13]. То есть MOF в данном случае — это некий носитель, платформа, к которой «прицепляют» нуклеиновую кислоту. Далее эта нуклеиновая кислота связывается с другой нуклеиновой кислотой.

Вот конкретный пример: для выявления вируса Судана (вид вируса Эбола) в 2015 был предложен биочип на основе каркаса Сu-MOF, включающего в свой состав ионы меди. К каркасу за счет различных взаимодействий (электростатического взаимодействия и водородных связей) была прикреплена молекула однонитевой ДНК, комплементарная РНК вируса и меченая флуоресцентным красителем. После соединения ДНК с MOF флуоресценция, исходящая от метки, исчезала. Затем к полученному комплексу добавляли РНК вируса Судана, что приводило к высвобождению комплекса меченой ДНК и РНК, причем флуоресценция красителя возобновлялась. Схема, иллюстрирующая данный пример, приведена на рисунке 8.

Что такое органика и неорганика. Смотреть фото Что такое органика и неорганика. Смотреть картинку Что такое органика и неорганика. Картинка про Что такое органика и неорганика. Фото Что такое органика и неорганика

Рисунок 8. Схема обнаружения РНК вируса Судана. Желтым обозначена флуоресцентная метка.

Подобным образом действуют и биочипы на основе других MOF для определения таких вирусов, как вирус иммунодефицита человека.

Кроме того, разработано уже и множество электрохимических биосенсоров. Основа такого сенсора — электрод. Поверхность электрода модифицируют, чтобы далее появилась возможность провести электрохимическую реакцию и поймать электрический сигнал, по которому можно судить о наличии анализируемого объекта в пробе. Электрический сигнал возникает вследствие окислительно-восстановительной реакции, а MOF может служить катализатором такой реакции. На рис. 9 как раз изображена схема одного из перспективных биосенсоров с MOF.

Что такое органика и неорганика. Смотреть фото Что такое органика и неорганика. Смотреть картинку Что такое органика и неорганика. Картинка про Что такое органика и неорганика. Фото Что такое органика и неорганика

Рисунок 9. Применение MOF для создания электрохимического биосенсора. а — Синтез FeTCPP@MOF-SA. б — Схема действия электрохимического биосенсора на основе FeTCPP@MOF (CGO — твердый электролит с формулой Ce0,9Gd0,1O2–δ).

Поверхность стеклянного углеродного электрода (glassy carbon electrode, GCE) модифицируют, прикрепляя к ней ДНК-шпильку (hairpin DNA). Далее берут пробу, содержащую объект анализа — однонитевую ДНК (single-stranded DNA, ssDNA), комплементарную ДНК-шпильке. ДНК-шпилька изначально представляет собой «петлю». Но, комплементарно взаимодействуя с ssDNA, шпилька раскрывается. Таким образом, мы получаем так называемый SA-аптамер. Аптамер — это нуклеотидная последовательность, которая может взаимодействовать с определенной биомолекулой. В нашем случае — с белком стрептавидином (SA). Стрептавидин подводится к аптамеру особым образом: с помощью нужного MOF. Из рисунка 9 можно видеть, что данный MOF получают взаимодействием соли меди, ионы которой выступают в качестве коннекторов, и 1,3,5-бензолтрикарбоновой кислоты, являющейся линкером. При этом в каркас инкапсулируют вещество, содержащее порфириновую структуру (как в гемоглобине). Заключительный этап синтеза — закрепление молекул стрептавидина на поверхности MOF. Образуется сложное соединение FeTCPP@MOF-SA. Оно крепится на аптамере за счет нековалентного связывания со стрептавидином. Прикрепленный таким образом MOF имеет подход к поверхности электрода, где проходит электрохимическая реакция окисления о-фенилендиамина пероксидом водорода. MOF, как и указывалось ранее, является катализатором данной реакции. За счет этого окислительно-восстановительного процесса возникает измеряемый электрический сигнал [14].

Еще одна сфера применения MOFs — это методы диагностики: оптическая визуализация и разнообразные виды томографии, такие, как фотоакустическая, магнитно-резонансная, позитронно-эмиссионная. Все эти методы диагностики порой объединяют под термином «молекулярная визуализация».

Релаксация — упрощенно говоря, возврат ядра из возбужденного состояния с высокой энергией в обычное, с низкой.

Часто в качестве контрастных агентов используют соединения гадолиния. Существует множество коммерчески доступных агентов, часть из них представлена на рисунке 10.

Что такое органика и неорганика. Смотреть фото Что такое органика и неорганика. Смотреть картинку Что такое органика и неорганика. Картинка про Что такое органика и неорганика. Фото Что такое органика и неорганика

Рисунок 10. Контрастные агенты на основе соединений гадолиния

Заключение

Исходя из всего вышесказанного, становится очевидным, что металлорганические каркасы — это весьма перспективные соединения. Увы, в рамках одной статьи вряд ли удастся рассказать о многочисленных возможностях, которые дают MOFs, и вряд ли можно представить невообразимое количество представленных в литературе примеров металлорганических каркасов. Как сложится их судьба? Какое еще применение найдут для них ученые? Окажется ли, что MOF — это наше будущее?

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *