Что такое основная и дополнительная погрешности датчика

Погрешность измерений

Неотъемлемой частью любого измерения является погрешность измерений. С развитием приборостроения и методик измерений человечество стремиться снизить влияние данного явления на конечный результат измерений. Предлагаю более детально разобраться в вопросе, что же это такое погрешность измерений.

Погрешность измерения – это отклонение результата измерения от истинного значения измеряемой величины. Погрешность измерений представляет собой сумму погрешностей, каждая из которых имеет свою причину.

По форме числового выражения погрешности измерений подразделяются на абсолютные и относительные

Абсолютная погрешность – это погрешность, выраженная в единицах измеряемой величины. Она определяется выражением.

Что такое основная и дополнительная погрешности датчика. Смотреть фото Что такое основная и дополнительная погрешности датчика. Смотреть картинку Что такое основная и дополнительная погрешности датчика. Картинка про Что такое основная и дополнительная погрешности датчика. Фото Что такое основная и дополнительная погрешности датчика(1.2), где X — результат измерения; Х0 — истинное значение этой величины.

Поскольку истинное значение измеряемой величины остается неизвестным, на практике пользуются лишь приближенной оценкой абсолютной погрешности измерения, определяемой выражением

Что такое основная и дополнительная погрешности датчика. Смотреть фото Что такое основная и дополнительная погрешности датчика. Смотреть картинку Что такое основная и дополнительная погрешности датчика. Картинка про Что такое основная и дополнительная погрешности датчика. Фото Что такое основная и дополнительная погрешности датчика(1.3), где Хд — действительное значение этой измеряемой величины, которое с погрешностью ее определения принимают за истинное значение.

Относительная погрешность – это отношение абсолютной погрешности измерения к действительному значению измеряемой величины:

Что такое основная и дополнительная погрешности датчика. Смотреть фото Что такое основная и дополнительная погрешности датчика. Смотреть картинку Что такое основная и дополнительная погрешности датчика. Картинка про Что такое основная и дополнительная погрешности датчика. Фото Что такое основная и дополнительная погрешности датчика(1.4)

По закономерности появления погрешности измерения подразделяются на систематические, прогрессирующие, и случайные .

Систематическая погрешность – это погрешность измерения, остающаяся постоянной или закономерно изменяющейся при повторных измерениях одной и той же величины.

Прогрессирующая погрешность – это непредсказуемая погрешность, медленно меняющаяся во времени.

Систематические и прогрессирующие погрешности средств измерений вызываются:

Систематическая погрешность остается постоянной или закономерно изменяющейся при многократных измерениях одной и той же величины. Особенность систематической погрешности состоит в том, что она может быть полностью устранена введением поправок. Особенностью прогрессирующих погрешностей является то, что они могут быть скорректированы только в данный момент времени. Они требуют непрерывной коррекции.

Случайная погрешность – это погрешность измерения изменяется случайным образом. При повторных измерениях одной и той же величины. Случайные погрешности можно обнаружить только при многократных измерениях. В отличии от систематических погрешностей случайные нельзя устранить из результатов измерений.

По происхождению различают инструментальные и методические погрешности средств измерений.

Инструментальные погрешности — это погрешности, вызываемые особенностями свойств средств измерений. Они возникают вследствие недостаточно высокого качества элементов средств измерений. К данным погрешностям можно отнести изготовление и сборку элементов средств измерений; погрешности из-за трения в механизме прибора, недостаточной жесткости его элементов и деталей и др. Подчеркнем, что инструментальная погрешность индивидуальна для каждого средства измерений.

Методическая погрешность — это погрешность средства измерения, возникающая из-за несовершенства метода измерения, неточности соотношения, используемого для оценки измеряемой величины.

Погрешности средств измерений.

Абсолютная погрешность меры – это разность между номинальным ее значением и истинным (действительным) значением воспроизводимой ею величины:

Что такое основная и дополнительная погрешности датчика. Смотреть фото Что такое основная и дополнительная погрешности датчика. Смотреть картинку Что такое основная и дополнительная погрешности датчика. Картинка про Что такое основная и дополнительная погрешности датчика. Фото Что такое основная и дополнительная погрешности датчика(1.5), где Xн – номинальное значение меры; Хд – действительное значение меры

Абсолютная погрешность измерительного прибора – это разность между показанием прибора и истинным (действительным) значением измеряемой величины:

Что такое основная и дополнительная погрешности датчика. Смотреть фото Что такое основная и дополнительная погрешности датчика. Смотреть картинку Что такое основная и дополнительная погрешности датчика. Картинка про Что такое основная и дополнительная погрешности датчика. Фото Что такое основная и дополнительная погрешности датчика(1.6), где Xп – показания прибора; Хд – действительное значение измеряемой величины.

Относительная погрешность меры или измерительного прибора – это отношение абсолютной погрешности меры или измерительного прибора к истинному

(действительному) значению воспроизводимой или измеряемой величины. Относительная погрешность меры или измерительного прибора может быть выражена в ( % ).

Что такое основная и дополнительная погрешности датчика. Смотреть фото Что такое основная и дополнительная погрешности датчика. Смотреть картинку Что такое основная и дополнительная погрешности датчика. Картинка про Что такое основная и дополнительная погрешности датчика. Фото Что такое основная и дополнительная погрешности датчика(1.7)

Приведенная погрешность измерительного прибора – отношение погрешности измерительного прибора к нормирующему значению. Нормирующие значение XN – это условно принятое значение, равное или верхнему пределу измерений, или диапазону измерений, или длине шкалы. Приведенная погрешность обычно выражается в ( % ).

Что такое основная и дополнительная погрешности датчика. Смотреть фото Что такое основная и дополнительная погрешности датчика. Смотреть картинку Что такое основная и дополнительная погрешности датчика. Картинка про Что такое основная и дополнительная погрешности датчика. Фото Что такое основная и дополнительная погрешности датчика(1.8)

Основная – это погрешность средства измерений, используемого в нормальных условиях, которые обычно определены в нормативно-технических документах на данное средство измерений.

Дополнительная – это изменение погрешности средства измерений вследствии отклонения влияющих величин от нормальных значений.

Статическая – это погрешность средства измерений, используемого для измерения постоянной величины. Если измеряемая величина является функцией времени, то вследствие инерционности средств измерений возникает составляющая общей погрешности, называется динамической погрешностью средств измерений.

Также существуют систематические и случайные погрешности средств измерений они аналогичны с такими же погрешностями измерений.

Факторы влияющие на погрешность измерений.

Погрешности возникают по разным причинам: это могут быть ошибки экспериментатора или ошибки из-за применения прибора не по назначению и т.д. Существует ряд понятий которые определяют факторы влияющие на погрешность измерений

Вариация показаний прибора – это наибольшая разность показаний полученных при прямом и обратном ходе при одном и том же действительном значении измеряемой величины и неизменных внешних условиях.

Класс точности прибора – это обобщенная характеристика средств измерений (прибора), определяемая пределами допускаемых основной и дополнительных погрешностей, а также другими свойствами средств измерений, влияющих на точность, значение которой устанавливаются на отдельные виды средств измерений.

Классы точности прибора устанавливают при выпуске, градуируя его по образцовому прибору в нормальных условиях.

Прецизионность — показывает, как точно или отчетливо можно произвести отсчет. Она определяется, тем насколько близки друг к другу результаты двух идентичных измерений.

Разрешение прибора — это наименьшее изменение измеряемого значения, на которое прибор будет реагировать.

Диапазон прибора — определяется минимальным и максимальным значением входного сигнала, для которого он предназначен.

Полоса пропускания прибора — это разность между минимальной и максимальной частотой, для которых он предназначен.

Чувствительность прибора — определяется, как отношение выходного сигнала или показания прибора к входному сигналу или измеряемой величине.

Шумы — любой сигнал не несущий полезной информации.

Источник

Погрешности измерения датчиков КИП. Классы точности

Основной качественной характеристикой любого датчика КИП является погрешность измерения контролируемого параметра. Погрешность измерения прибора это величина расхождения между тем, что показал (измерил) датчик КИП и тем, что есть на самом деле. Погрешность измерения для каждого конкретного типа датчика указывается в сопроводительной документации (паспорт, инструкция по эксплуатации, методика поверки), которая поставляется вместе с данным датчиком.

Что такое основная и дополнительная погрешности датчика. Смотреть фото Что такое основная и дополнительная погрешности датчика. Смотреть картинку Что такое основная и дополнительная погрешности датчика. Картинка про Что такое основная и дополнительная погрешности датчика. Фото Что такое основная и дополнительная погрешности датчика

По форме представления погрешности делятся на абсолютную, относительную и приведенную погрешности.

Что такое основная и дополнительная погрешности датчика. Смотреть фото Что такое основная и дополнительная погрешности датчика. Смотреть картинку Что такое основная и дополнительная погрешности датчика. Картинка про Что такое основная и дополнительная погрешности датчика. Фото Что такое основная и дополнительная погрешности датчикаООПосновная относительная погрешность
Что такое основная и дополнительная погрешности датчика. Смотреть фото Что такое основная и дополнительная погрешности датчика. Смотреть картинку Что такое основная и дополнительная погрешности датчика. Картинка про Что такое основная и дополнительная погрешности датчика. Фото Что такое основная и дополнительная погрешности датчикаОППосновная приведенная погрешность
Что такое основная и дополнительная погрешности датчика. Смотреть фото Что такое основная и дополнительная погрешности датчика. Смотреть картинку Что такое основная и дополнительная погрешности датчика. Картинка про Что такое основная и дополнительная погрешности датчика. Фото Что такое основная и дополнительная погрешности датчикаОАПосновная абсолютная погрешность

Абсолютная погрешность – это разница между измеренной датчиком величиной Хизм и действительным значением Хд этой величины.

Что такое основная и дополнительная погрешности датчика. Смотреть фото Что такое основная и дополнительная погрешности датчика. Смотреть картинку Что такое основная и дополнительная погрешности датчика. Картинка про Что такое основная и дополнительная погрешности датчика. Фото Что такое основная и дополнительная погрешности датчика

Действительное значение Хд измеряемой величины это найденное экспериментально значение измеряемой величины максимально близкое к ее истинному значению. Говоря простым языком действительное значение Хд это значение, измеренное эталонным прибором, или сгенерированное калибратором или задатчиком высокого класса точности. Абсолютная погрешность выражается в тех же единицах измерения, что и измеряемая величина (например, в м3/ч, мА, МПа и т.п.). Так как измеренная величина может оказаться как больше, так и меньше ее действительного значения, то погрешность измерения может быть как со знаком плюс (показания прибора завышены), так и со знаком минус (прибор занижает).

Относительная погрешность – это отношение абсолютной погрешности измерения Δ к действительному значению Хд измеряемой величины.

Что такое основная и дополнительная погрешности датчика. Смотреть фото Что такое основная и дополнительная погрешности датчика. Смотреть картинку Что такое основная и дополнительная погрешности датчика. Картинка про Что такое основная и дополнительная погрешности датчика. Фото Что такое основная и дополнительная погрешности датчика

Относительная погрешность выражается в процентах, либо является безразмерной величиной, а также может принимать как положительные, так и отрицательные значения.

Приведенная погрешность – это отношение абсолютной погрешности измерения Δ к нормирующему значению Хn, постоянному во всем диапазоне измерения или его части.

Что такое основная и дополнительная погрешности датчика. Смотреть фото Что такое основная и дополнительная погрешности датчика. Смотреть картинку Что такое основная и дополнительная погрешности датчика. Картинка про Что такое основная и дополнительная погрешности датчика. Фото Что такое основная и дополнительная погрешности датчика

Нормирующее значение Хn зависит от типа шкалы датчика КИП:

Приведенная погрешность выражается в процентах, либо является безразмерной величиной, а также может принимать как положительные, так и отрицательные значения.

Довольно часто в описании на тот или иной датчик указывается не только диапазон измерения, например, от 0 до 50 мг/м3, но и диапазон показаний, например, от 0 до 100 мг/м3. Приведенная погрешность в этом случае нормируется к концу диапазона измерения, то есть к 50 мг/м3, а в диапазоне показаний от 50 до 100 мг/м3 погрешность измерения датчика не определена вовсе – фактически датчик может показать все что угодно и иметь любую погрешность измерения. Диапазон измерения датчика может быть разбит на несколько измерительных поддиапазонов, для каждого из которых может быть определена своя погрешность как по величине, так и по форме представления. При этом при поверке таких датчиков для каждого поддиапазона могут применяться свои образцовые средства измерения, перечень которых указан в методике поверки на данный прибор.

У некоторых приборов в паспортах вместо погрешности измерения указывают класс точности. К таким приборам относятся механические манометры, показывающие биметаллические термометры, термостаты, указатели расхода, стрелочные амперметры и вольтметры для щитового монтажа и т.п. Класс точности – это обобщенная характеристика средств измерений, определяемая пределами допускаемых основных и дополнительных погрешностей, а также рядом других свойств, влияющих на точность осуществляемых с их помощью измерений. При этом класс точности не является непосредственной характеристикой точности измерений, выполняемых этим прибором, он лишь указывает на возможную инструментальную составляющую погрешности измерения. Класс точности прибора наноситься на его шкалу или корпус по ГОСТ 8.401-80.

Что такое основная и дополнительная погрешности датчика. Смотреть фото Что такое основная и дополнительная погрешности датчика. Смотреть картинку Что такое основная и дополнительная погрешности датчика. Картинка про Что такое основная и дополнительная погрешности датчика. Фото Что такое основная и дополнительная погрешности датчика

Определение погрешности измерения датчиков выполняют, например, при их периодической поверке и калибровке. С помощью различных задатчиков и калибраторов с высокой точностью генерируют определенные значения той или иной физической величины и сличают показания поверяемого датчика с показаниями образцового средства измерения, на которое подается то же самое значение физической величины. Причем погрешность измерения датчика контролируется как при прямом ходе (увеличение измеряемой физической величины от минимума до максимума шкалы), так и при обратном ходе (уменьшение измеряемой величины от максимума до минимума шкалы). Это связано с тем, что из-за упругих свойств чувствительного элемента датчика (мембрана датчика давления), различной интенсивности протекания химических реакций (электрохимический сенсор), тепловой инерции и т.п. показания датчика будут различны в зависимости от того, как меняется воздействующая на датчик физическая величина: уменьшается или увеличивается.

Довольно часто в соответствии с методикой поверки отсчет показаний датчика при поверке нужно выполнять не по его дисплею или шкале, а по величине выходного сигнала, например, по величине выходного тока токового выхода 4…20 мА.

У поверяемого датчика давления со шкалой измерения от 0 до 250 mbar основная относительная погрешность измерения во всем диапазоне измерений равна 5%. Датчик имеет токовый выход 4…20 мА. На датчик калибратором подано давление 125 mbar, при этом его выходной сигнал равен 12,62 мА. Необходимо определить укладываются ли показания датчика в допустимые пределы.

Во-первых, необходимо вычислить каким должен быть выходной ток датчика Iвых.т при давлении Рт = 125 mbar.

Iвых.т = Iш.вых.мин + ((Iш.вых.макс – Iш.вых.мин)/(Рш.макс – Рш.мин))*Рт

где Iвых.т – выходной ток датчика при заданном давлении 125 mbar, мА.

Iш.вых.мин – минимальный выходной ток датчика, мА. Для датчика с выходом 4…20 мА Iш.вых.мин = 4 мА, для датчика с выходом 0…5 или 0…20 мА Iш.вых.мин = 0.

Рш.макс – максимум шкалы датчика давления, mbar. Рш.макс = 250 mbar.

Рш.мин – минимум шкалы датчика давления, mbar. Рш.мин = 0 mbar.

Рт – поданное с калибратора на датчик давление, mbar. Рт = 125 mbar.

Подставив известные значения получим:

То есть при поданном на датчик давлении равном 125 mbar на его токовом выходе должно быть 12 мА. Считаем, в каких пределах может изменяться расчетное значение выходного тока, учитывая, что основная относительная погрешность измерения равна ± 5%.

То есть при поданном на датчик давлении равном 125 mbar на его токовом выходе выходной сигнал должен быть в пределах от 11,40 до 12,60 мА. По условию задачи мы имеем выходной сигнал 12,62 мА, значит наш датчик не уложился в определенную производителем погрешность измерения и требует настройки.

Основная относительная погрешность измерения нашего датчика равна:

Поверка и калибровка приборов КИП должна выполнятся при нормальных условиях окружающей среды по атмосферному давлению, влажности и температуре и при номинальном напряжении питания датчика, так как более высокие или низкие температура и напряжение питания могут привезти к появлению дополнительной погрешности измерения. Условия проведения поверки указываются в методике поверки. Приборы, погрешность измерения которых не уложилась в установленные методикой поверки рамки либо заново регулируют и настраивают, после чего они повторно проходят поверку, либо, если настройка не принесла результатов, например, из-за старения или чрезмерной деформации сенсора, ремонтируются. Если ремонт невозможен то приборы бракуются и выводятся из эксплуатации.

Если все же приборы удалось отремонтировать то они подвергаются уже не периодической, а первичной поверке с выполнением всех изложенных в методике поверки пунктов для данного вида поверки. В некоторых случаях прибор специально подвергают незначительному ремонту (с отметкой в паспорте) так как по методике поверки выполнить первичную поверку оказывается существенно легче и дешевле чем периодическую, из-за различий в наборе образцовых средств измерения, которые используются при периодической и первичной поверках.

Для закрепления и проверки полученных знаний рекомендую выполнить тестовое задание.

Источник

Что такое основная и дополнительная погрешности датчика

Всероссийский научно-исследовательский институт
оптико-физических измерений

ПОИСК И НАВИГАЦИЯ

МЫ НА YOUTUBE

Погрешности средств измерений

Погрешность средства измерений (англ. error (of indication) of a measuring instrument) – разность между показанием средства измерений и истинным (действительным) значением измеряемой физической величины.

Систематическая погрешность средства измерений (англ. bias error of a measuring instrument) – составляющая погрешности средства измерений, принимаемая за постоянную или закономерную изменяющуюся.
Примечание. Систематическая погрешность данного средства измерений, как правило, будет отличаться от систематической погрешности другого экземпляра средства измерений этого же типа, вследствие чего для группы однотипных средств измерений систематическая погрешность может иногда рассматриваться как случайная погрешность.

Случайная погрешность средства измерений (англ. repeatability error of a measuring instrument) – составляющая погрешности средства измерений, изменяющаяся случайным образом.

Абсолютная погрешность средства измерений – погрешность средства измерений, выраженная в единицах измеряемой физической величины.

Относительная погрешность средства измерений – погрешность средства измерений, выраженная отношением абсолютной погрешности средства измерений к результату измерений или к действительному значению измеренной физической величины.

Приведенная погрешность средства измерений (англ. reducial error of a measuring instrument) – относительная погрешность, выраженная отношением абсолютной погрешности средства измерений к условно принятому значению величины, постоянному во всем диапазоне измерений или в части диапазона.
Примечания:

Основная погрешность средства измерений (англ. intrinsic error of a measuring instrument) – погрешность средства измерений, применяемого в нормальных условиях.

Дополнительная погрешность средства измерений (англ. complementary error of a measuring instrument) – составляющая погрешности средства измерений, возникающая дополнительно к основной погрешности вследствие отклонения какой-либо из влияющих величин от нормального ее значения или вследствие ее выхода за пределы нормальной области значений.

Статическая погрешность средства измерений – погрешность средства измерений, применяемого при измерении физической величины, принимаемой за неизменную.

Динамическая погрешность средства измерений – погрешность средства измерений, возникающая при измерении изменяющейся (в процессе измерений) физической величины.

Погрешность меры – разность между номинальным значением меры и действительным значением воспроизводимой ею величины.

Стабильность средства измерений (англ. stability) – качественная характеристика средства измерений, отражающая неизменность во времени его метрологических характеристик.
Примечание. В качестве количественной оценки стабильности служит нестабильность средства измерений.

Нестабильность средства измерений – изменение метрологических характеристик средства измерений за установленный интервал времени.
Примечания:

Точность средства измерений (англ. accuracy of a measuring instrument) – характеристика качества средства измерений, отражающая близость его погрешности к нулю.
Примечание. Считается, что чем меньше погрешность, тем точнее средство измерений.

Класс точности средств измерений (англ. accuracy class) – обобщенная характеристика данного типа средств измерений, как правило, отражающая уровень их точности, выражаемая пределами допускаемых основной и дополнительных погрешностей, а также другими характеристиками, влияющими на точность.
Примечания:

Предел допускаемой погрешности средства измерений – наибольшее значение погрешности средств измерений, устанавливаемое нормативным документом для данного типа средств измерений, при котором оно еще признается годным к применению.
Примечания:

Пример. Для 100-миллиметровой концевой меры длины 1-го класса точности пределы допускаемой погрешности +/- 50 мкм.

Нормируемые метрологические характеристики типа средства измерений – совокупность метрологических характеристик данного типа средств измерений, устанавливаемая нормативными документами на средства измерений.

Точностные характеристики средства измерений – совокупность метрологических характеристик средства измерений, влияющих на погрешность измерения.
Примечание. К точностным характеристикам относят погрешность средства измерений, нестабильность, порог чувствительности, дрейф нуля и др.

Источник

Основная и дополнительная погрешности

Что такое основная и дополнительная погрешности датчика. Смотреть фото Что такое основная и дополнительная погрешности датчика. Смотреть картинку Что такое основная и дополнительная погрешности датчика. Картинка про Что такое основная и дополнительная погрешности датчика. Фото Что такое основная и дополнительная погрешности датчика Что такое основная и дополнительная погрешности датчика. Смотреть фото Что такое основная и дополнительная погрешности датчика. Смотреть картинку Что такое основная и дополнительная погрешности датчика. Картинка про Что такое основная и дополнительная погрешности датчика. Фото Что такое основная и дополнительная погрешности датчика Что такое основная и дополнительная погрешности датчика. Смотреть фото Что такое основная и дополнительная погрешности датчика. Смотреть картинку Что такое основная и дополнительная погрешности датчика. Картинка про Что такое основная и дополнительная погрешности датчика. Фото Что такое основная и дополнительная погрешности датчика Что такое основная и дополнительная погрешности датчика. Смотреть фото Что такое основная и дополнительная погрешности датчика. Смотреть картинку Что такое основная и дополнительная погрешности датчика. Картинка про Что такое основная и дополнительная погрешности датчика. Фото Что такое основная и дополнительная погрешности датчика

Что такое основная и дополнительная погрешности датчика. Смотреть фото Что такое основная и дополнительная погрешности датчика. Смотреть картинку Что такое основная и дополнительная погрешности датчика. Картинка про Что такое основная и дополнительная погрешности датчика. Фото Что такое основная и дополнительная погрешности датчика

Что такое основная и дополнительная погрешности датчика. Смотреть фото Что такое основная и дополнительная погрешности датчика. Смотреть картинку Что такое основная и дополнительная погрешности датчика. Картинка про Что такое основная и дополнительная погрешности датчика. Фото Что такое основная и дополнительная погрешности датчика

Основная инструментальная погрешность находится по классу точности СИ. Например, при нормальных условиях щитовым элек­тромагнитным вольтметром класса точности 1,5 (т.е. имеющим пре­дел основной приведенной погрешности γп, не превышающий ±1,5 %) с диапазоном измеряемых значений 0. 300 В (нормирую­щее значение Хн = 300 В) получен результат измерения действую­щего значения напряжения U= 220 В. Требуется определить пре­дельные значения абсолютнойΔ и относительной δ инструмен­тальных погрешностей результата измерения U.

Оценим предельное значение основной абсолютной погреш­ности Δ:

Предельное значение основной относительной погрешности δ:

δ = Δ100/U = ±4,5·100/220 ≈ ±2,0 %.

Расчет суммарной погрешности результата измерения в общем случае предполагает нахождение максимально возможного числа составляющих (основной, дополнительной, методической, взаи­модействия и т.д.).

Дополнительная погрешность возникает при работе СИ (в част­ности, прибора) не в нормальных, а в рабочих условиях, когда одна или несколько влияющих величин выходят за пределы обла­сти нормальных значений (но находятся внутри диапазона рабо­чих значений).

Влияющая величина (ВВ) – это такая физическая величина β, которая не измеряется в данном эксперименте, но влияет на ре­зультат измерения или преобразования. Например, в эксперимен­те по измерению тока в электрической цепи некоторые другие физические величины (температура окружающей среды, атмос­ферное давление, относительная влажность воздуха, электричес­кие и магнитные поля, напряжение питания СИ) являются влия­ющими величинами. Конечно, если мы измеряем температуру ок­ружающей среды, то температура в данном эксперименте есть из­меряемая величина.

