Что такое открытость живых систем

Основные свойства живых систем

Что такое открытость живых систем. Смотреть фото Что такое открытость живых систем. Смотреть картинку Что такое открытость живых систем. Картинка про Что такое открытость живых систем. Фото Что такое открытость живых систем Что такое открытость живых систем. Смотреть фото Что такое открытость живых систем. Смотреть картинку Что такое открытость живых систем. Картинка про Что такое открытость живых систем. Фото Что такое открытость живых систем Что такое открытость живых систем. Смотреть фото Что такое открытость живых систем. Смотреть картинку Что такое открытость живых систем. Картинка про Что такое открытость живых систем. Фото Что такое открытость живых систем Что такое открытость живых систем. Смотреть фото Что такое открытость живых систем. Смотреть картинку Что такое открытость живых систем. Картинка про Что такое открытость живых систем. Фото Что такое открытость живых систем

Что такое открытость живых систем. Смотреть фото Что такое открытость живых систем. Смотреть картинку Что такое открытость живых систем. Картинка про Что такое открытость живых систем. Фото Что такое открытость живых систем

Что такое открытость живых систем. Смотреть фото Что такое открытость живых систем. Смотреть картинку Что такое открытость живых систем. Картинка про Что такое открытость живых систем. Фото Что такое открытость живых систем

1. Единство химического состава.Хотя в состав живых систем входят те же химические элементы, что и в объекты неживой природы, соотношение различных элементов в живом и неживом неодинаково. В живых организмах – 98% химического состава приходится на шесть элементов: кислород (–62%), углерод (–20%), водород (–10%), азот (–3%), кальций (–2,5%), фосфор (–1,0%). Кроме того, живые системы содержат совокупность сложных полимеров, в основном белки, нуклеиновые кислоты, ферменты и т.д., которые неживым системам не присущи.

2. Открытость живых систем. Живые системы – открытые системы. Живые системы используют внешние источники энергии в виде пищи, света и т.п. Через них проходят потоки веществ и энергии, благодаря чему в системах осуществляется обмен веществ – метаболизм. Основа метаболизма – анаболизм (ассимиляция), то есть синтез веществ, и катаболизм (диссимиляция), то есть распад сложных веществ на простые с выделением энергии, которая используется для биосинтеза.

3. Живые системысамоуправляющиеся, саморегулирующиеся, самоорганизующиеся системы.

Саморегуляция – свойство живых систем автоматически устанавливать и поддерживать на определенном уровне те или иные физиологические (или другие) показатели системы.Самоорганизация – свойство живой системы приспособляться к изменяющимся условиям за счет изменения структуры своей системы управления. При саморегуляции и самоорганизации управляющие факторы воздействуют на систему не извне, а возникают в ней самой в процессе переработки информации, которой живая система обменивается с внешней средой. Это означает, что живые системы – самоуправляющиесясистемы.

4. Живые системы – самовоспроизводящиеся системы. Живые системы существуют конечное время. Поддержание жизни связано с самовоспроизведением, благодаря чему живое существо воспроизводит себе подобных.

5. Изменчивость живых систем.Изменчивость связана с приобретением организмом новых признаков и свойств. Это явление противоположно наследственности и играет роль в процессе отбора организмов, наиболее приспособленных к конкретным условиям.

6. Способность к росту и развитию. Рост – увеличение в размерах и массе с сохранением общих черт строения; рост сопровождается развитием, то есть возникновением новых черт и качеств. Развитие может быть индивидуальным (онтогенез), когда последовательно проявляются все свойства организма, и историческим, которое сопровождается образованием новых видов и прогрессивным усложнением живой системы (филогенез).

Онтогенез – индивидуальное развитие организма, охватывающее все изменения от момента зарождения до окончания жизни.

Филогенез – историческое развитие организмов или эволюция органического мира.

7. Раздражимость– неотъемлемая черта всего живого. Раздражимость связана с передачей информации из внешней среды к живой системе и проявляется в виде реакций системы на внешние воздействия.

8. Целостность и дискретность. Живая система дискретна, так как состоит из отдельных, но взаимодействующих между собой частей, которые в свою очередь также являются живыми системами. Например: организм состоит из клеток, являющихся живыми системами; биоценоз состоит из совокупностей различных видов, которые также являются живыми системами.
С дискретностью связаны различные уровни организации живых систем, о чем будет сказано ниже. Вместе с тем живая система целостна, поскольку входящие в нее элементы обеспечивают выполнение своих функций не самостоятельно, а во взаимосвязи с другими элементами системы.

Специфика живого заключается в том, что ни один из перечисленных признаков (а их число составляет по данным разных ученых до 20-30) не является самым главным, определяющим для того, чтобы систему можно было назвать целостной живой системой. Только наличие всех этих признаков вместе взятых позволяет провести границу между живым и неживым в природе. Единственный способ дать определение живому – перечислить основные свойства живых систем.

23 Живая природа представляет собой сложно организованную, иерархичную систему. Выделяют несколько уровней организации живой материи

Что такое открытость живых систем. Смотреть фото Что такое открытость живых систем. Смотреть картинку Что такое открытость живых систем. Картинка про Что такое открытость живых систем. Фото Что такое открытость живых систем

1.Молекулярный. Любая живая система проявляется на уровне взаимодействия биологических макромолекул: нуклеиновых кислот, полисахаридов, а также других важных органических веществ.

3. Организм представляет собой целостную одноклеточную или многоклеточную живую систему, способную к самостоятельному существованию. Многоклеточный организм образован совокупностью тканей и органов, специализированных для выполнения различных функций.

4. Популяционно-видовой. Под видом понимают совокупность особей, сходных по структурно-функциональной организации, имеющих одинаковый кариотип и единое происхождение и занимающих определенный ареал обитания, свободно скрещивающихся между собой и дающих плодовитое потомство, характеризующихся сходным поведением и определенными взаимоотношениями с другими видами и факторами неживой природы. Совокупность организмов одного и того же вида, объединенная общим местом обитания, создает популяцию как систему надорганизменного порядка. В этой системе осуществляются простейшие, элементарные эволюционные преобразования.

24 Гипотезы происхождения жизни на Земле. Жизнь — одно из сложнейших явлений природы. Со времен глубокой древности она казалась таинственной и непознаваемой — вот почему по вопросам ее происхождения всегда шла острая борьба между материалистами и идеалистами. Приверженцы идеалистических взглядов считали (и считают) жизнь духовным, нематериальным началом, возникшим в результате божественного творения. Материалисты же, напротив, полагали, что жизнь на Земле могла возникнуть из неживой материи путем самозарождения (абиогенез) или занесения из других миров, т.е. является порождением других живых организмов (биогенез).

По современным представлениям, жизнь — это процесс существования сложных систем, состоящих из больших органических молекул и неорганических веществ и способных самовоспроизводиться, саморазвиваться и поддерживать свое существование в результате обмена энергией и веществом с окружающей средой.

С накоплением человеком знаний об окружающем мире, развитием естествознания изменялись взгляды на происхождение жизни, выдвигались новые гипотезы. Однако и сегодня вопрос о происхождении жизни еще окончательно не решен. Существует множество гипотез происхождения жизни. Наиболее важными из них являются следующие:

— Креационизм (жизнь была создана Творцом);

— Гипотезы самопроизвольного зарождения (самозарождение; жизнь возникала неоднократно из неживого вещества);

— Гипотеза стационарного состояния (жизнь существовала всегда);

— Гипотеза панспермии (жизнь занесена на Землю с других планет);

— Биохимические гипотезы (жизнь возникла в условиях Земли в ре зультате процессов, подчиняющихся физическим и химическим законам, т.е. в результате биохимической эволюции).

Креационизм.Согласно этой религиозной гипотезе, имеющей древние корни, все существующее во Вселенной, в том числе жизнь, было создано единой Силой — Творцом в результате нескольких актов сверхъестественного творения в прошлом. Организмы, населяющие сегодня Землю, происходят от сотворенных по отдельности основных типов живых существ. Сотворенные виды были с самого начала превосходно организованы и наделены способностью к некоторой изменчивости в определенных границах (микроэволюция). Этой гипотезы придерживаются последователи почти всех наиболее распространенных религиозных учений.

Традиционное иудейско-христианское представление о сотворении мира, изложенное в Книге Бытия, вызывало и продолжает вызывать споры. Однако существующие противоречия не опровергают концепцию творения. Религия, рассматривая вопрос о происхождении жизни, ищет ответ главным образом на вопросы «почему?» и «для чего?», а не на вопрос «каким образом?». Если наука в поисках истины широко использует наблюдение и эксперимент, то богословие постигает истину через божественное откровение и веру.

Процесс божественного сотворения мира представляется как имевший место лишь единожды и поэтому недоступный для наблюдения. В связи с этим гипотеза творения не может быть ни доказана, ни опровергнута и будет существовать всегда наряду с научными гипотезами происхождения жизни.

Гипотезы самозарождения.На протяжении тысячелетий люди верили в самопроизвольное зарождение жизни, считая его обычным способом появления живых существ из неживой материи. Полагали, что источником спонтанного зарождения служат либо неорганические соединения, либо гниющие органические остатки (концепция абиогенеза). Эта гипотеза была распространена в Древнем Китае, Вавилоне и Египте в качестве альтернативы креационизму, с которым она сосуществовала. Идея самозарождения высказывалась также философами Древней Греции и даже более ранними мыслителями, т.е. она, по-видимому, так же стара, как и само человечество. На протяжении столь длительной истории эта гипотеза видоизменялась, но по-прежнему оставалась ошибочной. Аристотель, которого часто провозгла шают основателем биологии, писал, что лягушки и насекомые заводятся в сырой почве. В средние века многим «удавалось» наблюдать зарождение разнообразных живых существ, таких как насекомые, черви, угри, мыши, в разлагающихся или гниющих остатках организмов. Эти «факты» считались весьма убедительными до тех пор, пока итальянский врач Франческо Реди (1626—1697) не подошел к проблеме возникновения жизни более строго и не подверг сомнению теорию спонтанного зарождения. В 1668 г. Реди проделал следующий опыт. Он поместил мертвых змей в разные сосуды, причем одни сосуды накрыл кисеей, а другие оставил открытыми. Налетевшие мухи отложили яйца на мертвых змеях в открытых сосудах; вскоре из яиц вывелись личинки. В накрытых сосудах личинок не оказалось (рис. 5.1). Таким образом, Реди доказал, что белые черви, появляющиеся в мясе змей, — личинки флорентийской мухи и что если мясо закрыть и предотвратить доступ мух, то оно не «произведет» червей. Опровергнув концепцию самозарождения, Реди высказал мысль о том, что жизнь может возникнуть только из предшествующей жизни (концепция биогенеза).

