Что такое отношение в геометрии
Основные отношения школьной геометрии
Использование алгебраического метода основывается на связях между элементами фигур. Из школьного курса известно, что:
· сумма смежных углов равна 180 ;
· вертикальные углы равны;
· в равнобедренном треугольнике углы при основании равны;
· если в треугольнике два угла равны, то стороны против них также равны;
· в равнобедренном треугольнике медиана, проведенная к основанию, является биссектрисой и высотой;
· сумма углов треугольника равна 180 ;
· внешний угол треугольника равен сумме внутренних углов, не смежных с ним;
· серединные перпендикуляры к сторонам треугольника пересекаются в одной точке – центре описанной около этого треугольника окружности;
· биссектрисы внутренних углов треугольника пересекаются в одной точке – центре вписанной в этот треугольник окружности;
· при пересечении двух прямых а и b третьей прямой с внутренние накрест лежащие углы равны тогда и только тогда, когда а || b;
· противоположные стороны выпуклого четырёхугольника равны тогда и только тогда, когда этот четырёхугольник – параллелограмм;
· диогонали четырёхугольника точкой пересечения делятся пополам тогда и только тогда, когда этот четырёхугольник – параллелограмм;
· параллелограмм имеет равные диагонали тогда и только тогда, когда он – прямоугольник;
· параллелограмм имеет взаимно перпендикулярные диагонали тогда и только тогда, когда он – ромб;
· если на одной стороне угла параллельные прямые отсекают равные отрезки, то при пересечении их с другой стороной угла также возникают равные отрезки (теорема Фалеса);
· средняя линия треугольника параллельна третьей стороне и равна её половине;
· средняя линия трапеции параллельна основаниям и равна их полусумме;
· параллельные прямые отсекают на сторонах угла пропорциональные отрезки;
· в треугольнике квадрат большей стороны равен сумме квадратов двух других сторон тогда и только тогда, когда этот треугольник прямоугольный;
· для любых трёх точек А, В, С, лежащих на одной прямой, АВ = АС + СВ или АВ = АС – СВ;
· центральный угол окружности измеряется дугой, на которую опирается;
· вписанный в окружность угол измеряется половиной дуги, на которую опирается;
· произведение частей хорды, на которые она делится своей точкой М, одно и то же для всех хорд, проведённых через М;
· произведение секущей, проведённой через точку М, находящуюся вне окружности, на её внешнюю часть одно и то же для всех секущих, проведённых через М;
· квадрат стороны треугольника равен сумме квадратов двух других сторон без удвоенного произведения этих сторон на косинус угла между ними (теорема косинусов);
· стороны треугольника пропорциональны синусам противолежащих углов (теорема синусов);
· в треугольнике против большего угла лежит большая сторона;
· в треугольнике против большей стороны лежит больший угол;
· отношение длины окружности к её диаметру есть величина постоянная (константа), она обозначается p;
· для вычисления площадьи S некоторых фигур применяют формулы:
Sтреугольника = аh, где а – сторона треугольника, h – высота к ней;
Sтреугольника = аb sіnÐC, где а и b – стороны треугольника, С –угол между ними;
Sтреугольника = , где а, b, c – стороны треугольника,
р = (а+b+c) –его полупериметр;
Sтрапеции = h, где а и b – основания трапеции, h – проведённая к ним высота;
Sсектора = a, где r – радиус сектора, a – его градусная мера;
· R = , r =
, a, b, c – стороны треугольника, S – его площадь, R и r – радиусы описанной около него и вписанной в него окружностей соответственно;
· площади подобных фигур относятся как квадраты их линейных размеров;
· Sпр = S0 cos j, где S0 – площадь фигуры Ф, размещённой в плоскости a, Sпр – площадь ортогональной проекции фигуры Ф на плоскость b, j – двугранный угол между плоскостями a и b;
· противолежащие грани параллелепипеда параллельны и равны;
· диагонали параллелепипеда пересекаются в одной точке и делятся ей пополам;
· квадрат диагонали прямоугольного параллелепипеда равен сумме квадратов трёх его измерений;
· для вычисления боковых поверхностей тел применяются формулы:
§ Sбок. конуса = p rl, где r – радиус основания конуса, l – его образующая;
· для вычисления объёмов тел применяют следующие формулы:
§ Vпирамиды = Sосн.Н, где Sосн. – площадь основания пирамиды, Н – её высота;
§ Vусеч. пирамиды = . Н (S1 + S2 +
), где H – высота усечённой пирамиды, S1, S2 – площади её оснований;
§ Vконуса = . p r 2 Н, где r – радиус основания конуса, H – его высота;
§ Vусеч. конуса = . pН (r1 2 + r1 r2+r2 2 ), где H – высота усечённого конуса, r1 и r2 – радиусы его оснований;
§ Vшар. сегмента = p Н 2 (R – ), где R – радиус сегмента, H – его высота;
§ Vшар. сектора = pR 2 Н, где R – радиус сектора, H – высота соответствующего шарового сегмента;
· объёмы подобных тел относятся как кубы их линейных размеров.
Что такое пропорция
Что такое пропорция
Пропорция — это равенство двух отношения.
Пропорциональный — это такой, который находится в определенном отношении к какой-либо величине.
Пропорция всегда содержит равные коэффициенты.
Если выразить определение формулой, то выглядеть оно будет так:
a и d — крайние члены пропорции, b и с — средние члены пропорции.
Читается это выражение так: a так относится к b, как c относится к d
Например:
Это равенство двух отношений: 15 так относится к 5, как 9 относится к 3.
15 и 3 — крайние члены пропорции.
5 и 9 — средние члены пропорции.
Наглядный пример для понимания:
У нас есть восемь кусочков аппетитной пиццы и, предположим, четыре голодных друга.
Это значит, что 8 аппетитных кусочков пиццы будут так относиться к 4 голодным друзьям, что каждому голодающему достанется по 2 кусочка. Прекрасно!
А теперь представим, ситуацию, в которой есть только половина аппетитной пиццы, но при этом и голодных друга — всего два.
Что мы имеем: 4 кусочка и 2 друга, претендующих на них.
Это значит, что 4 аппетитных кусочка будут так относиться к 2 голодным друзьям, что каждому из них достанется по 2 кусочка.
Оценив обе ситуации, делаем вывод, что отношение 8/4 пропорционально отношению 4/2. Отношения в пропорции — равные.
Вывод: знание математических пропорций пригодится при заказе пиццы. Быстренько прикидываем отношение количества человек, претендующих на пиццу, и число кусочков — и сразу заказываем побольше пиццы, чтобы никто не остался голодным😉
Основное свойство пропорции
Запомните основное свойство пропорции:
Произведение крайних членов пропорции равно произведению средних членов этой пропорции.
В виде формулы свойство выглядит так:
a : b = c : d
a * d = b * c
Мы знаем, что a и d — крайние члены пропорции, b и c — средние.
Это свойство следует применять, чтобы проверить пропорцию. Если все сходится согласно формулировке — пропорция составлена верно, и отношения в пропорции являются равными друг другу.
Давайте проверим несколько пропорций.
Пример 1. Дана пропорция:6/2 = 12/4
Делаем вывод, что пропорция 6/2 = 12/4 составлена верно.
Пример 2. Дана пропорция: 10/2 = 16/4
Отсюда делаем вывод, что отношения в пропорции 10/2 ≠ 16/4 не являются равными.
Курсы подготовки к ОГЭ по математике от Skysmart придадут уверенности в себе и помогут освежить знания перед экзаменом.
Примеры решения задач с пропорцией
Чтобы потренироваться в составлении пропорций, решим вместе несколько задачек.
Задачка 1. Дана математическая пропорция: 15/3 = x/4
Ответ: в пропорции 15/3 = x/4, x = 20
Задачка 2. Найдите четвертый член пропорции: 18, 9 и 24.
Ответ: четвертый член пропорции — 12.
Задачка 3. 18 человек могут съесть пять килограммов суши за 8 часов, сколько часов понадобится 9 людям?
Ответ: 16 часов понадобится 9 людям, чтобы съесть все суши.
Задачка 4. Дана пропорция: 20/2 = y/4
Геометрия
Именная карта банка для детей
с крутым дизайном, +200 бонусов
Закажи свою собственную карту банка и получи бонусы
План урока:
Знакомство с геометрией
Вот и настал момент прощания с математикой, сопровождающей нас на протяжении долгих шести лет школьной жизни. Но огорчаться не нужно, на смену привычной математике приходят занимательные и интересные разделы этой науки – алгебра и геометрия.
Давайте разберемся, что же такое геометрия, для чего она нужна, где её используют?
В дословном переводе с греческого, геометрия означает землемерие:
Более точное определение утверждает, что наука об отношениях плоскостей, пространств и изучении форм называется геометрией.
Геометрия содержит ряд основных понятий, необходимых для дальнейшего изучения и применения на практике геометрических знаний. Давайте познакомимся с ними поближе.
Основные понятия геометрии
Понятие точки
Фигура, которую невозможно измерить, а для вычислений используется только место её расположения, называется точкой. Такие фигуры обозначают цифрами и буквами латиницы. Если точек много, то обозначения должны быть разными.
Точка — это абстрактный объект, который не имеет измерительных характеристик: ни высоты, ни длины, ни радиуса. В рамках задачи важно только его местоположение
Точка обозначается цифрой или заглавной (большой) латинской буквой. Несколько точек — разными цифрами или разными буквами, чтобы их можно было различать
Читается: точка A, точка B, точка C
Понятие линии
Линия представляет собой массу точек. Линии принято обозначать строчными буквами латиницы.
Синус, косинус, тангенс и котангенс: определения в тригонометрии, примеры, формулы
Данная статья посвящена базовым понятиям и дефинициям тригонометрии. В ней рассмотрены определения основных тригонометрических функций: синуса, косинуса, тангенса и котангенса. Разъяснен и проиллюстрирован их смысл в контексте геометрии.
Синус, косинус, тангенс и котангенс. Определения
Изначально определения тригонометрических функций, аргументом которых является угол, выражались через соотношения сторон прямоугольного треугольника.
Определения тригонометрических функций
Данные определения даны для острого угла прямоугольного треугольника!
В треугольнике ABC с прямым углом С синус угла А равен отношению катета BC к гипотенузе AB.
Определения синуса, косинуса, тангенса и котангенса позволяют вычислять значения этих функций по известным длинам сторон треугольника.
Угол поворота
В данном контексте можно дать определение синуса, косинуса, тангенса и котангенса угла произвольной величины. Представим единичную окружность с центром в начале декартовой системы координат.
Синус (sin) угла поворота
При решении практических примеров не говорят «синус угла поворота α «. Слова «угол поворота» просто опускают, подразумевая, что из контекста и так понятно, о чем идет речь.
Числа
Как быть с определением синуса, косинуса, тангенса и котангенса числа, а не угла поворота?
Синус, косинус, тангенс, котангенс числа
Синусом, косинусом, тангенсом и котангенсом числа t называется число, которое соответственно равно синусу, косинусу, тангенсу и котангенсу в t радиан.
Например, синус числа 10 π равен синусу угла поворота величиной 10 π рад.
Существует и другой подход к определению синуса, косинуса, тангенса и котангенса числа. Рассмотрим его подробнее.
Любому действительному числу t ставится в соответствие точка на единичной окружности с центром в начале прямоугольной декартовой системы координат. Синус, косинус, тангенс и котангенс определяются через координаты этой точки.
Теперь, когда связь числа и точки на окружности установлена, переходим к определению синуса, косинуса, тангенса и котангенса.
Последние определения находятся в соответствии и не противоречат определению, данному в начале это пункта. Точка на окружности, соответствующая числу t, совпадает с точкой, в которую переходит начальная точка после поворота на угол t радиан.
Тригонометрические функции углового и числового аргумента
Основные функции тригонометрии
Из контекста обычно понятно, с каким аргументом тригонометрической функции (угловой аргумент или числовой аргумент) мы имеем дело.
Связь определений sin, cos, tg и ctg из геометрии и тригонометрии
Вернемся к данным в самом начале определениям и углу альфа, лежащему в пределах от 0 до 90 градусов. Тригонометрические определения синуса, косинуса, тангенса и котангенса полностью согласуются с геометрическими определениями, данными с помощью соотношений сторон прямоугольного треугольника. Покажем это.
В соответствии с определением из геометрии, синус угла α равен отношению противолежащего катета к гипотенузе.
sin α = A 1 H O A 1 = y 1 = y
Аналогично соответствие определений можно показать для косинуса, тангенса и котангенса.
Геометрия
Полезное
Смотреть что такое «Геометрия» в других словарях:
ГЕОМЕТРИЯ — (греч. geometria, от ge земля, и metron мера). Часть математики, имеющая предметом свойства и измерения линий, поверхностей и объемов тел. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. ГЕОМЕТРИЯ греч. geometria,… … Словарь иностранных слов русского языка
ГЕОМЕТРИЯ — ГЕОМЕТРИЯ, раздел математики, предметом изучения которого являются пространственные отношения и формы. Для большинства людей геометрия ассоциируется только с ГЕОМЕТРИЕЙ ЕВКЛИДА, предметом которой являются плоскости и жесткие геометрические фигуры … Научно-технический энциклопедический словарь
ГЕОМЕТРИЯ — ГЕОМЕТРИЯ, геометрии, мн. нет, жен. (от греч. ge земля и metreo измеряю). Отдел математики, в котором изучаются пространственные формы, их измерение и взаимное расположение. Элементарная геометрия. Аналитическая геометрия (пользующаяся методами… … Толковый словарь Ушакова
ГЕОМЕТРИЯ — (от гео. и. метрия), часть математики, изучающая пространственные формы (например, фигуры и тела), их отношения (например, взаимное расположение) и их обобщения. Зарождение геометрии относится ко 2 му тысячелетию до нашей эры, в… … Современная энциклопедия
ГЕОМЕТРИЯ — ГЕОМЕТРИЯ, и, жен. Раздел математики, изучающий пространственные отношения и формы. | прил. геометрический, ая, ое. Толковый словарь Ожегова. С.И. Ожегов, Н.Ю. Шведова. 1949 1992 … Толковый словарь Ожегова
геометрия — сущ., кол во синонимов: 9 • астероид (579) • линиолонгиметрия (2) • линиометрия (2) … Словарь синонимов
геометрия — – правильная форма авто. EdwART. Словарь автомобильного жаргона, 2009 … Автомобильный словарь
геометрия — конфигурация геометрическая форма — [Л.Г.Суменко. Англо русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.] Тематики информационные технологии в целом Синонимы конфигурациягеометрическая форма EN geometry … Справочник технического переводчика