Что такое основные и неосновные носители тока в примесных полупроводниках
Основные и неосновные носители заряда в полупроводниках
В полупроводниках носителями заряда являются электроны и дырки. Отношение их концентраций определяет тип проводимости полупроводника. Те носители, концентрация которых выше, называют основными носителями заряда, а носители другого типа — неосновными.
Если концентрация электронов значительно превосходит концентрацию дырок, то такой полупроводник называют полупроводником n-типа проводимости. В этом случае основными носителями заряда являются электроны, а неосновными носителями — дырки.
Соответственно, если концентрация дырок выше, чем электронов, то полупроводник называют полупроводником p-типа. В нем основными носителями являются дырки, а неосновными носителями — электроны.
Вопрос
Влияние примесей на носители заряда:
Вывод: донорные примеси отдают лишние валентные электроны, образуя полупроводник н- типа, а акцепторные примеси создают дырки, образуя полупроводник р-типа.
Вопрос
Полупроводниковый диод — полупроводниковый прибор с одним электрическим переходом и двумя выводами (электродами). В отличие от других типов диодов, принцип действия полупроводникового диода основывается на явлении p-n-перехода.
p-n-Перехо́д (n — negative — отрицательный, электронный, p — positive — положительный, дырочный), или электронно-дырочный переход — область пространства на стыке двухполупроводниковp- и n-типа, в которой происходит переход от одного типа проводимости к другому. p-n-Переход является основой для полупроводниковых диодов, триодов и других электронных элементов с нелинейной вольт-амперной характеристикой.
Вопрос
Выпрямитель (электрического тока) — преобразователь электрической энергии; механическое, электровакуумное, полупроводниковое или другое устройство, предназначенное для преобразования переменного входного электрического тока в постоянный выходной электрический ток.
Выходные параметры выпрямителя:
Коэффициентом пульсации Kп01 называется отношение амплитуды первой гармоники выпрямленного напряжения U01 к среднему значению выпрямленного напряжения U0.
Простейшим выпрямителем является схема однофазного однополупериодного выпрямителя. Графики, поясняющие его работу при синусоидальном входном напряжении Uвх=Uвх maxsin(ωt)
Вопрос
Очевидно, что параметры выпрямителя можно улучшить, если обеспечить протекание тока нагрузки в оба полупериода действия входного напряжения. Этого можно добиться, используя две схемы однополупериодного выпрямления, работающие синхронно и противофазно на единую нагрузку. Такое включение, однако, потребует наличия двух источников первичного напряжения, имеющих общую точку: Uвх1=Uвх maxsin(ωt), Uвх2=Uвх maxsin(ωt+π). Описанная схема называется однофазной двухполупериодной схемой выпрямления со средней точкой
Существенным недостатком схемы двухполупериодного выпрямления со средней точкой является потребность в двух источниках входного напряжения. Такая потребность обусловлена тем, что один из выводов сопротивления нагрузки периодически переключается между двумя источниками напряжения, а другой вывод постоянно подключен к средней точке этих источников.
Вопрос
необходимость в средней точке отпадет, если и второй вывод нагрузки при помощи второй аналогичной диодной схемы будет синхронно и противофазно подключаться к неиспользуемым на соответствующем интервале времени выводам источников питания. Схемотехническая реализация такого метода представлена на рис. 3.4‑9. Эта схема носит название однофазного мостового выпрямителя и является, вероятно, самой распространенной из всех схем выпрямления, предназначенных для работы с однофазными источниками переменных напряжений.
Вопрос
Сглаживающий фильтр — устройство для сглаживания пульсаций после выпрямления переменного тока диодным мостом. Простейшим сглаживающим фильтром являетсяэлектролитический конденсатор большой ёмкости, установленный на схеме параллельно нагрузке, соблюдая полярность конденсатора. Нередко устанавливается параллельно электролитическому конденсатору плёночный (или керамический) для переменного тока ёмкостью 0,01 микрофарады, для устранения помех сети 220.
Сглаживающие фильтры питания предназначены для уменьшения пульсаций выпрямленного напряжения. Принцип работы простой – во время действия полуволны напряжения происходит заряд реактивных элементов (конденсатора, дросселя) от источника – диодного выпрямителя, и их разряд на нагрузку во время отсутствия, либо малого по амплитуде напряжения.
СОБСТВЕННЫЕ И ПРИМЕСНЫЕ ПОЛУПРОВОДНИКИ. ОСНОВНЫЕ И НЕОСНОВНЫЕ НОСИТЕЛИ ЗАРЯДА.
Как и в металлах, электрический ток в полупроводниках связан с дрейфом носителей заряда. Но, если в металлах наличие свободных электронов обусловлено самой природой металлической связи, появление носителей заряда в полупроводниках определяется рядом факторов, важнейшими из которых являются химическая чистота материала и температура. В зависимости от степени чистоты полупроводники подразделяют на собственные и примесные.
Собственный — это такой полупроводник, в котором можно пренебречь влиянием примесей при данной температуре. Согласно зонной теории твердого тела твердого тела для полупроводников характерно наличие не очень широкой (
Произведение является слабой функцией от температуры; поэтому зависимость логарифма концентрации носителей заряда от обратной температуры близка к линейной, причем наклон прямой характеризует ширину запрещенной зоны полупроводника.
Примесный — это такой полупроводник, электрофизические свойства которого в основном определяются примесями.Как правило, примеси создают дополнительные уровни в запрещенной зоне полупроводника. При малой концентрации примесей расстояние между примесными атомами велико, их электронные оболочки не взаимодействуют друг с другом. Вследствие этого примесные энергетические уровни являются дискретными, т. е. не расщепляются в зону, как это имеет место для уровней основных атомов кристаллической решетки.
Если примесные атомы находятся в узлах кристаллической решетки, то их называют примесями замещения, если в междуузлиях — примесями внедрения.
Роль примесей могут играть и всевозможные дефекты структуры. К числу таких дефектов относятся, в первую очередь, вакансии и междуузельные атомы.
Доноры и акцепторы. При малой концентрации примесей вероятность непосредственного перехода электронов от одного примесного атома к другому ничтожно мала. Однако примеси могут либо поставлять электроны в зону проводимости полупроводника, либо принимать их с уровней его валентной зоны. На рис. 7.2 показаны два случая, имеющие наибольшее практическое значение.
1. Примесные уровни, заполненные электронами при отсутствии внешних энергетических воздействий, расположены в запрещенной зоне вблизи нижнего края зоны проводимости. При внешнем возбуждении электроны с примесных уровней могут легко переходить в свободную зону и участвовать в процессе электропроводности. Энергия, необходимая для таких переходов, значительно меньше энергии ионизации собственных атомов полупроводника, т. е. ширины запрещенной зоны. Примеси, поставляющие электроны в зону проводимости полупроводника, называют донорами. При относительно невысоких температурах переходы электронов из валентной зоны в зону проводимости не играют существенной роли. В таких материалах концентрация электронов превышает концентрацию дырок, вследствие чего они получили название полупроводников n-типа. Минимальную энергию, которую необходимо сообщить электрону для перевода его с донорного уровня в зону проводимости, называют энергией ионизации донора (рис.7.2,а).
2. В противоположном случае примесь может внести незаполненные уровни, располагающиеся в запрещенной зоне вблизи от верхнего края («потолка») валентной зоны. Благодаря тепловому возбуждению электроны из валентной зоны полупроводника забрасываются на эти свободные примесные уровни. Ввиду разобщенности атомов примеси, электроны, заброшенные на примесные уровни, не участвуют в электрическом токе. Полупроводник с такой примесью имеет концентрацию дырок большую, чем концентрация электронов, перешедших из валентной зоны в зону проводимости, и его называют полупроводником p-типа, а примеси, захватывающие электроны из валентной зоны полупроводника, — акцепторами.
Минимальную энергию, которую необходимо сообщить электрону валентной зоны, чтобы перевести его на акцепторный уровень, называют энергией ионизации акцептора (рис. 7.2,б).
Примеси замещения, валентность которых превышает валентность основных атомов решетки, проявляют свойства доноров. Кроме мышьяка типичными донорами в кремнии и германии являются фосфор и сурьма.
Примеси замещения, имеющие валентность меньше валентности основных атомов решетки, в ковалентных полупроводниках являются акцепторами. Помимо алюминия акцепторные свойства кремнии и германии проявляют бор, галлий, индий. Энергия ионизации акцепторов численно близка к энергии ионизации доноров.
Основные и неосновные носители заряда. Носители заряда, концентрация которых в данном полупроводнике больше, называют основными, аносители концентрация которых меньше— неосновными. Так, в полупроводнике n-типа электроны являются основными носителями, а дырки — неосновными; в полупроводнике p-типа дырки — основными носителями, а электроны—неосновными. При изменении концентрации примесей в полупроводнике изменяется положение уровня Ферми и концентрация носителей заряда обоих знаков, т. е. электронов и дырок. Однако произведение концентраций электронов и дырок в невырожденном полупроводнике при заданной температуре в условиях термодинамического равновесия есть величина постоянная, не зависящая от содержания примесей.
Если, например, в полупроводнике n-типа увеличить концентрацию доноров, то возрастет число электронов, переходящих в единицу времени с примесных уровней в зону проводимости. Соответственно возрастет скорость рекомбинации носителей заряда и уменьшится равновесная концентрация дырок.
|
часто называют соотношением «действующих масс» для носителей заряда. С его помощью всегда можно найти концентрацию неосновных носителей заряда, если известна концентрация основных.
Носители заряда в примесных полупроводниках
При производстве полупроводниковых приборов помимо чистых полупроводников, в частности, чистых германия и кремния, являющихся исходными материалами, используют примесные полупроводники.
Введение примеси связано с необходимостью создания в полупроводнике преимущественно электронной либо дырочной электропроводности и увеличения электрической проводимости. В связи с этим различают соответственно электронные (n-типа) и дырочные (р-типа) полупроводники.
Для получения полупроводника с электропроводностью n-типа в чистый полупроводник вводят примесь, создающую в полупроводнике только свободные электроны. Вводимая примесь является «поставщиком» электронов, поэтому ее называют донорной. Для германия и кремния, относящихся к IV группе Периодической системы элементов, донорной примесью служат элементы V группы (сурьма, фосфор, мышьяк), атомы которых имеют пять валентных электронов.
При внесении такой примеси атомы примеси замещают атомы исходного полупроводника в отдельных узлах кристаллической решетки (рисунок 1.5, а).
Четыре электрона каждого атома донорной примеси участвуют в ковалентной связи с соседними атомами исходного материала, а пятый («избыточный») электрон, не участвующий в ковалентной связи, оказывается значительно слабее связанным со своим атомом. Для того чтобы оторвать его от атома и превратить в свободный носитель заряда, требуется значительно меньшее количество энергии, чем для освобождения электрона из ковалентной связи. В результате приобретения такой энергии (например, энергии фонона при комнатной температуре кристалла) «избыточный» электрон покидает атом и становится свободным, а атом примеси превращается в положительный ион (ионизация атома примеси).
В условиях достаточно большой концентрации атомов примеси их ионизация создает некоторую концентрацию в кристалле полупроводника свободных электронов и неподвижных положительных ионов, локализованных в местах расположения атомов примеси. Слой полупроводника остается элект рически нейтральным, если освободившиеся электроны не уходят за пределы слоя. При уходе электронов под воздействием каких-либо факторов в другие
слои кристалла, оставшиеся положительные ионы донорной примеси создают в данном слое нескомпенсированный положительный объемный заряд.
На энергетической диаграмме полупроводника n-типа (рисунок 1.5, б) вводимая примесь приводит к появлению в запрещенной зоне вблизи зоны проводимости близко расположенных друг от друга локальных валентных уровней энергии, заполненных электронами при температуре абсолютного нуля.
Число локальных уровней определяется количеством атомов примеси в кристалле. На рисунке 1.5, б локальные уровни показаны пунктиром. Так как ширина ΔWД мала (в зависимости от типа исходного полупроводника и материала донорной примеси ΔWД = 0,01…0,07 эВ), при комнатной температуре практически все электроны донорных уровней перейдут в зону проводимости и смогут участвовать в создании тока.
Концентрация свободных электронов в зоне проводимости при этом определяется преимущественно концентрацией введенной примеси NД, а не собственными электронами валентной зоны, преодолевающими широкую запрещенную зону ΔWЗ. В соответствии с этим концентрация электронов nn в полупроводнике n-типа существенно выше концентрации дырок pn, образующейся в результате перехода электронов из валентной зоны в зону проводимости. Можно считать, что в полупроводнике n-типа ток создается в основном электронами. Другими словами, электроны в этом случае являются основными носителями заряда, а дырки — неосновными носителями заряда.
В полупроводниках p-типа введение примеси направлено на повышение концентрации дырок. Задача решается использованием в качестве примеси элементов III группы Периодической системы (индий, алюминий, бор), атомы которых имеют по три валентных электрона. При наличии такой примеси каждый ее атом образует только три заполненные ковалентные связи с соседними атомами исходного полупроводника в кристаллической решетке (рисунок 1.6, а). Четвертая связь остается незаполненной. Недостающий валентный электрон для заполнения связи переходит от одного из соседних атомов кристаллической решетки, так как требуемая для такого перехода энергия невелика. Переход электрона приводит к образованию дырки в ковалентной связи соседнего атома, откуда ушел электрон, и превращению атома примеси в неподвижный отрицательный ион. В результате за счет примеси достигается повышение концентрации дырок в полупроводнике. Атомы примеси, принимающие валентные электроны соседних атомов, называют акцепторными, а саму примесь — акцепторной.
В условиях достаточно большой концентрации атомов акцепторной примеси в кристалле полупроводника создается некоторая концентрация дырок и отрицательных ионов. Пока число дырок в данном слое полупроводника остается равным числу отрицательных ионов в нем, в слое сохраняется зарядная нейтральность. Если вошедшие из других слоев электроны заполнят некоторое число существующих дефектов валентной связи (рекомбинация электронов с дырками), в данном слое появится нескомпенсированный отрицательный объемный заряд, создаваемый ионами акцепторной примеси.
Рассмотрим процесс образования дырок в полупроводнике р-типа, исходя из его энергетической диаграммы. При наличии акцепторной примеси в запрещенной зоне энергетической диаграммы исходного полупроводника вблизи валентной зоны появляются локальные уровни энергии, свободные от электронов при температуре абсолютного нуля (рисунок 1.6, б). Число локальных уровней определяется концентрацией атомов примеси в кристалле. Так как разность ΔWА между энергией акцепторных уровней и энергией верхнего уровня валентной зоны мала (в зависимости от типа полупроводника и материала акцепторной примеси ΔWА = 0,01. 0,07 эВ), то при комнатной температуре все акцепторные уровни будут заняты электронами, перешедшими из валентной зоны. В валентной зоне появится большая концентрация дырок.
Концентрация дырок в валентной зоне при этом определяется преимущественно концентрацией внесенной акцепторной примеси Na, а не дырками, возникающими при термогенерации носителей заряда за счет преодоления валентными электронами широкой запрещенной зоны ΔWЗ. В соответствии с этим концентрация дырок рp в полупроводнике р-типа существенно больше концентрации свободных электронов np. По этой причине ток в дырочном полупроводнике переносится в основном дырками. Дырки в этом случае являются основными носителями заряда, а электроны — неосновными.
тронов из валент-ной зоны в зону проводимости. Примесь вносится в количестве, при котором концентрация основных носителей заряда существенно (на два – три порядка) превышает концентрацию неосновных носителей заряда. В зависимости от концентрации введенной примеси удельная проводимость примесного полупроводника возрастает по сравнению с чистым полупроводником в десятки и сотни тысяч раз.
Характерной особенностью полупроводников рассматриваемых типов является то, что произведение концентраций основных и неосновных носителей заряда при данной температуре является постоянной величиной и определяется соотношением:
| (1.2) |
где ni = pi – собственные концентрации носителей заряда в чистом полупроводнике.
В соответствии с выражением (1.2) концентрация неосновных носителей заряда в примесном полупроводнике меньше концентрации собственных носителей заряда в чистом полупроводнике. Это связано с тем, что с увеличением концентрации основных носителей заряда возрастает роль рекомбинаций, вследствие чего концентрация неосновных носителей заряда уменьшается. Равновесие достигается, когда при данной температуре произведение концентраций носителей заряда в примесном полупроводнике становится равным произведению концентраций носителей заряда в чистом полупроводнике.
Зависимость концентрации носителей заряда от температуры накладывает ограничения на температурный диапазон применения полупроводниковых приборов. Рабочий диапазон температур характеризуется существенным превышением в примесных полупроводниках концентрации основных носителей заряда над неосновными (nn » pn и рp » np) при концентрации основных носителей заряда, близкой к концентрации внесенной примеси (nn ≈ NД и
рp ≈ NА).
При температуре ниже рабочего диапазона концентрация неосновных носителей заряда, создаваемая термогенерацией, ничтожно мала. Основную роль здесь играет понижение концентрации основных носителей заряда (и уменьшение электрической проводимости) вследствие уменьшения количества ионизированных атомов примеси. Нижний температурный предел работы полупроводниковых приборов составляет от минус 55° до минус 60°С.
Что такое основные и не основные носители заряда?
В полупроводниках носителями заряда являются электроны и дырки. Отношение их концентраций определяет тип проводимости полупроводника.
Если значительно преобладают электроны, то такой полупроводник называется полупроводником n-типа. Электроны, в этом случае, называются основными носителями заряда, а дырки — неосновными.
Соответственно, если преобладают дырки, то полупроводник является полупроводником p-типа, дырки — основными носителями, а электроны неосновными.
Если положительный потенциал приложен к p-области, то потенциальный барьер понижается (прямое смещение). В этом случае с ростом приложенного напряжения экспоненциально возрастает число основных носителей, способных преодолеть барьер. Как только эти носители миновали p — n-переход, они становятся неосновными. Поэтому концентрация неосновных носителей по обе стороны перехода увеличивается (инжекция неосновных носителей). Одновременно в p- и n-областях через контакты входят равные количества основных носителей, вызывающих компенсацию зарядов инжектированных носителей. В результате возрастает скорость рекомбинации и появляется отличный от нуля ток через переход, который с ростом напряжения экспоненциально возрастает.
Приложение отрицательного потенциала к p-области (обратное смещение) приводит к повышению потенциального барьера. Диффузия основных носителей через переход становится пренебрежимо малой. В то же время потоки неосновных носителей не изменяются (для них барьера не существует). Неосновные носители заряда втягиваются электрическим полем в p—n-переход и проходят через него в соседнюю область (экстракция неосновных носителей).
На добавочный вопрос: при приложении обратного напряжения кроме диффузии неосновные носители «подгоняются» еще и эл. полем
Что такое основные и неосновные носители тока в примесных полупроводниках
§ 72. Собственная и примесная проводимости полупроводников
Собственная проводимость полупроводника увеличивается с повышением температуры. При неизменной температуре наступает динамическое равновесие между процессом образования дырок и рекомбинаций электронов и дырок. При таком условии количество электронов проводимости и дырок в единице объема сохраняется постоянным.
Рис. 102. Электронная и дырочная примеси
Атом мышьяка, находясь в узле кристаллической решетки германия, потеряв электрон, становится положительным ионом.
Он прочно связан с кристаллической решеткой германия, поэтому в образовании тока участия не принимает.
Энергия, необходимая для перевода электрона из валентной зоны в зону проводимости (см. рис. 96), называется энергией активизации. У примесных носителей тока она обычно во много раз меньше, чем у носителя тока основного полупроводника. Поэтому при незначительном нагревании, освещении освобождаются главным образом электроны атомов примеси. На месте ушедшего электрона в атоме донора образуется дырка. Однако перемещения электронов в дырки почти не наблюдается, т. е. дополнительная дырочная проводимость, создаваемая донором, очень мала. Это объясняется следующим. По причине небольшого количества атомов примеси ее электроны проводимости редко оказываются рядом с дыркой и не могут ее заполнить. А электроны атомов основного полупроводника хотя и находятся вблизи дырок, но не в состоянии их занять ввиду своего гораздо более низкого энергетического уровня.
Небольшое добавление донорной примеси делает число свободных электронов проводимости в тысячи раз больше, чем число свободных электронов проводимости в чистом полупроводнике при тех же условиях. В полупроводнике с донорной примесью основными носителями заряда являются электроны. Такие полупроводники называются полупроводниками n-типа.
Примеси, захватывающие электроны у основного полупроводника и, следовательно, увеличивающие в нем число дырок, называются акцепторными (принимающими) примесями. В качестве таких примесей используются элементы, атомы которых имеют меньшее количество валентных электронов, чем атомы основного полупроводника. Так, по отношению к германию акцепторными являются примеси индия, алюминия.
На месте ушедшего из атома германия электрона образуется дырка, которая является свободным носителем положительного заряда. Эта дырка может быть заполнена электроном А из соседнего атома германия и т. д. В полупроводнике с акцепторной примесью основными носителями заряда являются дырки. Такие полупроводники называются полупроводниками р-типа.