Влияющие величины в общем случае могут меняться в доволь­но широких диапазонах. При оценке работоспособности СИ в раз­личных условиях воздействия окружающей среды различают три области возможных значений ВВ:

• область нормальных значений ВВ (при этом значение ВВ находится в пределах заранее оговоренных – нормальных – значений);

• область рабочих значений ВВ (при этом значение ВВ находится в диапазоне своих рабочих значений);

• область значений ВВ, при которых возможны хранение или транспортировка СИ.

С точки зрения оценки инструментальных погрешностей нас интересуют лишь первые две области. Область нормальных значений ВВ обычно задается симметричным относительно номи­нального значения диапазоном. В этом диапазоне воз­можных значений ВВ условия применения СИ считаются нор­мальными (НУ) и при этом имеет место только основная погрешность СИ.

Областью рабочих значений называется более широкий диапа­зон возможных изменений ВВ, в котором СИ может нормально использоваться. Границы этого диапазона задаются нижним и верхним предельными значениями ВВ, соответственно. В этом диапазоне значений ВВ условия применения СИ называются рабо­чими (РУ) и при этом имеет место не только основная, но еще и дополнительная погрешность. Таким образом, при работе в преде­лах рабочих условий, но за пределами нормальных, общая инстру­ментальная погрешность складывается уже из основной и допол­нительной составляющих.

Например, для самой важной практически во всех измеритель­ных экспериментах ВВ – температуры окружающей среды – об­ласть нормальных (для Беларуси) значений и, следовательно, нор­мальных условий применения СИ в большинстве обычных техни­ческих измерительных экспериментов составляет (20 ± 5) °С или (20 ± 2) °С.

Области нормальных значений не являются постоянными, а зависят от особенностей выполняемых измерений, измеряемых величин, классов точности СИ. Например, чем точнее СИ, тем уже требуемый диапазон нормальных температур. Для мер элект­рического сопротивления высшего класса точности (0,0005; 0,001; 0,002) допустимое отклонение температуры от номинального зна­чения составляет, соответственно, ±0,1 °С; ±0,2 °С; ±0,5 °С. Для за­рубежных приборов часто за номинальное принимается значение температуры +23 °С.

Области нормальных значений ВВ в специальных измерениях оговариваются отдельно в описании СИ или в методиках проведе­ния измерений.

Что такое основная и дополнительная погрешности датчика. Смотреть фото Что такое основная и дополнительная погрешности датчика. Смотреть картинку Что такое основная и дополнительная погрешности датчика. Картинка про Что такое основная и дополнительная погрешности датчика. Фото Что такое основная и дополнительная погрешности датчика

Для СИ промышленного применения области рабочих значений ВВ являются более широкими, чем, скажем, для лаборатор­ных СИ. Измерительная аппаратура военного назначения имеет еще более широкие области рабочих значений ВВ.

Условия хранения допускают наиболее широкие диапазоны значений ВВ. Например, для основного параметра окружающей среды – температуры – в паспорте на прибор может быть записа­но: «. диапазон рабочих температур: 0. +40 °С, диапазон темпера­тур хранения: –10. +60°С».

Зная класс точности, коэффициенты влияния окружающей сре­ды (например, температурный коэффициент), а также коэффици­енты влияния неинформативных параметров измеряемых сигналов (например, частоты периодического сигнала напряжения при из­мерении действующего значения), можно оценить значение допол­нительной погрешности и затем найти суммарную инструменталь­ную, сложив основную и дополнительную составляющие.

Рассмотрим пример нахождения оценки дополнительной составляющей инструментальной погрешности на примере влияния только одной (но самой важной и, к счастью, наиболее легко оп­ределяемой) ВВ – температуры. Допустим, после выполнения эк­сперимента по классу точности миллиамперметра найдена его основная инструментальная погрешность Δо = ±1,0 мА; темпера­тура в ходе эксперимента была зафиксирована +28 °С. Температур­ный коэффициент в паспорте на прибор определен таким обра­зом: «. дополнительная погрешность на каждые 10 °С отличия от номинальной температуры +20 °С равна основной погрешности в пределах изменения температуры окружающей среды от 0 до +50 °С». Тогда предельное значение дополнительной абсолютной погреш­ности Δд в данном случае определяется следующим образом:

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Основные метрологические термины и определения: по РМГ 29-99 (с изменениями от 04.08.2010)