Подобных взглядов придерживался и голландский ученый Антони ван Левен-гук (1632—1723), который, используя микроскоп, открыл мельчайшие организмы, невидимые невооруженным глазом. Это были бактерии и протисты. Левенгук высказал мысль, что эти крошечные организмы, или «анималькулы», как он их называл, происходят от себе подобных.

Мнение Левенгука разделял итальянский ученый Ладзаро Спалланцани (1729— 1799), который решил доказать опытным путем, что микроорганизмы, часто обнаруживаемые в мясном бульоне, самопроизвольно в нем не зарождаются. С этой целью он помещал жидкость, богатую органическими веществами (мясной бульон), в сосуды, кипятил эту жидкость на огне, после чего сосуды герметично запаивал. В итоге бульон в сосудах оставался чистым и свободным от микроорганизмов. Своими опытами Спалланцани доказал невозможность самопроизвольного зарождения микроорганизмов.

Противники этой точки зрения утверждали, что жизнь в колбах не возникала по той причине, что воздух в них во время кипячения портится, поэтому по-прежнему признавали гипотезу самозарождения.

Тиндаль стерилизовал воздух, поступающий в колбы, пропуская его сквозь пламя или через вату. К концу 70-х гг. 19 в. практически все ученые признали, что живые организмы происходят только от других живых организмов, что означало возвращение к первоначальному вопросу: откуда же взялись первые организмы?

Гипотеза стационарного состояния.Согласно этой гипотезе Земля никогда не возникала, а существовала вечно; она всегда была способна поддерживать жизнь, а если и изменялась, то очень мало; виды также существовали всегда. Эту гипотезу называют иногда гипотезой этернизма (от лат. eternus — вечный).

Гипотеза этернизма была выдвинута немецким ученым В. Прейером в 1880 г. Взгляды Прейера поддерживал академик В.И. Вернадский, автор учения о биосфере.

Гипотеза панспермии.Гипотеза о появлении жизни на Земле в результате переноса с других планет неких зародышей жизни получила название

панспермии (от греч. pan — весь, всякий и sperma — семя). Эта гипотеза примыкает к гипотезе стационарного состояния. Ее приверженцы поддерживают мысль о вечном существовании жизни и выдвигают идею о внеземном ее происхождении. Одним из первых идею о космическом (внеземном) происхождении жизни высказал немецкий ученый Г. Рихтер в 1865 г. Согласно Рихтеру жизнь на Земле не возникла из неорганических веществ, а была занесена с других планет. В связи с этим вставали вопросы, насколько возможно такое перенесение с одной планеты на другую и как это могло быть осуществлено. Ответы искали в первую очередь в физике, и неудивительно, что первыми защитниками этих взглядов выступили представители этой науки, выдающиеся ученые Г. Гельмгольц, С. Аррениус, Дж. Томсон, П.П. Лазарев и др.

Согласно представлениям Томсона и Гельмгольца споры бактерий и других организмов могли быть занесены на Землю с метеоритами. Лабораторные исследования подтверждают высокую устойчивость живых организмов к неблагоприятным воздействиям, в частности к низким температурам. Например, споры и семена растений не погибали даже при длительном выдерживании в жидком кислороде или азоте.

Другие ученые высказывали мысль о перенесении «спор жизни» на Землю светом.

Современные приверженцы концепции панспермии (в числе которых — лауреат Нобелевской премии английский биофизик Ф. Крик) считают, что жизнь на Землю занесена случайно или преднамеренно космическими пришельцами.

К гипотезе панспермии примыкает точка зрения астрономов Ч. Вик-рамасингха (Шри-Ланка) и Ф. Хойла

(Великобритания). Они считают, что в космическом пространстве, в основном в газовых и пылевых облаках, в большом количестве присутствуют микроорганизмы, где они, по мнению ученых, и образуются. Далее эти микроорганизмы захватываются кометами, которые затем, проходя вблизи планет, «сеют зародыши жизни».

Существует множество гипотез происхождения жизни на Земле. Наиболее важными из них являются: креационизм, гипотезы самозарождения, стационарного состояния, панспермии, биохимические гипотезы.

Существуют одноклеточные организмы, тело которых целиком состоит из одной клетки. К этой группе относятся бактерии и протисты (простейшие животные и одноклеточные водоросли). Иногда их также называют бесклеточными, но термин одноклеточные употребляется чаще. Настоящие многоклеточные животные (Metazoa) и растения (Metaphyta) содержат множество клеток.

Некоторые свободноживущие клетки, например такие простейшие, как фораминиферы, могут достигать нескольких сантиметров; они всегда имеют много ядер. Клетки тонких растительных волокон достигают в длину одного метра, а отростки нервных клеток достигают у крупных животных нескольких метров. При такой длине объем этих клеток небольшой, а поверхность очень велика.

Как правило, клетки крупных животных и растений лишь немногим больше клеток мелких организмов. Слон больше мыши не потому, что его клетки крупнее, а в основном потому, что самих клеток значительно больше. Существуют группы животных, например коловратки и нематоды, у которых количество клеток в организме остается постоянным. Таким образом, хотя крупные виды нематод имеют большее количество клеток, чем мелкие, основное различие в размерах обусловлено в этом случае все же большими размерами клеток.

Мелкие организмы, такие, как коловратки, состоят всего из нескольких сотен клеток. Для сравнения: в человеческом организме насчитывается ок. 1014 клеток, в нем каждую секунду погибают и замещаются новыми 3 млн. эритроцитов, и это всего одна десятимиллионная часть от общего количества клеток тела.

Источник

Открытость живых систем

Автор работы: Пользователь скрыл имя, 15 Мая 2012 в 17:40, реферат

Описание работы

М.Эйгеном на основе неравновесной термодинамики и теории информации разработана концепция самоорганизации материи. Эйген ограничивается моделированием добиологической эволюции макромолекул, но развитые им идеи и методы имеют более общее принципиальное значение. Так же как и работы школы Пригожина, работы Эйгена вышли за рамки частных наук и имеют общенаучное методологическое значение.
«Согласно теории Эйгена, самоорганизация не является очевидным свойством материи, которое обязательно проявляется при любых обстоятельствах. Должны быть выполнены определенные внутренние и внешние условия, прежде чем такой процесс станет неизбежным. Самоорганизация начинается с флуктуации. Для возникновения процесса самоорганизации необходимы инструктивные свойства системы на микроуровне».

Содержание работы
Файлы: 1 файл

Открытость живых систем.docx

Открытость живых систем……………………………………………………. 6

«Развитие системы происходит за счет внутренних механизмов, в результате процессов самоорганизации и за счет внешних управляющих воздействий». [1] cтр 271

М.Эйгеном на основе неравновесной термодинамики и теории информации разработана концепция самоорганизации материи. Эйген ограничивается моделированием добиологической эволюции макромолекул, но развитые им идеи и методы имеют более общее принципиальное значение. Так же как и работы школы Пригожина, работы Эйгена вышли за рамки частных наук и имеют общенаучное методологическое значение.

«Согласно теории Эйгена, самоорганизация не является очевидным свойством материи, которое обязательно проявляется при любых обстоятельствах. Должны быть выполнены определенные внутренние и внешние условия, прежде чем такой процесс станет неизбежным. Самоорганизация начинается с флуктуации. Для возникновения процесса самоорганизации необходимы инструктивные свойства системы на микроуровне». [2] cтр 279

Инструкция требует информации, которая кодирует определенные функции. Для самоорганизованных систем интерес представляет функция воспроизведения или сохранения ее собственного информационного содержания. Для возникновения эволюции существенно не количество информации, а инструктирующие свойства информации; важно не количество, а ценность информации, которая непосредственно связана с ее используемостью.

1.Мир живого как система.

Среди живых систем нет двух одинаковых особей, популяций, видов и др. Это способствует их адаптации к внешней среде.

«Вместе с тем сложная организация немыслима без целостности. Целостность системы означает несводимость свойств системы к сумме свойств ее элементов. Целостность порождается структурой системы, типом связей между ее элементами. Биологические системы отличаются высоким уровнем целостности».[3] cтр 93

«Кроме стационарных, биологические системы имеют и автоколебательные состояния, когда значения параметров колеблются во времени с определенной амплитудой. Такие состояния являются основой периодических биологических процессов, биологических ритмов, биологических часов и др».[4] cтр 127

Мир самоорганизующихся систем гораздо богаче, чем мир закрытых, линейных систем. Вместе с тем его сложнее моделировать. Как правило, для решения большинства возникающих здесь нелинейных уравнений требуется сочетание современных аналитических методов и вычислительных экспериментов. Синергетика открывает для точного, количественного, математического исследования такие стороны мира, как его нестабильность, многообразие путей изменения и развития, раскрывает условия существования и устойчивого развития сложных структур, позволяет моделировать катастрофические ситуации и т.п.

2.Открытость живых систем.

Итак, предметом синергетики являются сложные самоорганизующиеся системы. Один из основоположников синергетики Г. Хакен определяет понятие самоорганизующейся системы следующим образом:

« Мы называем систему самоорганизующейся, если она без специфического воздействия извне обретает какую-то пространственную, временную или функциональную структуру. Под специфическим внешним воздействием мы понимаем такое, которое навязывает системе структуру или функционирование. В случае же самоорганизующихся систем испытывается извне неспецифическое воздействие. Например, жидкость, подогреваемая снизу, совершенно равномерно обретает в результате самоорганизации макроструктуру, образуя шестиугольные ячейки».[6] cтр 140

Но если большинство систем Вселенной носит открытый характер, то это значит, что во Вселенной доминируют не стабильность и равновесие, а неустойчивость и неравновесность. Вследствие этого Вселенная оказывается способной к развитию, эволюции, самоорганизации. Стабильные и равновесные системы не способны к самоорганизации, они являются тупиками эволюции.

Неравновесные системы благодаря избирательности к внешним воздействиям среды воспринимают различия во внешней среде и «учитывают» их в своем функционировании. При этом некоторые слабые воздействия могут оказывать большее влияние на эволюцию системы, чем воздействия, хотя и более сильные, но не адекватные собственным тенденциям системы. Иначе говоря, на нелинейные системы не распространяется принцип суперпозиции: здесь возможны ситуации, когда эффект от совместного действия причин А и В не имеет ничего общего с результатами воздействия А и В по отдельности.[8] cтр 329

Для появления согласованных направленных процессов в системе необходимо использование информации в процессе функционирования системы. Если использования нет, то новые признаки у элементов появляются независимо от того, какие признаки есть у других элементов. Если нет использования информации, то нет ее накопления во внешней среде, а, следовательно, нет передачи накопленной информации из внешней среды в систему. Организация в системе связана с локализацией элементов, обладающих определенными признаками, с концентрацией этих элементов, то есть образованием диссипативной структуры. Локализованные диссипативные структуры имеют способность накапливать информацию за счет своего рода «примитивной памяти». Такая локализация происходит благодаря самоинструктирующему процессу использования информации.

В процессе использования информации происходит отбор тех элементов-признаков, которые дают преимущества в ходе развития. Использование информации не является ее атрибутом, а лишь свойством, проявляющимся в определенных условиях.

В самоорганизующейся системе возможный максимальный беспорядок увеличивается за счет присоединения новых элементов к системе. Но простое добавление элементов в систему еще не превращает ее в самоорганизующуюся. Во время добавления элементов к системе энтропия системы должна сохраняться постоянной. Для выполнения этого условия необходимо выделение отрицательной энтропии из окружающей среды, т.е. дополнительный ввод энергии, информации в систему, который выражается в передаче накопленной информации из внешней среды в систему.

Естественный отбор означает сравнительную оценку фенотипов применительно к данной экологической нише, т.е. поиск оптимальной ценности.

«Обращаясь к вышеизложенной концептуальной модели развития, отметим, что этапу преобразующего отбора соответствует состояние неустойчивости, т.е. этап зарождения и формирования новой системы. Переход от этапа формирования к эволюции отобранного состояния можно рассматривать как скачок в развитии».[9] cтр 440

Источник

1. Мир живого как система систем. 6

2.Открытость-свойство реальных систем. 10

§ 2.2. Неравновесность. 13

§ 2.3. Нелинейность. 13

3. Особенности описания сложных систем. 18

Список литературы.. 31

Развитие системы происходит за счет внутренних механизмов, в результате процессов самоорганизации и за счет внешних управляющих воздействий. [1]

М.Эйгеном на основе неравновесной термодинамики и теории информации разработана концепция самоорганизации материи. Эйген ограничивается моделированием добиологической эволюции макромолекул, но развитые им идеи и методы имеют более общее принципиальное значение. Так же как и работы школы Пригожина, работы Эйгена вышли за рамки частных наук и имеют общенаучное методологическое значение.

Согласно теории Эйгена, самоорганизация не является очевидным свойством материи, которое обязательно проявляется при любых обстоятельствах.[2] Должны быть выполнены определенные внутренние и внешние условия, прежде чем такой процесс станет неизбежным. Самоорганизация начинается с флуктуации. Для возникновения процесса самоорганизации необходимы инструктивные свойства системы на микроуровне.

Инструкция требует информации, которая кодирует определенные функции. Для самоорганизованных систем интерес представляет функция воспроизведения или сохранения ее собственного информационного содержания. Для возникновения эволюции существенно не количество информации, а инструктирующие свойства информации; важно не количество, а ценность информации, которая непосредственно связана с ее используемостью.

1. Мир живого как система систем.

Среди живых систем нет двух одинаковых особей, популяций, видов и др. Это способствует их адаптации к внешней среде.

Вместе с тем сложная организация немыслима без целостности. Целостность системы означает несводимость свойств системы к сумме свойств ее элементов. Целостность порождается структурой системы, типом связей между ее элементами. Биологические системы отличаются высоким уровнем целостности.[3]

Кроме стационарных, биологические системы имеют и автоколебательные состояния, когда значения параметров колеблются во времени с определенной амплитудой. Такие состояния являются основой периодических биологических процессов, биологических ритмов, биологических часов и др.[4]

Человек всегда стремился постичь природу сложного, пытаясь ответить на вопросы: как ориентироваться в сложном и нестабильном мире? Какова природа сложного и каковы законы его функционирования и развития? В какой степени предсказуемо поведение сложных систем? Среди сложных систем особый интерес вызывают самоорганизующиеся системы. К такого рода сложным открытым самоорганизующимся системам относятся биологические и социальные системы, которые более всего значимы для человека.

Мир самоорганизующихся систем гораздо богаче, чем мир закрытых, линейных систем. Вместе с тем его сложнее моделировать. Как правило, для решения большинства возникающих здесь нелинейных уравнений требуется сочетание современных аналитических методов и вычислительных экспериментов. Синергетика открывает для точного, количественного, математического исследования такие стороны мира, как его нестабильность, многообразие путей изменения и развития, раскрывает условия существования и устойчивого развития сложных структур, позволяет моделировать катастрофические ситуации и т.п.

Методами синергетики осуществлено моделирование многих сложных самоорганизующихся систем: от морфогенеза в биологии и некоторых аспектов функционирования мозга до флаттера крыла самолета, от молекулярной физики и автоколебательных процессов в химии до эволюции звезд и космологических процессов, от электронных приборов до формирования общественного мнения и демографических процессов. Основной вопрос синергетики — существуют ли общие закономерности, управляющие возникновением самоорганизующихся систем, их структур и функций.

2.Открытость-свойство реальных систем § 2.1.Открытость.

Итак, предметом синергетики являются сложные самоорганизующиеся системы. Один из основоположников синергетики Г. Хакен определяет понятие самоорганизующейся системы следующим образом:[6]

Мы называем систему самоорганизующейся, если она без специфического воздействия извне обретает какую-то пространственную, временную или функциональную структуру. Под специфическим внешним воздействием мы понимаем такое, которое навязывает системе структуру или функционирование. В случае же самоорганизующихся систем испытывается извне неспецифическое воздействие. Например, жидкость, подогреваемая снизу, совершенно равномерно обретает в результате самоорганизации макроструктуру, образуя шестиугольные ячейки.

Именно по отношению к закрытым системам были сформулированы два начала термодинамики. В соответствии с первым началом в закрытой системе энергия сохраняется, хотя может приобретать различные формы. Второе начало термодинамики гласит, что в замкнутой системе энтропия не может убывать, а лишь возрастает до тех пор, пока не достигнет максимума. Согласно этому началу, запас энергии во Вселенной иссякает, а вся Вселенная неизбежно приближается к «тепловой смерти». Ход событий во Вселенной невозможно повернуть вспять, чтобы воспрепятствовать возрастанию энтропии. Со временем способность Вселенной поддерживать организованные структуры ослабевает, и такие структуры распадаются на менее организованные, которые в большей мере наделены случайными элементами. По мере того как иссякает запас энергии и возрастает энтропия, в системе нивелируются различия. Это значит, что Вселенную ждет все более однородное будущее.

Вместе с тем уже во второй половине XIX в., и особенно в XX в., биология, прежде всего теория эволюции Дарвина, убедительно показала, что эволюция Вселенной не приводит к снижению уровня организации и обеднению разнообразия форм материи. Скорее, наоборот. История и эволюция Вселенной развивают ее от простого к сложному, от низших форм организации к высшим, от менее организованного к более организованному. Иначе говоря, старея, Вселенная обретает все более сложную организацию. Попытки согласовать второе начало термодинамики с выводами биологических и социальных наук долгое время были безуспешными. Классическая термодинамика не могла описывать закономерности открытых систем. Такая возможность появилась только с переходом естествознания к изучению открытых систем.[7]

Но если большинство систем Вселенной носит открытый характер, то это значит, что во Вселенной доминируют не стабильность и равновесие, а неустойчивость и неравновесность. Вследствие этого Вселенная оказывается способной к развитию, эволюции, самоорганизации. Стабильные и равновесные системы не способны к самоорганизации, они являются тупиками эволюции.

Неравновесные системы благодаря избирательности к внешним воздействиям среды воспринимают различия во внешней среде и «учитывают» их в своем функционировании. При этом некоторые слабые воздействия могут оказывать большее влияние на эволюцию системы, чем воздействия, хотя и более сильные, но не адекватные собственным тенденциям системы. Иначе говоря, на нелинейные системы не распространяется принцип суперпозиции: здесь возможны ситуации, когда эффект от совместного действия причин А и В не имеет ничего общего с результатами воздействия А и В по отдельности.[8]

Нелинейные системы, являясь неравновесными и открытыми, сами создают и поддерживают неоднородности в среде. В таких условиях между системой и средой могут иногда создаваться отношения обратной положительной связи, т.е. система влияет на свою среду таким образом, что в среде вырабатываются условия, которые в свою очередь обусловливают изменения в самой этой системе. Последствия такого рода взаимодействия открытой системы и ее среды могут быть самыми неожиданными и необычными.

В переломный момент самоорганизации принципиально неизвестно, в каком направлении будет происходить дальнейшее развитие: станет ли состояние системы хаотическим или она перейдет на новый, более высокий уровень упорядоченности и организации. В точке бифуркации система как бы колеблется перед выбором того или иного пути организации, пути развития. В таком состоянии небольшая флуктуация может послужить началом эволюции системы в некотором определенном направлении, одновременно отсекая при этом возможности развития в других направлениях.

Переход от Хаоса к Порядку вполне поддается математическому моделированию.[10] Более того, в природе существует не так уж много универсальных моделей такого перехода. Качественные переходы в самых разных сферах действительности подчиняются подчас одному и тому же математическому сценарию.

3. Особенности описания сложных систем

Будем считать систему сложной, если она состоит из большого числа взаимосвязанных и взаимодействующих между собой элементов, каждый из которых может быть представлен в виде системы. В качестве содержания теории развития сложных систем можно рассматривать совокупность методологических подходов, позволяющих строить модели процессов развития сложных систем, используя достижения различных наук, а также методы анализа получаемых моделей.

Обычное для теории простых систем требование адекватности модели оригиналу для моделей сложных систем приводит к непомерному росту их размерности, приводящему к их неосуществимости. Ситуация для построения теории кажется безнадежной, она действительно оказывается таковой, если не произвести некоторого разумного отступления от непомерных требований адекватности теории и вместе с тем не отступать от требований ее объективности.

Теоретические модели систем строятся на основании синтеза обобщенных представлений об отдельных слагающих их процессах и явлениях, основываясь на фундаментальных законах, описывающих поведение вещества, энергии, информации. Теоретическая модель описывает абстрактную систему, и для первоначального вывода ее соотношений не требуется данных о наблюдениях за параметрами конкретной системы. Модель строится на основе обобщения априорных представлений о структуре системы и механизма связей между слагающими ее элементами.

Наряду с эмпирическими и теоретическими используются и полуэмпирические модели. Для них математические выражения получаются теоретическим путем с точностью до эмпирически получаемых констант, либо в общей системе соотношений моделей наряду с теоретическими выражениями используются и эмпирические.

Для некоторых систем единственная возможность оценить правильность теоретической модели состоит в проведении численных экспериментов с использованием математических моделей. Поведение модели не должно противоречить общим представлениям о закономерностях поведения процессов.

Теоретическая модель описывает не конкретную систему, а класс систем. Поэтому проверка теоретической модели возможна при исследовании конкретных частично или полностью наблюдаемых систем. Затем проверенную таким образом теоретическую модель можно применять для описания и изучения конкретных ненаблюдаемых систем, относящихся к тому же либо к более узкому классу.

Строго обосновать выражение «модели относятся к одному и тому же классу» несколько затруднительно. Мы будем рассматривать класс развивающихся систем, к которому могут относиться системы искусственные, живой и неживой природы, социальные и т.п.

Между эмпирическими, полуэмпирическими и теоретическими моделями не существует резкой границы. Любые математические модели, в конечном счете, выражаются через параметры, определяемые экспериментальным путем. Все различия между тремя упомянутыми типами моделей сводятся к степени общности представлений, относящихся к данной модели, а именно: или они относятся непосредственно к изучаемому конкретному объекту, или связаны с классом таких объектов, или же, наконец, связаны с классом явлений, наблюдающихся в природе

Большинство процессов столь сложно, что при современном состоянии науки очень редко удается создать их универсальную теорию, действующую во все времена и на всех участках рассматриваемого процесса. Вместо этого нужно посредством экспериментов и наблюдений постараться понять ведущие факторы, которые определяют поведение системы. Выделив эти факторы, следует абстрагироваться от других, менее существенных, построить более простую математическую модель, которая учитывает лишь выделенные факторы. К внешним факторам будем относить такие, которые влияют на параметры изучаемой модели, но сами на исследуемом временном отрезке не испытывают обратного влияния.

В синергетике делается попытка описать развитие мира в соответствии с его внутренними законами развития, опираясь при этом на результаты всего комплекса естественных наук. Для нашего анализа представляется важным то, что одним из основных понятий синергетики является понятие нелинейности. [16]

Математические исследования природы линейности и нелинейности, так или иначе, обусловливались потребностями развития физики. Постановка задачи о нелинейности связана с именами Рэлея, Д’Аламбера, Пуанкаре, которые исследовали математическую модель струны и другие модели при помощи дифференциальных уравнений.

В 30-е годы XX в. на первое место в области обыкновенных дифференциальных уравнений встают проблемы качественной теории. Значительное влияние на ее развитие оказывают потребности физики, особенно нелинейной теории колебаний. Физикам Андронову и Мандельштаму принадлежит здесь целый ряд важных математических идей и разработок. Мандельштам первым обратил внимание на необходимость выработки в физике нового «нелинейного мышления». До его работ существовали лишь отдельные частные подходы к анализу отдельных нелинейностей в различных физических задачах. Роль Мандельштама состоит в том, что он отчетливо понял всеобщность нелинейных явлений, сумел увидеть, что возможности линейной теории принципиально ограничены, что за ее пределами лежит огромный круг явлений, требующих разработки новых нелинейных методов анализа.

Возникают вопросы: какова роль нелинейности, зачем необходимо разрабатывать нелинейные модели, если большое количество физических процессов можно объяснить с помощью линейных моделей или же свести нелинейные задачи к линейным? Ответ на эти вопросы состоит в следующем: линейные задачи рассматривают лишь рост, течения процессов, нелинейность же описывает фазу их стабилизации, возможность существования нескольких типов структур. В то же время нелинейность выражает тенденцию различных физических процессов к неустойчивости, тенденцию перехода к хаотическому движению. Таким образом, сочетание линейности и нелинейности дает более адекватное отражение реальных процессов, так как с их помощью выражается единство устойчивости и изменчивости, являющееся ядром сущности всякого движения.

Решение многочисленных проблем, возникающих при описании перехода от регулярного к стохастическому движению, связывается с развитием стохастической или хаотической динамики.

Удалось показать, что с помощью уравнений, предложенных Х.Лоренцем, либо систем уравнений, включающих странные аттракторы, возможно описание поведения некоторых типов плазменных волн, химических реакций в открытых системах, циклов солнечной активности. закономерностей изменения численности биологических сообществ, исследование вопросов, связанных с генерацией лазеров в некотором диапазоне параметров.

Синергетика, используя единство линейности и нелинейности, выражает в теории те аспекты материального единства мира, которые связаны с общими свойствами саморазвития сложных систем.[17] Нелинейные уравнения, составляющие основу этой теории, позволяют с помощью достаточно простых моделей описывать самые различные материальные процессы. Причем, даже не решая этих уравнений, можно выработать представление о качественно новых чертах тех процессов, которые этими уравнениями описываются.

Теория описания сложных хаотических процессов М.Фейгенбаума представляет интерес, ибо автор, по существу, исходит из признания материального единства мира и пытается найти то общее, что присуще хаотическим процессам различной природы. Эта теория показывает, что поведение всех диссипативных систем вблизи перехода к хаотическому движению носит универсальный характер. Теория дает возможность описать поведение той или иной системы за пределами возможности других математических представлений.

Для выявления наиболее общих закономерностей поведения нужны макромодели, которые имеют наиболее высокий уровень обобщения. Возможно, такой моделью может быть модель процесса развития, построенная на основе информационной концепции. [18]

Для появления согласованных направленных процессов в системе необходимо использование информации в процессе функционирования системы. Если использования нет, то новые признаки у элементов появляются независимо от того, какие признаки есть у других элементов. Если нет использования информации, то нет ее накопления во внешней среде, а, следовательно, нет передачи накопленной информации из внешней среды в систему. Организация в системе связана с локализацией элементов, обладающих определенными признаками, с концентрацией этих элементов, то есть образованием диссипативной структуры. Локализованные диссипативные структуры имеют способность накапливать информацию за счет своего рода «примитивной памяти». Такая локализация происходит благодаря самоинструктирующему процессу использования информации.

В процессе использования информации происходит отбор тех элементов-признаков, которые дают преимущества в ходе развития. Использование информации не является ее атрибутом, а лишь свойством, проявляющимся в определенных условиях.

В самоорганизующейся системе возможный максимальный беспорядок увеличивается за счет присоединения новых элементов к системе. Но простое добавление элементов в систему еще не превращает ее в самоорганизующуюся. Во время добавления элементов к системе энтропия системы должна сохраняться постоянной. Для выполнения этого условия необходимо выделение отрицательной энтропии из окружающей среды, т.е. дополнительный ввод энергии, информации в систему, который выражается в передаче накопленной информации из внешней среды в систему.

Естественный отбор означает сравнительную оценку фенотипов применительно к данной экологической нише, т.е. поиск оптимальной ценности.

Обращаясь к вышеизложенной концептуальной модели развития, отметим, что этапу преобразующего отбора соответствует состояние неустойчивости, т.е. этап зарождения и формирования новой системы. Переход от этапа формирования к эволюции отобранного состояния можно рассматривать как скачок в развитии.[19]

1. Хакен Г. Информация и самоорганизация. Макроскопический подход к сложным системам. М., 1991.

2. Николис Г., Пригожин И. Познание сложного. М., 1990;

3. Пригожин И., Стенгерс И. Время. Хаос и Квант. М., 1994;

4. Князева Е.Н., Курдюков С.П. Основания синергетики. СПб., 2002;

5. Капица С.П., Курдюмов С.П., Малинецкий Г.Г. Синергетика и прогнозы будущего. М., 1997.

[1] Хакен Г. Информация и самоорганизация. Макроскопический подход к сложным системам. М., 1991. С. 271

[2] Хакен Г. Информация и самоорганизация. Макроскопический подход к сложным системам. М., 1991. С. 279

[3] Пригожин И., Стенгерс И. Время. Хаос и Квант. М., 1994 С. 93

[4] Пригожин И., Стенгерс И. Время. Хаос и Квант. М., 1994 С. 127

[5] Николис Г., Пригожин И. Познание сложного. М., 1990 С. 227

Хакен Г. Информация и самоорганизация. Макроскопический подход к сложным системам. М., 1991. С. 140

[7] Николис Г., Пригожин И. Познание сложного. М., 1990 С. 293

[8] Капица С.П., Курдюмов С.П., Малинецкий Г.Г. Синергетика и прогнозы будущего. М., 1997. С. 329

[9] Капица С.П., Курдюмов С.П., Малинецкий Г.Г. Синергетика и прогнозы будущего. М., 1997. С. 361

[10] Пригожин И., Стенгерс И. Время. Хаос и Квант. М., 1994 С. 287

[11] Капица С.П., Курдюмов С.П., Малинецкий Г.Г. Синергетика и прогнозы будущего. М., 1997. С. 418

[12] Капица С.П., Курдюмов С.П., Малинецкий Г.Г. Синергетика и прогнозы будущего. М., 1997. С. 183

[13] Капица С.П., Курдюмов С.П., Малинецкий Г.Г. Синергетика и прогнозы будущего. М., 1997. С. 228

[14] Капица С.П., Курдюмов С.П., Малинецкий Г.Г. Синергетика и прогнозы будущего. М., 1997. С. 380

[15] Князева Е.Н., Курдюков С.П. Основания синергетики. СПб., 2002 С. 132

[16] Князева Е.Н., Курдюков С.П. Основания синергетики. СПб., 2002 С. 138

[17] Князева Е.Н., Курдюков С.П. Основания синергетики. СПб., 2002 С. 148

[18] Капица С.П., Курдюмов С.П., Малинецкий Г.Г. Синергетика и прогнозы будущего. М., 1997. С. 219

[19] Капица С.П., Курдюмов С.П., Малинецкий Г.Г. Синергетика и прогнозы будущего. М., 1997. С. 440

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *