Что такое отношение углов

Синус, косинус, тангенс в прямоугольном треугольнике

Что такое отношение углов. Смотреть фото Что такое отношение углов. Смотреть картинку Что такое отношение углов. Картинка про Что такое отношение углов. Фото Что такое отношение угловГипотенузой называется та сторона треугольника, что лежит против угла в 90 градусов, две оставшиеся стороны называются катетами прямоугольного треугольника.

Подробнее про прямоугольный треугольник здесь.

Синусом угла в прямоугольном треугольнике называется отношение противолежащего катета к гипотенузе.

Косинусом угла в прямоугольном треугольнике называется отношение прилежащего катета к гипотенузе.

Тангенсом угла в прямоугольном треугольнике называется отношение противолежащего катета к прилежащему.

Котангенсом угла в прямоугольном треугольнике называется отношение прилежащего катета к противолежащему.

Что такое отношение углов. Смотреть фото Что такое отношение углов. Смотреть картинку Что такое отношение углов. Картинка про Что такое отношение углов. Фото Что такое отношение углов

Бывает (и на ЕГЭ, ГИА), что приходится иметь дело с косинусами, синусами и тангенсами внешних углов треугольника. Формулы приведения позволяют увидеть, что есть еще и вот такая связь между смежными углами (помимо того, что их сумма равна 180):

Что такое отношение углов. Смотреть фото Что такое отношение углов. Смотреть картинку Что такое отношение углов. Картинка про Что такое отношение углов. Фото Что такое отношение углов

Смотрите подборку задач на применение указанных соотношений в статье «Прямоугольный треугольник. Вычисление длин и углов» часть I, часть II.

Чтобы не потерять страничку, вы можете сохранить ее у себя:

Источник

Виды и отношения углов

Развёрнутый угол и угловой градус

Развёрнутый угол — это угол, образованный двумя дополнительными полупрямыми. Развёрнутый угол принимаем равным 180°. Таким образом один угловой градус — это 1/180 часть развёрнутого угла.

AB и AC — это две дополнительные полупрямые, образующие развёрнутый угол BAC. Двигай луч AB.

Виды углов

Острый угол больше 0°, но меньше 90°. Тупой угол больше 90°, но меньше 180°. Прямой угол равен 90°.

Угол ABC — острый. Двигай точки A, B и C. Угол DEF — тупой. Двигай точки D, E и F. Угол GHI — прямой. Двигай точки G, H и I.

Смежные углы

Смежные углы это такие углы, у которых одна сторона общая, а две другие — дополнительные полупрямые.

Здесь углы BAC и CAD — смежные. У них сторона AC — общая, а стороны AB и AD — дополнительные полупрямые.

Вертикальные углы

Вертикальные углы — это углы, у которых стороны одного угла являются дополнительными полупрямыми к сторонам другого угла.

Здесь углы BAC и DAE — вертикальные. У них сторона AB — дополнительная полупрямая к стороне AD, а сторона AC — дополнительная полупрямая к стороне AE. Двигай точки A, B и C.

Соответственные углы при пересечении двух параллельных прямых секущей.

При пересечении двух параллельных прямых секущей соответственные углы — это углы, у которых стороны, лежащие на параллельных прямых, сонаправлены, и стороны, лежащие на секущей, сонаправлены.

Через точку C проходит прямая, параллельная прямой AB. Двигай точки A, B и C. Тронь внутреннюю область угла, чтобы выделить этот угол и соответственный ему угол.

Односторонние углы при пересечении двух параллельных прямых секущей.

При пересечении двух параллельных прямых секущей односторонние углы — это углы, у которых стороны, лежащие на параллельных прямых, сонаправлены, а стороны, лежащие на секущей, противоположно направлены.

Через точку C проходит прямая, параллельная прямой AB. Двигай точки A, B и C. Тронь внутреннюю область угла, чтобы выделить этот угол и односторонний с ним угол.

Накрест лежащие углы при пересечении двух параллельных прямых секущей.

При пересечении двух параллельных прямых секущей накрест лежащие углы — это углы, у которых стороны, лежащие на параллельных прямых, противоположно направлены, и стороны, лежащие на секущей, противоположно направлены.

Через точку C проходит прямая, параллельная прямой AB. Двигай точки A, B и C. Тронь внутреннюю область угла, чтобы выделить этот угол и накрест лежащий с ним угол.

Источник

Что такое тангенс угла и как его найти

Живущим людям на Земле
всегда хотелось знать,
как путь найти в пустыне, море,
и можно к звёздам ли попасть.

Хотелось труд свой облегчить,
создать машины, чтоб летать.
И чтоб вопросы разрешить,
пришлось про тангенс всем узнать.

Здравствуйте, уважаемые читатели блога KtoNaNovenkogo.ru. Впервые встречаясь с тригонометрией в восьмом классе на геометрии, школьники оглядываются на свою жизнь, задавая вопрос, насколько пригодится им эта область науки в дальнейшем.

Что такое отношение углов. Смотреть фото Что такое отношение углов. Смотреть картинку Что такое отношение углов. Картинка про Что такое отношение углов. Фото Что такое отношение углов

Редко кто задумывается, что раздел математики, позволяющий рассказать о заданном треугольнике всё (найти все его стороны и углы, выделить особенности), позволил в своё время сделать великие открытия.

Тригонометрия, дав возможность строить корабли и самолёты, отправлять человека в космос, создавать приборы для ориентирования на море, в лесу, в пустыне, определять расстояния, не измеряя их непосредственно линейкой, шагами или чем-то иным, помогла упростить жизнь человечества, раскрыть новые горизонты знаний.

Тангенс угла

Первые встречи с тангенсом происходят при изучении прямоугольных треугольников.

В них соотношения сторон, образующих прямой угол (катетов), и стороны, лежащей напротив угла в 90º (гипотенузы), задают важные параметры для изучения углов.

Для понимания связи между объектами рассматриваются отношения различных отрезков. Задавая связь между ними, вводят понятия синуса, косинуса (это что?), тангенса, котангенса.

Важно, что это отвлечённые понятия, не связанные с какими-либо единицами измерения.

Введя функции угла, определяют их свойства. Некоторые полученные формулы могут иметь довольно громоздкий вид. Чтобы избежать затруднённого чтения, вводятся другие объекты.

Так произошло и с тангенсом. Ему посчастливилось получить два определения. Каждое характеризует заданное отношение по-своему. С одной стороны, рассматривается связь между катетами и острыми углами прямоугольного треугольника, с другой – даётся возможность упростить формулы, содержащие синусы и косинусы.

Мало кто задумывается, изучая тангенс в школе, что первоначально он был необходим, чтобы найти касательные линии к заданной кривой. Само понятие возникло от латинского слова tangens, которое означает «трогающий», «касающийся» и является причастием настоящего времени от tangere («трогать», «касаться»).

Тангенс — это отношение.

Итак, есть два определения:

Тангенсом острого угла прямоугольного треугольника называется отношение противолежащего катета к прилежащему.

Это определение удобно использовать при изучении геометрических фигур. Оно даёт возможность, минуя вычисления гипотенузы, находить углы или катеты. Выделяя прямоугольные треугольники в произвольных фигурах, задача по изучению свойств исследуемых объектов становится проще.

Тангенс – это отношение синуса к косинусу.

Благодаря этому определению, многие тригонометрические формулы принимают более удобный вид, становятся легче воспринимаемыми.

» alt=»»>

Вместо «тангенс угла альфа» пишут: tgα. На калькуляторах, в различных программах ЭВМ и ПК закрепилось другое обозначение: tan⁡(α).

Как найти тангенс угла (формулы)

Первое свойство тангенса вытекает из его определения как отношения катетов.

Что такое отношение углов. Смотреть фото Что такое отношение углов. Смотреть картинку Что такое отношение углов. Картинка про Что такое отношение углов. Фото Что такое отношение углов

Сумма двух непрямых углов прямоугольного треугольника равна 90º. Поэтому

Что такое отношение углов. Смотреть фото Что такое отношение углов. Смотреть картинку Что такое отношение углов. Картинка про Что такое отношение углов. Фото Что такое отношение углов

Так как тангенс – это отношение катетов, то

Что такое отношение углов. Смотреть фото Что такое отношение углов. Смотреть картинку Что такое отношение углов. Картинка про Что такое отношение углов. Фото Что такое отношение углов

Что такое отношение углов. Смотреть фото Что такое отношение углов. Смотреть картинку Что такое отношение углов. Картинка про Что такое отношение углов. Фото Что такое отношение углов

Учитывая особенности некоторых треугольников (равностороннего, прямоугольного, равнобедренного), а также записанное свойство, была составлена таблица значений тангенса для углов 30º, 45º, 60º.

Что такое отношение углов. Смотреть фото Что такое отношение углов. Смотреть картинку Что такое отношение углов. Картинка про Что такое отношение углов. Фото Что такое отношение углов

Задача нахождения других углов по значению тангенса была решена с помощью составления более обширных таблиц. За счёт появления современных вычислительных средств необходимость применения табулированных значений уменьшилась.

Как найти тангенс по клеточкам

Учитывая первое определение, можно определить, как найти тангенс угла по клеточкам. Рисунок дополняется перпендикулярными линиями (строится высота), затем считается количество клеточек в полученном прямоугольном треугольнике на катетах, противолежащем и прилежащем искомому углу, а затем берётся их отношение.

Благодаря второму определению, задачу, как найти тангенс угла, можно решить, минуя таблицы и построение прямоугольных треугольников. Достаточно знать синус и косинус, связанные между собой основным тригонометрическим тождеством:

Что такое отношение углов. Смотреть фото Что такое отношение углов. Смотреть картинку Что такое отношение углов. Картинка про Что такое отношение углов. Фото Что такое отношение углов

Из формулы тангенсов, записывающей кратко второе определение

Что такое отношение углов. Смотреть фото Что такое отношение углов. Смотреть картинку Что такое отношение углов. Картинка про Что такое отношение углов. Фото Что такое отношение углов

и основного тригонометрического тождества можно понять, как найти тангенс, зная только косинус или синус угла.

Достаточно поделить основное тригонометрическое тождество на квадрат косинуса, подставить формулу тангенса. В результате получится зависимость тангенса и косинуса:

Что такое отношение углов. Смотреть фото Что такое отношение углов. Смотреть картинку Что такое отношение углов. Картинка про Что такое отношение углов. Фото Что такое отношение углов

Если выразить в последнем случае косинус, то запишется связь между тангенсом и синусом:

Что такое отношение углов. Смотреть фото Что такое отношение углов. Смотреть картинку Что такое отношение углов. Картинка про Что такое отношение углов. Фото Что такое отношение углов

Удачи вам! До скорых встреч на страницах блога KtoNaNovenkogo.ru

Эта статья относится к рубрикам:

Комментарии и отзывы (5)

Я Очень Люблю Правила, Теоремы, Формулы по Предмету «Математика», «Алгебра».

Прочитал статью и остался один главный вопрос, а собственно без вспомогательных таблиц найти угол В ГРАДУСАХ вообще возможно и есть ли у вас статья, где рассказыввается как это сделать? Спасибо.

Я ни разу не математик, но почему у вас сумма углов прямоугольного треугольника равна 90 градусов. А так все хорошо начиналось. Объясняете хорошо, но после таких ошибок у меня сомнения что информация верная.

Спасибо. Уточнил в тексте, что это сумма двух непрямых углов прямоугольного треугольника.

Пишу стихи. Востребован тангенс для решения жизненных ситуаций поскольку состоит из тех же функций,как-то, касающийся,прилежащий, трогающий. Куда без них денешься.

Источник

Тригонометрия простыми словами

Официальное объяснение тригонометрии вы можете почитать в учебниках или на других интернет сайтах, а в этой статье мы хотим объяснить суть тригонометрии «на пальцах».

Для удобства работы с тригонометрическими функциями был придуман тригонометрический круг, который представляет собой окружность с единичным радиусом (r = 1).

Тогда проекции радиуса на оси X и Y (OB и OA’) равны катетам построенного треугольника ОАВ, которые в свою очередь равны значениям синуса и косинуса данного угла.

Что такое отношение углов. Смотреть фото Что такое отношение углов. Смотреть картинку Что такое отношение углов. Картинка про Что такое отношение углов. Фото Что такое отношение углов

Тангенс и котангенс получаются соответстсвенно из треугольников OCD и OC’D’, построенных подобно исходному треугольнику OAB.

Что такое отношение углов. Смотреть фото Что такое отношение углов. Смотреть картинку Что такое отношение углов. Картинка про Что такое отношение углов. Фото Что такое отношение углов

Для упрощения обучения тригонометрическим функциям в школе используют только некоторые удобные углы в 0°, 30°, 45°, 60° и 90°.

Значения тригонометрических функций повторяются каждые 90° и в некоторых случаях меняя знак на отрицательный.

Достаточно запомнить значения некоторых важных углов и понять принцип повтора значений для бОльших углов.

Значения тригонометрических функций
для первой четверти круга (0° – 90°)

Принцип повтора знаков тригонометрических функций

Что такое отношение углов. Смотреть фото Что такое отношение углов. Смотреть картинку Что такое отношение углов. Картинка про Что такое отношение углов. Фото Что такое отношение углов

Угол может быть как положительный, так и отрицательный. Отрицательный угол считается угол, откладываемый в противоположную сторону.

В виду того, что полная окружность составляет 360°, значения тригонометрических функций углов, описывающих одинаковое положение радиуса, РАВНЫ.

Что такое отношение углов. Смотреть фото Что такое отношение углов. Смотреть картинку Что такое отношение углов. Картинка про Что такое отношение углов. Фото Что такое отношение углов

Для лучшего понимания и запоминания значений тригонометрических функций воспользуйтесь динамическим макетом тригонометрического круга ниже. Нажимая кнопки «+» и «–» значения угла будут увеличиваться или уменьшаться соответственно.

Тригонометрический круг

Углы в радианах

Чтобы закрепить свои знания и проверить себя, воспользуйтесь онлайн-тренажером для запоминания значений тригонометрических функций.

Источник

Что такое синус, косинус, тангенс и котангенс в прямоугольном треугольнике?

Синус, косинус и тангенс острого угла прямоугольного треугольника.

Приветствую Вас дорогие учащиеся.

Сейчас рассмотрим что же такое синус, косинус, тангенс и котангенс в прямоугольном треугольнике?

Это тема не сложная, главное это запомнить правила. И так начнем:

Вспомним, что такое прямоугольный треугольник?

Прямоугольным треугольником, называется треугольник у которого один из углов прямой (составляет 90 градусов). Две стороны которые прилежат к прямому углу, называются катетами, а сторона лежащая напротив прямого угла, называется гипотенузой.

Синус (sin(a)) — это отношение противолежащего катета к гипотенузе;

Косинус (cos(a)) — это отношение прилежащего катета к гипотенузе;

Тангенс (tg(a)) — это отношение противолежащего катета к прилежащему катету;
Другое (равносильное) определение: тангенсом острого угла называется отношение синуса угла к его косинусу;

Котангенс (ctg(a)) — это отношение прилежащего катета к противолежащему.
Другое (равносильное) определение: котангенсом острого угла называется отношение косинуса угла к его синусу;

Пусть дан прямоугольный треугольник ABC с прямым углом C.

Что такое отношение углов. Смотреть фото Что такое отношение углов. Смотреть картинку Что такое отношение углов. Картинка про Что такое отношение углов. Фото Что такое отношение углов Найти sin(a); cos(a); tg(a); ctg(a) Что такое отношение углов. Смотреть фото Что такое отношение углов. Смотреть картинку Что такое отношение углов. Картинка про Что такое отношение углов. Фото Что такое отношение углов Отношение сторон в прямоугольном треугольнике

Аналогично рассуждаем относительно угла B.

Что такое отношение углов. Смотреть фото Что такое отношение углов. Смотреть картинку Что такое отношение углов. Картинка про Что такое отношение углов. Фото Что такое отношение углов Найти sin(b); cos(b); tg(b); ctg(b) Что такое отношение углов. Смотреть фото Что такое отношение углов. Смотреть картинку Что такое отношение углов. Картинка про Что такое отношение углов. Фото Что такое отношение углов Отношение сторон в прямоугольном треугольнике

Пример:

Найти тангенс угла С (tg(C)) треугольника ABC.

Хочешь готовиться к экзаменам бесплатно? Репетитор онлайн бесплатно. Без шуток. ЗДЕСЬ

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *