Рассмотрим отношение площадей двух квадратов. Если сторону одного квадрата обозначим через т, а сторону другого — через п, то площади будут соответственно равны т 2 и п 2 (черт. 379).
Значит, можно сказать, что отношение площадей двух квадратов равно квадрату отношения их сторон.
На чертеже 379 отношение сторон квадратов равно 3, отношение их площадей равно 3 2 = 9.
2. Отношение площадей двух подобных треугольников.
В этих треугольниках из вершин В и В’ проведём высоты и обозначим их через h и h‘. Площадь первого треугольника будет равна AC•h /2, а площадь второго треугольника A’C’•h’ /2.
Обозначив площадь первого треугольника через S, а площадь второго — через S’ получим: S /S’ = AC•h /A’C’•h’ или S /S’ = AC /A’C’ • h /h’
Итак, площади подобных треугольников относятся как квадраты сходственных сторон.
Значит, можно сказать, что отношение площадей двух подобных треугольников равно квадрату отношения их сходственных сторон.
3. Отношение площадей подобных многоугольников.
Пусть ABCDE и A’B’C’D’E’ — подобные многоугольники (черт. 381).
Известно, что /\ AВС /\ A’В’С’; /\ ACD /\ A’C’D’ и /\ ADE /\ A’D’E’ (§90). Кроме того,
;
Так как вторые отнoшения этих пропорций равны, что вытекает из подобия многоугольников, то
Используя свойство ряда равных отношений получим:
, или
где S и S’ — площади данных подобных многоугольников.
Следовательно, площади подобных многоугольников относятся как квадраты сходственных сторон.
Полученную формулу можно преобразовать к такому виду: S /S’ = ( AВ /A’В’ ) 2
1. Сторона первого квадрата больше стороны второго квадрата в 2 раза (в 5 раз). Во сколько раз площадь первого квадрата больше площади второго квадрата?
2. Сторона первого квадрата составляет 1 /3 (0,1) стороны второго квадрата. Какую часть площадь первого квадрата составляет от площади второго квадрата?
3. Коэффициент подобия в подобных многоугольниках равен 4 ( 1 /5; 0,4; 2,5). Чему равно отношение их площадей?
4. Отношение площадей подобных многоугольников равно 36 (100; 0,09). Чему равно отношение сходственных сторон этих многоугольников?
Главная > Учебные материалы > Математика: Планиметрия. Страница 12
1.Площадь прямоугольника
Отношение площадей двух прямоугольников с общим основанием равно отношению двух других их сторон.
Доказательство.
Пусть ABCD и ABC’D’ два прямоугольника с общим основанием АВ. (Рис.1) Разобьем сторону AD на n частей. Тогда длина AD’ составит:
Разделив все части неравенства на AD, получим:
Тогда и площадь прямоугольника AD’C’B также будет заключена в пределах:
Разделив все части неравенства на S, получим:
Отсюда следует, что два соотношения площадей и сторон заключены между двумя соотношениями, т.е.:
При достаточно большом n можно сделать вывод, что они равны.
Рис.1 Площадь прямоугольника.
Площадь прямоугольника со сторонами a и b
Теперь рассчитаем площадь прямоугольника. Возьмем квадрат, который имеет площадь равную единице. И сравним его с прямоугольником, у которого основание равно единице, а другая сторона равна а. Получим:
Теперь сравним прямоугольник со сторонами а и 1 с прямоугольником со сторонами а и b. Получим:
Перемножив два равенства между собой, получим:
2.Площадь параллелограмма
Площадь параллелограмма равна произведению его стороны на высоту, проведенную к этой стороне.
Следовательно площадь параллелограмма равна:
Т.е. площадь параллелограмма равна произведению основания на высоту, проведенную к нему.
Рис.2 Площадь параллелограмма.
3.Площадь треугольника
Пусть дан треугольник АВС. (Рис.3) Достроим его до параллелограмма. Тогда площадь треугольника ABC будет равна половине площади параллелограмма ABEC. Т.е.:
Т.е. площадь треугольника равна половине произведения его стороны на высоту, опущенную к ней. Или площадь треугольника равна половине произведения двух его сторон на синус угла между ними.
Запишем еще две формулы для радиусов вписанной и описанной окружностей треугольника.
Рис.3 Площадь треугольника.
4.Площадь круга
Кругом называется геометрическая фигура, которая состоит из множества точек, расстояние от которых до данной точки не превосходит определенной величины, называемой радиусом. Где данная точка это центр круга.
Площадь круга равна половине произведения его радиуса и длины окружности.
Доказательство. Пусть АО = R радиус круга. Построим два многоугольника. Один вписанный в круг, а другой описанный около круга. Их площадь обозначим Sоп и Sвп. Тогда их площади будут равны:
Отсюда можно сделать вывод, что при достаточно большом числе n, площадь круга будет равняться половине произведения длины окружности на радиус, т.к. cos α будет стремиться к единице.
Рис.4 Площадь круга.
5.Площадь подобных фигур
Пусть даны две побные фигуры G и G’ (Рис.5). Коэффициент подобия равен k. Разобьем фигуры на треугольники. Тогда площадь каждой фигуры будет равна сумме площадей треугольников, т.е.:
Отсюда можно сделать вывод, что отношение площадей подобных фигур равно квадрату их коэффициента подобия.
Рис.5 Соотношение между углами и сторонами в треугольнике.
6.Площадь трапеции
Пусть дана трапеция ABCD (Рис.6). Проведем диагональ АС. Получим два треугольника АВС и АСD. Проведем высоты СЕ и АF. Тогда площадь трапеции будет равна сумме площадей треугольников АВС и ACD, т.е.:
Отсюда можно сделать вывод, что площадь трапеции равна произведению полусуммы ее оснований на высоту.
Рис.6 Площадь трапеции.
7.Пример 1
Докажите, что сумма площадей квадратов, построенных на катетах прямоугольного треугольника, равна площади квадрата, построенного на гипотенузе.
Доказательство:
Пусть дан прямоугольный треугольник АВС. Построим квадраты ABED, ACPK на катетах АВ, АС и квадрат ВСRF на гипотенузе ВС (Рис.7). Тогда площади этих квадратов будут равны:
По теореме Пифагора нам известно, что квадрат гипотенузы равен сумме квадратов катетов, или:
Подставим сюда выше записанные выражения и получим:
Отсюда можно сделать вывод, что площадь квадрата, построенного на гипотенузе прямоугольного треугольника, равна сумме площадей квадратов, построенных на его катетах.
Рис.7 Задача. Докажите, что сумма площадей квадратов.
Пример 2
Параллелограмм и прямоугольник имеют одинаковые стороны. Найдите острый угол параллелограмма, если площадь его равна половине площади прямоугольника.
Решение:
Запишем формулы площадей прямоугольника и параллелограмма:
Подставим эти выражения в соотношение S2 = 2 S1:
Следовательно, угол α = 30°.
Рис.8 Задача. Параллелограмм и прямоугольник имеют одинаковые стороны.
Пример 3
Найдите площадь прямоугольного треугольника, если его высота делит гипотенузу на отрезки 36 см и 64 см.
Решение:
По теореме Пифагора составим следующие соотношения:
Первое и второе соотношение решим относительно AD 2 и приравняем их.
АВ 2 = 3600 или АВ = 60 см.
Рис.9 Задача. Найдите площадь прямоугольного треугольника.
Пример 4
Найдите радиус r вписанной и радиус R описанной окружностей для равнобедренного треугольника с основанием 6 см и боковой стороной 5 см.
Решение:
По теореме Пифагора составим следующее соотношение:
Найдем площадь треугольника АВС по формуле S = AE * BE.
Теперь рассчитаем радиусы описанной и вписанной окружностей:
R = АС * АВ 2 / 4S = 6 * 5 2 / (4*12) = 150 / 48 = 3.125 см.
r = 2S / (2 AB + AC) = 2 * 12 / (2*5 + 6) = 24 / 16 = 1.5 см.
Рис.10 Задача. Найдите радиус r вписанной.
Пример 5
Прямая, перпендикулярная высоте треугольника, делит его площадь пополам. Найдите расстояние от этой прямой до вершины треугольника, из которой проведена высота, если она равна 8 см.
Решение:
Так как прямая FD перпендикулярна высоте ВЕ, то она параллельна основанию АС. А следовательно, ∠BAE = ∠BFO, а ∠BСE = ∠BDO. Таким образом, треугольники АВС и FBD подобны.
Отсюда следует, что АC = k FD, BE = k BO.
Найдем площадь треугольников S1 = SFBD и SАВС.
SABC = AC * BE / 2 или SABC = k 2 FD * BO / 2
k 2 FD * BO / 2 = 2 * FD * BO / 2
Отсюда, k 2 = 2, k =
Следовательно, BO = BE / k = 8 / = 8 см.
Рис.11 Задача. Прямая, перпендикулярная высоте треугольника.
Преобразование фигур в геометрии с примерами решения
Содержание:
Отображение плоскости на себя, которое сохраняет расстояния между точками, называется движением. Примерами движения являются такие преобразования, как центральная симметрия, осевая симметрия, поворот (вращение), скольжение.
Поворот:
Пусть, заданы точка О и угол
1. Если точка А не совпадает с точкой О, то
2. Если точка А совпадает с точкой О, то точки совпадают.
Пример 1. Угол поворота равен 45°. Точка А совершила поворот вокруг точки О, на угол 45° по часовой стрелке.
Пример 2. Проанализируйте последовательность шагов, при котором совершается поворот треугольника вокруг точки О, на угол 120°. Повторите эти шаги, выполнив построение в тетради.
Примечание. Центральная симметрия является поворотом плоскости относительно центра симметрии на 180°.
Исследуйте и начертите в тетради:
На рисунке показана последовательность шагов, которые выполняются при повороте треугольника с вершинами А( 4;1), В( 3;5),С( 1;3) на угол 90° в направлении по часовой стрелке.
При повороте на угол 90″ в направлении по часовой стрелке координаты вершин изменяются следующим образом.
Отношения, пропорция
Свойства пропорции
Если то,
Если то,
Если то,
Если то,
Пропорциональные отрезки
Практическая работа. Пропорциональные отрезки.
1. Начертите в тетради 3 параллельные прямые.
2. Проведите 3 секущие, которые пересекают эти прямые.
3. Измерьте отрезки АВ, ВС, AC, DE, EF, DF, GH, HI и GI.
4. Запишите и вычислите следующие отношения
5. Можно ли по результатам сказать, что параллельные линии делят секущие на пропорциональные отрезки? Пропорциональные отрезки
Если для отрезков АВ, CD, , C1D1 выполняется , то отрезки АВ и CD пропорциональны отрезкам
Теорема. Параллельные линии, пересекающие стороны угла, отсекают от них пропорциональные отрезки.
Доказательство. Допустим, что параллельные прямые пересекают стороны угла А в точках В и С, . Для простоты, предположим, что существует отрезок длины такой, что он помещается целое число раз как в отрезке АС, так и в отрезке , Разделим отрезок АС на равные отрезки длиной в количестве раз. В этом случае, одной из точек деления будет точка . Через точки деления проведём прямые, параллельные ВС. По теореме Фалеса эти прямые разобьют отрезок АВ на равные отрезки некоторой длины . Получим, что Отсюда Таким образом,
Подобные четырехугольники, подобные треугольники
Подобными называются фигуры одинаковые по форме и у которых соответствующие размеры пропорциональны. Например, все квадраты подобны друг другу, так же как и окружности разных радиусов.
Подобными называются многоугольники, у которых соответствующие углы конгруэнтны, а соответствующие стороны являются пропорциональными отрезками. Например, на рисунке четырёхугольники ABCD и EFGH являются подобными четырёхугольниками. Так как,
У подобных треугольников соответствующие углы конгруэнтны, а соответствующие стороны являются пропорциональными отрезками. Здесь, говоря о соответствующих сторонах, имеются в виду стороны, которые находятся напротив конгруэнтных углов. На рисунке для имеем:
Так как , то являются подобными треугольниками. Подобие обозначается знаком Отношение соответствующих сторон называется коэффициентом подобия и обозначается буквой Коэффициент подобия треугольников на рисунке равен 3.
Периметр подобных многоугольников
Теорема. Отношение периметров двух подобных многоугольников равно отношению соответствующих сторон (или коэффициенту подобия)
Если , то
Запишите доказательство теоремы, приняв коэффициент подобия за . Для этого можно использовать равенство , которое следует, из отношения соответствующих сторон.
Признаки подобия треугольников
Признак подобия УУ (угол угол)
Если два угла одного треугольника конгруэнтны двум углам другого треугольника, то такие треугольники подобны. Этот признак подобия коротко записывается как УУ.
Признак подобия ССС
Если три стороны одного треугольника соответственно пропорциональны трём сторонам другого треугольника, то такие треугольники подобны. Этот признак подобия коротко записывается как ССС.
Признак подобия СУС
Если две стороны одного треугольника соответственно пропорциональны двум сторонам другого треугольника и углы, образованные этими сторонами конгруэнтны, то такие треугольники подобны. Этот признак подобия коротко записывается как СУС.
Подобие прямоугольных треугольников
Высота, проведенная к гипотенузе
Теорема. Высота, проведённая из вершины прямого угла прямоугольного треугольника, делит его на два подобных треугольника, каждый из которых подобен данному треугольнику.
Доказательство данной теоремы проводится на основании признака подобия УУ Для каждого из трёх треугольников нужно определить два конгруэнтных угла.
Среднее геометрическое
Среднее геометрическое. Для положительных чисел а и b средним геометрическим называется положительное число , удовлетворяющее равенству
Высота, проведённая из вершины прямого угла на гипотенузу, делит её на два отрезка (на рисунке AD и DB) Здесь отрезки AD и DB являются проекциями катетов АС и ВС на гипотенузу, соответственно.
Следствие 1. Высота прямоугольного треугольника, опущенная из вершины прямого угла есть среднее геометрическое отрезков, на которые она делит гипотенузу.
Следствие 2. Каждый катет прямоугольного треугольника есть среднее геометрическое между гипотенузой и проекцией этого катета на гипотенузу.
Применение подобия треугольников
Пропорциональные отрезки
Теорема. Прямая, пересекающая две стороны треугольника, и параллельная третьей стороне делит стороны на пропорциональные отрезки.
Если
Обратная теорема. Если прямая, пересекающая две стороны треугольника делит их на пропорциональные отрезки, то эта прямая параллельна третьей стороне.
Если , то
Высоты, медианы и биссектрисы подобных треугольников
Теорема 1. Если два треугольника подобны, то отношение длин соответствующих высот равны отношению длин соответствующих сторон.
Теорема 2. Если два треугольника подобны, то отношение длин соответствующих медиан равны отношению длин д соответствующих сторон.
Теорема 3. Если два треугольника подобны, то отношение длин соответствующих биссектрис равны отношению длин соответствующих сторон.
Свойство биссектрисы треугольника
Теорема. Биссектриса треугольника делит противоположную сторону на отрезки пропорциональные двум другим сторонам.
Теорема. Свойство медиан треугольника
Медианы треугольника пересекаются в одной точке и делятся в точке пересечения в отношении 2:1, начиная от вершины.
Точка пересечения медиан называется центром тяжести треугольника.
Доказательство теоремы представлено в виде двухстолбчатой таблицы.
Дано:CD и AE медианы треугольника
Доказательство: соединим точки O и E.
Преобразование подобия, гомотетия
Гомотетия
Преобразование плоскости на себя, при котором расстояние между любыми двумя точками изменяется в одно и то же число раз называется преобразованием подобия. Фигуры называются подобными, если одна фигура переводится в другую преобразованием подобия. Если при преобразовании подобия точки А и В на плоскости соответственно преобразованы в точки Число называется коэффициентом подобия. Преобразование подобия при называется движением. Предположим, что заданы точка О и число . Преобразование плоскости на себя при котором для произвольной точки А плоскости и преобразованной точки выполняется равенство называется гомотетией. Точка О называется центром гомотетии, число — коэффициентом гомотетии, точки А и гомотетичными точками.
Если , то фигура увеличивается относительно изначальной фигуры.
Если , то фигура уменьшается относительно изначальной фигуры.
Если , то фигура конгруэнтна изначальной фигуре.
Площади подобных фигур
Теорема. Отношение площадей подобных фигур равно квадрату коэффициента подобия. Например, если отношение соответствующих сторон двух подобных четырёхугольников равно , то отношение площадей равно
При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org
Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи
Сайт пишется, поддерживается и управляется коллективом преподавателей
Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.
Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.