Что такое ориентационное взаимодействие
Ориентационное взаимодействие
Полярные молекулы, в которых центры тяжести положительного и отрицательного зарядов не совпадают, например HCl, H2O, NH3, ориентируются таким образом, чтобы рядом находились концы с противоположными зарядами. Между ними возникает притяжение. Для взаимодействия двух диполей энергия притяжения между ними (энергия Кеезома) выражается соотношением:
Индукционное взаимодействие
Если рядом с полярная молекула окажется полярная рядом с неполярными, она начнет влиять на них. Поляризация нейтральной частицы под действием внешнего поля (наведение диполя) происходит благодаря наличию у молекул свойства поляризуемости. Энергия притяжения между постоянным и наведенным диполем (энергия Дебая) определяется выражением:
Дисперсионное взаимодействие
Между неполярными молекулами также может возникнуть притяжение. Электроны, которые находятся в постоянном движении, на миг могут оказаться окажется сосредоточенными с одной стороны молекулы, то есть неполярная частица станет полярной. Это вызывает перераспределение зарядов в соседних молекулах, и между ними устанавливаются кратковременные связи. Энергия такого взаимодействия (энергия Лондона) дается соотношением:
Водородная связь. Межмолекулярная и внутримолекулярная водородная связь; длина и энергия водородной связи. Влияние водородной связи на свойства веществ.
Водородные связи обнаружены во многих химических соединениях. Они возникают, как правило, между атомами фтора, азота и кислорода (наиболее электроотрицательные элементы).
Если водородная связь объединяет части одной молекулы, то говорят о внутримолекулярной водородной связи. Это особенно характерно для многих органических соединений. Если же водородная связь образуется между атомом водорода одной молекулы и атомом неметалла другой молекулы (межмолекулярная водородная связь), то молекулы образуют довольно прочные пары, цепочки, кольца.
Образование межмолекулярных водородных связей приводит к существенному изменению свойств веществ: повышению вязкости, диэлектрической постоянной, температур плавления и кипения, теплот парообразования и плавления. Например, вода, фтороводород и аммиак имеют аномально высокие температуры кипения и плавления. Под влиянием водородных связей изменяются и химические свойства.
Агрегатное состояние вещества как проявление взаимодействия между частицами вещества. Твердое, жидкое, газообразное и плазменное состояние вещества. Аморфное и кристаллическое состояние вещества. Металлическое состояние, его особенности.
В обычных условиях химические частицы не существуют индивидуально. Они образуют вещества в соответствующем агрегатном состоянии: газовом, жидком или твердом. Переход вещества из одного агрегатного состояния в другое не приводит к изменению его состава, но сопровождается изменением его структуры.
Твердые тела характеризуются устойчивостью формы. Составляющие их атомы, ионы и молекулы совершают малые колебания относительно некоторых фиксированных положений.
Жидкостихарактеризуются сильным взаимным притяжением молекул и наличием ближнего порядка в их расположении. Молекулы жидкости совершают частые столкновения с ближайшими соседями и относительно более редкие перемещения, приводящие к смене окружения.
Газовое состояние характеризуется слабым взаимодействием составляющих вещество частиц. В результате свободного движения молекул газы заполняют весь предоставляемый им объем.
Для металлов характерна металлическая кристаллическая решетка. Металлические кристаллы обладают высокой электрической проводимостью и теплопроводностью, металлическим блеском и непрозрачностью, легкой деформируемостью.
Металл представляет собой вещество, состоящее из положительных ядер, вокруг которых по орбиталям вращаются электроны. На последнем уровне число электронов невелико и они слабо связаны с ядром. Эти электроны имеют возможность перемещаться по всему объему металла, т.е. принадлежать целой совокупности атомов.
17. Термодинамические системы: открытые, закрытые, изолированные. Внутренняя энергия и энтальпия, их физический смысл. Стандартное состояние вещества. Стандартная температура. Стандартная энтальпия образования из простых веществ и стандартная энтальпия сгорания.
Подтермодинамической системойподразумевают избранную совокупность тел или веществ, состоящую из большого числа структурных единиц (молекул, атомов, ионов) и отделенную от окружающей внешней среды определенной границей или поверхностью раздела.
Изолированные системы не могут обмениваться с окружающей средой ни веществом, ни энергией. Закрытые системы обмениваются с внешним миром только энергией, а открытые – и веществом, и энергией.
Следует подчеркнуть, что реальные системы никогда не бывают абсолютно изолированными, они лишь в той или иной степени приближаются к данному понятию, но полностью с ним не совпадают.
Закрытые и открытые системы могут существовать реально, причем наиболее распространенными системами в природе являются открытые системы. К их числу относятся все биологические системы: животные и растительные клетки, организмы, человек и т.д. Примером закрытой системы является любой герметический сосуд, в котором протекает та или иная химическая реакция.
Физический смысл внутренней энергии заключается в том, что она характеризует общий запас энергии системы. Сюда входят все виды энергии (вращательного и поступательного движения молекул, энергия внутримолекулярного колебательного движения атомов и атомных групп, составляющих молекулы, энергия вращения электронов в атомах, и т.д.). Но не включает потенциальную энергию
Энтальпию часто называют теплосодержанием системы, но это не количество теплоты в теле. Ее изменение, как и изменение внутренней энергии системы, не зависит от пути процесса, так как изменение объема при постоянном давлении определяется только начальным и конечным состоянием системы.
Под стандартной теплотой образования понимают тепловой эффект реакции образования одного моль вещества из простых веществ, его составляющих, находящихся в устойчивых стандартных состояниях
Термохимические уравнения. Закон Гесса и следствие из него. Примеры применения закона Гесса для вычисления изменения энтальпии в различных процессах. Экзо- и эндотермические реакции.
Термохимия – раздел физической химии, в котором изучаются тепло- вые эффекты химических реакций.
Закон Гесса формулируется так:
Тепловой эффект химической реакции определяется только природой и состоянием исходных веществ и продуктов и не зависит от промежуточных химических реакций, т.е. от способа перехода от исходного состояния к конечному.
Первое следствие закона Гесса. Энтальпия химической реакции равна сумме энтальпий образования продуктов реакции за вычетом суммы энтальпий образования исходных веществ.
Второе следствие закона Гесса. Энтальпия химической реакции равна сумме энтальпий сгорания исходных веществ за вычетом суммы энтальпий сгорания продуктов реакции.
Выделением лишней энергии в виде кинетической энергии молекул, т. е. тепла. Такие реакции называют экзотермическими. Так, экзотермической реакцией является любое горение (сгорание пороха).
Эндотермические, они сопровождаются поглощением тепла. Самым наглядным примером эндотермической реакции служит приготовление пищи.
Силы межмолекулярного взаимодействия. Ориентационное, индукционное и дисперсионное взаимодействие. Водородная связь. Энергия межмолекулярного взаимодействия.
Ориентационное взаимодействие. Полярные молекулы, в которых центры тяжести положительного и отрицательного зарядов не совпадают, например HCl, H2O, NH3, ориентируются таким образом, чтобы рядом находились концы с противоположными зарядами. Между ними возникает притяжение. Притяжение диполь-диполь может осуществляться только тогда, когда энергия притяжения превышает тепловую энергию молекул; обычно это имеет место в твердых и жидких веществах. Диполь-дипольное взаимодействие проявляется в полярных жидкостях (вода, фтороводород).
Индукционное взаимодействие. Если рядом с полярная молекула окажется полярная рядом с неполярными, она начнет влиять на них. Поляризация нейтральной частицы под действием внешнего поля (наведение диполя) происходит благодаря наличию у молекул свойства поляризуемости γ. Постоянный диполь может индуцировать дипольное распределение зарядов в неполярной молекуле. Под действием заряженных концов полярной молекулы электронные облака неполярных молекул смещаются в сторону положительного заряда и подальше от отрицательного. Неполярная молекула становится полярной, и молекулы начинают притягиваться друг к другу, только намного слабее, чем две полярные молекулы. Притяжение постоянного и наведенного диполей обычно очень слабое, поскольку поляризуемость молекул большинства веществ невелика. Оно действует только на очень малых расстояниях между диполями. Этот вид взаимодействия проявляется главным образом в растворах полярных соединений в неполярных растворителях.
Комплексные соединения. Образование комплексов. Комплексообразователь, лиганды, координационное число, заряд комплекса. Внутренняя и внешняя сфера комплексного соединения.
Комплексные соединения (лат. complexus — сочетание, обхват), иногда называемые координационными — соединения, или ионы, которые образуются в результате присоединения к данному иону (или атому), называемому комплексообразователем, нейтральных молекул или других ионов, называемых лигандами.
Лиганд (от лат. ligo — связываю) — атом, ион или молекула, непосредственно связанная с одним или несколькими центральными (комплексообразующими) атомами в комплексном соединении. Чаще всего такое связывание происходит с образованием так называемой «координационной» донорно-акцепторной связи.
Таким образом, комплексным соединением называют сложное соединение, образующееся при взаимодействии более простых неизменных частиц (атомов, ионов или молекул), каждая из которых способна существовать независимо в обычных условиях.
Комплексные ионы образуют с ионами противоположного заряда комплексные соединения. Так, комплексный ион [Fe(CN)6]3- образует с ионами K+ комплексное соединение K3[Fe(CN)6], которое выделяется из водного раствора при его выпаривании в виде кристаллов красного цвета, хорошо растворимых в воде.
19. Конденсированное состояние вещества. Агрегатные и фазовые состояния, их отличительные признаки. Аморфное и кристаллическое состояние твердого тела. Кристаллическая решетка и элементарная ячейка кристалла. Реальные кристаллы.
Любое вещество может находиться в одном из четырех агрегатных состояниях: твердом, жидком, газообразном или в виде плазмы. При низких температурах и(или) высоких давлениях все вещества находятся в твердом состоянии. Твердое и жидкое состояние вещества называют конденсированным состоянием.
Агрегатное состояние — термодинамическое состояние вещества, сильно отличающееся по своим физическим свойствам от других агрегатных состояний этого же вещества. Термин «агрегатное состояние» довольно размытый и часто слишком огрубляет свойства вещества. Так, почти все вещества в твёрдом агрегатном состоянии могут обладать, в зависимости от давления и температуры, несколькими различными термодинамическими фазами. Отличие понятия агрегатного состояния вещества от термодинамической фазы заключается в выделенном выше слове «сильно». Как правило, требуется, чтобы агрегатные состояния «выглядели» сильно по-разному. Термодинамические же фазы могут отличаться «незаметными глазу» величинами, такими как теплоёмкость, структура кристаллической решётки и т. д. Однако при аккуратном рассуждении рекомендуется использовать именно термин «термодинамические фазы».
твёрдое тело (аморфное либо кристаллическое), держит как форму, так и объём.
жидкость, характеризуется более высокой плотностью и промежуточными температурами. Жидкость держит объём, но не держит форму.
газообразное состояние, характеризуется низкой плотностью и достаточно высокой температурой. Газ не держит ни форму, ни объём.
плазма (часто называемое четвёртое состояние вещества), представляет собой частично или полностью ионизованный газ и возникает при высокой температуре, от нескольких тысяч кельвинов и выше. В целом её свойства напоминают свойства газообразного состояния вещества, за исключением того факта, что для плазмы принципиальную роль играет электродинамика.
Термодинамическая фаза — термодинамически однородная по составу и свойствам часть термодинамической системы, отделенная от других фаз поверхностями раздела, на которых скачком изменяются некоторые свойства системы. В однокомпонентной системе разные фазы могут быть представлены различными агрегатными состояниями или разными полиморфными модификациями вещества. В многокомпонентной системе фазы могут иметь различный состав и структуру.
Кристаллическая решётка, присущее веществу в кристаллическом состоянии правильное расположение атомов (ионов, молекул), характеризующееся периодической повторяемостью в трёх измерениях. Ввиду такой периодичности для описания К. р. достаточно знать размещение атомов в элементарной ячейке, повторением которой путём параллельных дискретных переносов (трансляций) образуется вся структура кристалла. В соответствии с симметрией кристалла элементарная ячейка имеет форму косоугольного или прямоугольного параллелепипеда, квадратной или шестиугольной призмы, куба. Размеры рёбер элементарной ячейки а, b, с называются периодами идентичности. Существует огромное количество кристаллических структур. Их объединяет главное свойство кристаллического состояния вещества — закономерное положение атомов в кристаллической решётке. Одно и то же вещество может кристаллизоваться в разных кристаллических решётках и обладать весьма различными свойствами (классический пример графит — алмаз).
В отличие от идеального кристалла, структура, которого принимается непрерывной, а состав неизменным во всем объеме, строение и состав реальных кристаллов изменяются как во времени так и в пространстве. В идеализированных структурах кристаллов атомы занимают строго определённые положения, образуя правильные трёхмерные решётки (кристаллические решётки). В реальных кристаллах наблюдаются обычно различные отступления от правильного расположения атомов или ионов (или их групп). Такие нарушения могут быть либо атомарного масштаба, либо макроскопических размеров, заметные даже невооружённым глазом.
20.Кристаллы. Классификация кристаллов по типу связей между частицами. Типичные свойства ионных, ковалентных, молекулярных и металлических кристаллов.
Классификация кристаллов по типам связей:
—Ионный. В ионных кристаллах (NaCI, KCl и др.) основные силы, действующие между ионами, — силы электростатического притяжения. Распределение электронного заряда вблизи каждого иона близко к сферическому и слегка нарушается в области соприкосновения соседних ионов. Ионные кристаллы построены из чередующихся катионов и анионов, которые удерживаются в определенном порядке силами электростатического притяжения и отталкивания. Электростатические силы ненаправленные: каждый ион может удержать вокруг себя столько ионов противоположного знака, сколько помещается. Но при этом силы притяжения и отталкивания должны быть уравновешены и должна сохраняться общая электронейтральность кристалла. (Отражение и поглощение света в инфракрасной области; малая электропроводность при низких температурах; хорошая ионная проводимость при высоких температурах).
—Атомный (с ковалентной связью). В кристаллах с ковалентной связью валентные электроны обобществлены соседними атомами. В ковалентных кристаллах (их еще называют атомными) в узлах кристаллической решетки находятся атомы, одинаковые или разные, которые связаны ковалентными связями. Эти связи прочные и направлены под определенными углами. Типичным примером является алмаз; в его кристалле каждый атом углерода связан с четырьмя другими атомами, находящимися в вершинах тетраэдра. Ковалентные кристаллы образуют бор, кремний, германий, мышьяк (Высокая твёрдость (у чистых образцов), слабая проводимость при низких температурах).
—Металлический. Металлические кристаллы образуют чистые металлы и их сплавы. Такие кристаллы можно увидеть на изломе металлов, а также на поверхности оцинкованной жести. Кристаллическая решетка металлов образована катионами, которые связаны подвижными электронами («электронным газом»). Такое строение обусловливает электропроводность, ковкость, высокую отражательную способность (блеск) кристаллов. Структура металлических кристаллов образуется в результате разной упаковки атомов-шаров. (Высокая электропроводность).
—Молекулярный. Молекулярные кристаллы построены из изолированных молекул, между которыми действуют сравнительно слабые силы притяжения. В результате такие кристаллы имеют намного меньшие температуры плавления и кипения, твердость их низка. Так, кристаллы благородных газов (они построены из изолированных атомов) плавятся уже при очень низких температурах. Из неорганических соединений молекулярные кристаллы образуют многие неметаллы (благородные газы, водород, азот, белый фосфор, кислород, сера, галогены), соединения, молекулы которых образованы только ковалентными связями (H2O, HCl, NH3, CO2 и др.). Этот тип кристаллов характерен также почти для всех органических соединений. (Низкие точки плавления и кипения, сильная сжимаемость).
Межмолекулярные взаимодействия
Межмолекулярное взаимодействие — взаимодействие между электрически нейтральными молекулами или атомами. Силы межмолекулярного взаимодействия впервые принял во внимание Я. Д. Ван-дер-Ваальс (1873) для объяснения свойств реальных газов и жидкостей.
Содержание
Природа межмолекулярного взаимодействия
Межмолекулярное взаимодействие имеет электрическую природу и складывается из сил притяжения (ориентационных, индукционных и дисперсионных) и сил отталкивания.
Ориентационные силы
Ориентационные силы действуют между полярными молекулами, то есть обладающими дипольными электрическими моментами. Сила притяжения между двумя полярными молекулами максимальна в том случае, когда их дипольные моменты располагаются вдоль одной линии (см. рисунок). Эта сила возникает благодаря тому, что расстояния между разноимёнными зарядами немного меньше, чем между одноимёнными. В результате притяжение диполей превосходит их отталкивание. Взаимодействие диполей зависит от их взаимной ориентации, и поэтому силы дипольного взаимодействия называются ориентационными. Хаотическое тепловое движение непрерывно меняет ориентацию полярных молекул, но, как показывает расчёт, среднее по всевозможным ориентациям значение силы имеет определённую величину, не равную нулю. Потенциальная энергия ориентационного межмолекулярного взаимодействия:

Соответственно сила взаимодействия: Fop
Сила Fор убывает с расстоянием значительно быстрей, чем кулоновская сила взаимодействия заряженных тел (Fкул
Индукционные силы
Индукционные (или поляризационные) силы действуют между полярной и неполярной молекулами. Полярная молекула создаёт электрическое поле, которое поляризует молекулу с электрическими зарядами, равномерно распределёнными по объёму. Положительные заряды смещаются по направлению электрического поля, а отрицательные — против. В результате у неполярной молекулы индуцируется дипольный момент.
Энергия межмолекулярного взаимодействия в этом случае пропорциональна дипольному моменту p1 полярной молекулы и поляризуемости a2, характеризующей способность другой молекулы поляризоваться:
Эта энергия называется индукционной, так как она появляется благодаря поляризации молекул, вызванной электростатической индукцией. Индукционные силы (Fинд
Дисперсионные силы
Между неполярными молекулами действует дисперсионное межмолекулярное взаимодействие. Природа этого взаимодействия была выяснена полностью только после создания квантовой механики. В атомах и молекулах электроны сложным образом движутся вокруг ядер. В среднем по времени дипольные моменты неполярных молекул оказываются равными нулю. Но в каждый момент электроны занимают какое-то положение. Поэтому мгновенное значение дипольного момента (например, у атома водорода) отлично от нуля. Мгновенный диполь создаёт электрическое поле, поляризующее соседние молекулы. В результате возникает взаимодействие мгновенных диполей. Энергия взаимодействия между неполярными молекулами есть средний результат взаимодействия всевозможных мгновенных диполей с дипольными моментами, которые они наводят в соседних молекулах благодаря индукции. Потенциальная энергия дисперсионного межмолекулярного взаимодействия:
Межмолекулярное взаимодействие данного типа называется дисперсионным потому, что дисперсия света в веществе определяется теми же свойствами молекул, что и это взаимодействие. Дисперсионные силы действуют между всеми атомами и молекулами, так как механизм их появления не зависит от того, есть ли у молекул (атомов) постоянные дипольные моменты или нет. Обычно эти силы превосходят по величине как ориентационные, так и индукционные. Только при взаимодействии молекул с большими дипольными моментами, например молекул воды, Fор > Pдисп (в 3 раза для молекул воды). При взаимодействии же таких полярных молекул, как CO, HI, HBr и других, дисперсионные силы в десятки и сотни раз превосходят все остальные.
Очень существенно, что все три типа межмолекулярного взаимодействия одинаковым образом убывают с расстоянием:
U = Uop + Uинд + Uдисп
Силы отталкивания
Силы отталкивания действуют между молекулами на очень малых расстояниях, когда приходят в соприкосновение заполненные электронные оболочки атомов, входящих в состав молекул. Существующий в квантовой механике принцип Паули запрещает проникновение заполненных электронных оболочек друг в друга. Возникающие при этом силы отталкивания зависят в большей степени, чем силы притяжения, от индивидуальности молекул. К хорошему согласию с данными экспериментов приводит допущение, что потенциальная энергия сил отталкивания Uот возрастает с уменьшением расстояния по закону:
Результирующее взаимодействие
Рассчитать с достаточной точностью U(r) на основе квантовой механики при огромном разнообразии пар взаимодействующих молекул практически нельзя. Не удаётся пока и экспериментально измерить силу взаимодействия на межмолекулярных расстояниях. Поэтому обычно подбирают такую формулу для U(r), чтобы проделанные с её помощью расчёты хорошо бы согласовались с экспериментом. Наиболее часто пользуются формулой:
так называемым потенциалом Леннарда-Джонса. Входящие в формулу величины σ и ε определяются экспериментально на основе зависимости свойств веществ (например, коэффициенты диффузии, теплопроводности или вязкости) от σ и ε.
Уравнение Ван-Дер-Ваальса
Ван дер Ваальс предположил, что на малых расстояниях (r) между молекулами действуют силы отталкивания, которые с увеличением расстояния сменяются силами притяжения. На основе этих представлений, даже не рассматривая количественной зависимости межмолекулярного взаимодействия от расстояния, он получил так называемое Ван-дер-Ваальсово уравнение состояния реального газа.
См. также
Полезное
Смотреть что такое «Межмолекулярные взаимодействия» в других словарях:
МЕЖМОЛЕКУЛЯРНЫЕ ВЗАИМОДЕЙСТВИЯ — взаимод. молекул между собой, не приводящее к разрыву или образованию новых хим. связей. М. в. определяет отличие реальных газов от идеальных, существование жидкостей и мол. кристаллов. От М. в. зависят мн. структурные, спектральные, термодинамич … Химическая энциклопедия
НЕВАЛEНТНЫЕ ВЗАИМОДЕЙСТВИЯ — взаимодействия атомов, не связанных хим. связью. В классич. теории хим. строения для геом. конфигураций молекулы, близких к равновесной, предполагается возможным альтернативное разделение взаимодействий всех атомов, образующих молекулу, на два… … Химическая энциклопедия
Силы Ван-дер-Ваальса — Ван дер ваальсовы силы силы межмолекулярного (и межатомного) взаимодействия с энергией 10 20 кДж/моль. Этим термином первоначально обозначались все такие силы, в современной науке он обычн … Википедия
Межмолекулярное взаимодействие — Межмолекулярное взаимодействие взаимодействие между электрически нейтральными молекулами или атомами. Впервые были учтены Я. Д. Ван дер Ваальсом в 1873 году. Учёт межмолекулярных сил необходим для объяснения свойств реальных газов и… … Википедия
МОЛЕКУЛЯРНЫЕ КOМПЛЕКСЫ — (донорно акцепторные комплексы, мол. соединения), образуются из формально валентно насыщ. молекул благодаря силам межмолекулярного взаимодействия. Совр. представления о М. к. значительно шире того, что заложено в их названии, т. к. в М. к. могут… … Химическая энциклопедия
МЕЖАТОМНОЕ ВЗАИМОДЕЙСТВИЕ — взаимодействие между атомами как свободными, так и входящими в состав одной или разных молекул, кристаллов и т. д. М. в. может быть к о в а л е н т н ы м, и о н н ы м, м е т а л л и ч е с к и м, типа в о д о р о д н о й с в я з и и в а н д е р в… … Физическая энциклопедия
МОЛЕКУЛЯРНЫЕ СПЕКТРЫ — спектры испускания, поглощения и комбинационного рассеяния света (КРС), принадлежащие свободным или слабо связанным между собой молекулам. Типичные М. с. полосатые, они наблюдаются в виде совокупности более или менее узких полос в УФ, видимой и… … Физическая энциклопедия
МОЛЕКУЛЯРНЫЕ КРИСТАЛЛЫ — образованы молекулами, связанными ван дер ваальсовыми силами (см. Межмолекулярные взаимодействия). Внутри молекул атомы соединены существенно более прочными (ковалентными) связями. Фазовые переходы М. к. плавление, возгонка, полиморфные переходы… … Химическая энциклопедия
Молекула — (новолат. molecula, уменьшительное от лат. moles масса) наименьшая частица вещества, обладающая его химическими свойствами. М. состоит из атомов, точнее из атомных ядер, окружающих их внутренних электронов и внешних валентных электронов,… … Большая советская энциклопедия
Генкин, Арон Наумович — Арон Наумович Генкин Дата рождения: 24 августа 1932(1932 08 24) (80 лет) Место рождения: Ленинград, СССР Страна … Википедия



