Что такое ось системы координат в физике
Система отсчета
Система отсчета – это совокупность тела отсчета, со связанной с ним системой координат и прибором для измерения времени.
Что такое система отсчета. Афинная и декартовая системы координат
Если рассматривать все системы отсчета относительно кинематики – они аналогичные. В кинематике не указываются преимущества одной системы отсчета при сравнении с другой. Для удобства решения выбирается наиболее приемлемая система.
Чтобы описать пространство, в котором происходит движение материальной точки, система отсчета связывается с пространственной системой координат.
Системой пространственных координат называют совокупность определений, которая может реализовать метод координат, то есть определение положения точки или тела с помощью чисел или символов.
Числа, способные указать положение выбранной точки в трехмерном пространстве, называются координатами этой точки.
Аффинная система координат – это три линейно независимых вектора (координатных осей), выходящие из одной точки, то есть из начала отсчета.
Чтобы однозначно определить положение точки М в пространстве, то предполагают наличие зависимости радиус-вектора r → от параметра t (времени) таким образом, что каждому значению параметра t соответствует одно значение функции:
Данное равенство получило название кинематического уравнения движения материальной точки М в векторной форме.
Цилиндрическая и сферическая системы координат
Чтобы описать криволинейное и аффинное движение, применяют криволинейные системы координат, которые упрощают форму записи законов движения тел для облегчения вычисления. Чаще всего используют цилиндрические и сферические системы координат.
Связь между декартовыми и цилиндрическими координатами может быть задана при помощи формул:
Рисунок 4 показывает, что можно вывести формулы, связывающие сферические и декартовые координаты:
Рисунок 4 . Сферические координаты точки М
Имеются другие системы криволинейных координат, с помощью которых возможно нахождение координат заданной точки: параболические, гиперболические, эллиптические и другие.
Система отсчета выбирается индивидуально относительно каждого случая в отдельности, учитывается особенность движения тела, с помощью которой определяется наиболее простой закон движения заданного тела или точки.
Какие бывают системы отсчета в физике и что это такое
Для решения задач механики необходимо определить положение тела в пространстве. Только тогда можно будет рассматривать его движение. Для этого необходима система отсчета в физике и механике — это система координат и способ измерения времени.
Определение

Что такое система координат? Она дает возможность однозначно определить положение точки относительно начальной точки. Каждой точке пространства сопоставляются числа (одно или несколько), которые откладываются на координатных осях.
Пример — шахматная доска. Каждая клетка обозначается буквой и цифрой, по одной оси идут буквы, по другой цифры. Благодаря им мы можем однозначно описать положение фигуры.
Важно! Оси обозначаются латинскими или греческими буквами. Они имеют положительное и отрицательное направление.
Наиболее распространенные в физике виды координат — это:
Это интересно! Как правильно перевести МПА атмосферы
Существует множество других вариантов координат. Можно переходить из одних в другие, преобразуя координаты с помощью уравнений.
Понятие системы отсчета (СО) включает прибор для измерения времени, другими словами, часы. Он необходим, чтобы рассматривать движение точки — изменение ее положения со временем.
Изменения положения точки относительно выбранной СО описываются уравнениями движения. Они показывают, как изменяется положение точки с течением времени.
Виды систем отсчета
В зависимости от того, какие задачи надо решить, можно выбрать те или иные системы отсчета.
Это интересно! Квантовые постулаты Нильса Бора: кратко об основных положениях
Инерциальная и неинерциальная
СО бывают инерциальные и неинерциальные. Понятие инерциальной СО важно для кинематики — раздела физики, изучающего движение тел.
Инерциальная СО движется прямолинейно с неизменной скоростью относительно окружающих тел. Окружающие предметы на нее не воздействуют. Если она стоит на месте — это тоже частный случай равномерного прямолинейного движения. Такие СО имеют следующие свойства:
Пример инерциальной СО — гелиоцентрическая, с центром в Солнце. СО, связанная с землей, инерциальной не будет. Наша планета движется вокруг солнца криволинейно, кроме того, на нее действует гравитация Солнца. Однако для многих задач этим ускорением и воздействием Солнца можно пренебречь. Это задачи, где «место действия» поверхность Земли. Например, если нам нужно найти скорость снаряда, выпущенного из пушки, влияние Солнца и вращение Земли нас не интересует.
Неинерциальная СО подвергается воздействию других предметов, поэтому движется с ускорением. К неинерциальным относятся и вращающиеся СО. В неинерциальных СО законы Ньютона не выполняются, но можно описывать перемещение теми же уравнениями, что и в ИСО, если ввести дополнительные силы.
Система центра масс и лабораторная
В механике также используется система центра масс (центра инерции), сокращенно с.ц.м. или с.ц.и. В качестве начала координат в такой СО выбирают центр масс нескольких объектов. Сумма их импульсов в такой СО равна нулю.
Применяют с.ц.и. чаще всего в задачах рассеяния. Задачи такого типа решают в механике и ядерной физике, например, это задачи о столкновении частиц в ускорителях.
В таких задачах также используют лабораторную СО. Она противоположна с.ц.и. В ЛСО положение частиц определяют относительно покоящейся мишени, на которой рассеиваются другие частицы.
Это интересно! Формула закона полного отражения и преломления света
Полезное видео: инерциальные и неинерциальные системы отсчёта
Относительность движения
По современным представлениям, абсолютной СО не существует. Это значит, что рассматривать движение тел можно только по отношению к другим телам. Не имеет смысла говорить о том, что предмет «двигается вообще». Причина этого — свойства пространства и времени:
Важно! Во времена Ньютона считалось, что можно рассматривать движение относительно абсолютного пространства, позже — относительно эфира в электродинамике Максвелла. Разработанная Эйнштейном теория относительности доказала, что абсолютного начала отсчета быть не может.
Полезное видео: определение координат тела
Вывод
Системы отсчета в физике необходимы, чтобы рассматривать движение тел. Их можно выбирать по-разному, как удобнее для конкретной задачи, так как движение относительно. Для механики важны инерциальные СО — те, которые движутся равномерно и прямолинейно относительно других тел.
Прямоугольная система координат
В повседневной жизни часто можно услышать фразу: «Оставь мне свои координаты». В ответ человек обычно оставляет свой адрес или номер телефона, то есть данные, по которым его можно найти.
Координаты могут обозначаться самыми разными наборами цифр или букв.
Например, номер автомобиля — это координаты, потому что по номеру машины можно определить из какого она города и кто ёё владелец.
Координаты — это набор данных, по которому определяется положение того или иного объекта.
Примерами координат являются: номер вагона и места в поезде, широта и долгота на географической карте, запись положения фигуры на шахматной доске, положение точки на числовой оси и т.д.
Всегда, когда мы по определенным правилам однозначно обозначаем какой-то объект набором букв, чисел или других символов, мы задаём координаты объекта.
Декартова система координат
Французкий математик Рене Декарт (1596–1650) предложил задавать положение точки на плоскости с помощью двух координат.
Для нахождения координат нужны ориентиры, от которых ведётся отсчёт.
Оси взаимно перпендикулярны (т.е. угол между ними равен 90° ) и пересекаются в точке, которую обозначают « O ». Точка « O » является началом отсчёта для каждой из осей.
Система координат — это две взаимно перпендикулярные координатные прямые, пересекающиеся в точке, которая является началом отсчёта для каждой из них.
Координатные оси — это прямые, образующие систему координат.
Ось абсцисс « Ox » — горизонтальная ось.
Ось ординат « Oy » — вертикальная ось.
Координатная плоскость — плоскость, в которой построена система координат. Обозначается плоскость как « x0y ».
Обращаем ваше внимание на выбор длины единичных отрезков по осям.
Цифры, обозначающие числовые значения на осях можно располагать как справа, так и слева от оси « Oy ». Цифры на оси « Ox », как правило, пишут внизу под осью.
Обычно единичный отрезок на оси « 0y » равен единичному отрезку на оси « 0x ». Но бывают случаи, когда они не равны друг другу.
Отсчитываем четверти (или координатные углы) против часовой стрелки.
Оси координат
Смотреть что такое «Оси координат» в других словарях:
Оси штампа — Базовые взаимно перпендикулярные оси координат, лежащие в плоскости, параллельной опорной плоскости штампа, и пересекающиеся, как правило, в точке, находящейся на одной вертикали с центром давления штампа Источник: ГОСТ 2.424 80: Единая система… … Словарь-справочник терминов нормативно-технической документации
Прямоугольная система координат — Прямоугольная система координат прямолинейная система координат с взаимно перпендикулярными осями на плоскости или в пространстве. Наиболее простая и поэтому часто используемая система координат. Очень легко и прямо обобщается для… … Википедия
Декартова система координат — Прямоугольная, или декартова система координат наиболее распространённая система координат на плоскости и в пространстве. Содержание 1 Прямоугольная система координат на плоскости … Википедия
СИСТЕМА КООРДИНАТ — совокупность условий, определяющих положение точки на прямой, на плоскости, в пространстве. Существуют различные С. к.: декартова, косоугольная, цилиндрическая, сферическая, криволинейная и др. Линейные и угловые величины, определяющие положение… … Большая политехническая энциклопедия
Начало координат — (начало отсчёта) в евклидовом пространстве особая точка, обычно обозначаемая буквой О, которая используется как точка отсчёта для всех остальных точек. В евклидовой геометрии начало координат может быть выбрано произвольно в любой удобной… … Википедия
ДЕКАРТОВА ПРЯМОУГОЛЬНАЯ СИСТЕМА КООРДИНАТ — ортонормированная прямолинейная система координат в евклидовом пространстве. Д. п. с. к. на плоскости задается двумя взаимно перпендикулярными прямыми осями координат, на каждой из к рых выбрано положительное направление и задан отрезок единичной … Математическая энциклопедия
АФФИННАЯ СИСТЕМА КООРДИНАТ — прямолинейная система координат в аффинном пространстве. А. с. к. на плоскости задается упорядоченной парой неколлинеарных векторов и (аффинный базис) и точкой О (начало координат). Прямые, проходящие через точку Опараллельно векторам базиса, наз … Математическая энциклопедия
Перпендикулярность траектории перемещения суппорта встроенной планшайбы к оси вращения шпинделя — 3.23 Перпендикулярность траектории перемещения суппорта встроенной планшайбы к оси вращения шпинделя Рисунок 36 Таблица 13 Ширина рабочей поверхности стола, мм Длина измерения, мм Допуск, мкм, для станков классов точности Н П До 1250 100 16 10 Св … Словарь-справочник терминов нормативно-технической документации
ДЕКАРТОВА СИСТЕМА КООРДИНАТ — прямоугольная система координат на плоскости или в пространстве, в которой масштабы по осям одинаковы и оси координат взаимно перпендикулярны. Д. с. к. обозначается буквами x:, у для точки на плоскости или x, у, z для точки в пространстве. (См.… … Большая политехническая энциклопедия
интерполяция по осям координат — 3.5.2 интерполяция по осям координат (axes interpolation): Перемещения салазок суппорта для обеспечения сложной траектории резания в результате комбинированных перемещений более чем по одной оси координат. Источник … Словарь-справочник терминов нормативно-технической документации
Система координат
Система координат — комплекс определений, реализующий метод координат, то есть способ определять положение точки или тела с помощью чисел или других символов. Совокупность чисел, определяющих положение конкретной точки, называется координатами этой точки.
В математике координаты — совокупность чисел, сопоставленных точкам многообразия в некоторой карте определённого атласа.
В элементарной геометрии координаты — величины, определяющие положение точки на плоскости и в пространстве. На плоскости положение точки чаще всего определяется расстояниями от двух прямых (координатных осей), пересекающихся в одной точке (начале координат) под прямым углом; одна из координат называется ординатой, а другая — абсциссой. В пространстве по системе Декарта положение точки определяется расстояниями от трёх плоскостей координат, пересекающихся в одной точке под прямыми углами друг к другу, или сферическими координатами, где начало координат находится в центре сферы.
В географии координаты — широта, долгота и высота над известным общим уровнем (например, океана). См. географические координаты.
В астрономии координаты — величины, при помощи которых определяется положение звезды, например, прямое восхождение и склонение.
Небесные координаты — числа, с помощью которых определяют положение светил и вспомогательных точек на небесной сфере. В астрономии употребляют различные системы небесных координат. Каждая из них по существу представляет собой систему полярных координат на сфере с соответствующим образом выбранным полюсом. Систему небесных координат задают большим кругом небесной сферы (или его полюсом, отстоящим на 90° от любой точки этого круга) с указанием на нём начальной точки отсчёта одной из координат. В зависимости от выбора этого круга системы небесных координат называлась горизонтальной, экваториальной, эклиптической и галактической.
Наиболее используемая система координат — прямоугольная система координат (также известная как декартова система координат).
Координаты на плоскости и в пространстве можно вводить бесконечным числом разных способов. Решая ту или иную математическую или физическую задачу методом координат, можно использовать различные координатные системы, выбирая ту из них, в которой задача решается проще или удобнее в данном конкретном случае. Известным обобщением системы координат являются системы отсчёта и системы референции.
Содержание
Список наиболее распространённых систем координат
Основные системы
В этом разделе даются разъяснения к наиболее употребляемым системам координат в элементарной математике.
Декартовы координаты
Расположение точки P на плоскости определяется декартовыми координатами с помощью пары чисел 
В пространстве же необходимо уже 3 координаты 
Полярные координаты
В полярной системе координат положение точки определяется расстояние до центра координат и углом радиус-вектора с осью Ox.
Термин «полярные координаты» используется только на плоскости, в пространстве применяются цилиндрические и сферические системы координат.
Цилиндрические координаты
Цилиндрические координаты — трехмерный аналог полярных, в котором точка P представляется трехкомпонентным кортежем 
Полярные координаты имеют один недостаток: значение θ теряет смысл, если r = 0.
Цилиндрические координаты полезны для изучения систем, симметричных вокруг некой оси. Например, длинный цилиндр в декартовых координатах имеет уравнение 
Сферические координаты
Сферические координаты — трехмерный аналог полярных
Обозначения, принятые в Америке
В сферической системе координат, расположение точки P определяется тремя компонентами: 
Сферическая система координат также имеет недостаток: φ теряет смысл если ρ = 0, также и θ теряет смысл, если ρ = 0 или φ = 0 или φ = 180°.
Для построения точки по её сферическими координатами, нужно: от полюса отложить отрезок, равный ρ вдоль положительной z-оси, вернуть его на угол φ вокруг оси y в направлении положительной x-оси, и вернуть на угол θ вокруг z-оси в направлении положительной y-оси.
Сферические координаты полезны при изучении систем, симметричных вокруг точки. Так, уравнение сферы в декартовых координатах выглядит как 

Европейские обозначения
В Европе принято использовать другие обозначения. Положение точки задаётся числами: 


Переход из одной системы координат в другую
Декартовы и полярные














