Что такое отрицательное сопротивление
Отрицательное сопротивление
Смотреть что такое «Отрицательное сопротивление» в других словарях:
отрицательное сопротивление — — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999] Тематики электротехника, основные понятия EN negative resistance … Справочник технического переводчика
отрицательное сопротивление — neigiamoji varža statusas T sritis fizika atitikmenys: angl. negative resistance vok. negativer Widerstand, m; Negwid, m rus. отрицательное сопротивление, n pranc. résistance négative, f … Fizikos terminų žodynas
Отрицательное сопротивление — Отрицательное дифференциальное сопротивление свойство отдельных элементов или узлов электрических цепей, проявляющееся в возникновении на вольтамперной характеристике участка, где напряжение V уменьшается при увеличении протекающего тока I (dV/dl … Википедия
отрицательное сопротивление, регулируемое напряжением — — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999] Тематики электротехника, основные понятия EN short circuit stable negative resistance … Справочник технического переводчика
отрицательное сопротивление, регулируемое током — — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999] Тематики электротехника, основные понятия EN current controlled negative resistanceCCNRopen circuit stable… … Справочник технического переводчика
отрицательное сопротивление, управляемое током — — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999] Тематики электротехника, основные понятия EN current controlled negative resistance … Справочник технического переводчика
ОТРИЦАТЕЛЬНОЕ ДИФФЕРЕНЦИАЛЬНОЕ СОПРОТИВЛЕНИЕ — свойство нек рых элементов электрич. цепей, выражающееся в уменьшении падения напряжения V на них при увеличении протекающего тока I (или наоборот). О. д. с. характеризуется величиной R=(DV/DI) … Физическая энциклопедия
СОПРОТИВЛЕНИЕ — (1) аэродинамическое (лобовое) сила, с которой газ действует на движущееся в нём тело. Оно всегда направлено в сторону, противоположную скорости движения тела, и является одной из составляющих аэродинамической силы; (2) С. гидравлическое… … Большая политехническая энциклопедия
ОТРИЦАТЕЛЬНОЕ ДИФФЕРЕНЦИАЛЬНОЕ СОПРОТИВЛЕНИЕ — свойство некоторых нелинейных элементов электрических цепей, выражающееся в уменьшении падения напряжения на них при увеличении протекающего тока (или наоборот; см., напр., Туннельный диод) … Большой Энциклопедический словарь
отрицательное полное сопротивление — — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999] Тематики электротехника, основные понятия EN expendance … Справочник технического переводчика
Что такое отрицательное сопротивление
Что такое отрицательное сопротивление
Под словом «сопротивление» в электротехнике и радиотехнике понимается сопротивление, оказываемое движению электрических зарядов той средой, в которой это движение происходит.
Существуют вещества, в которых движение зарядов почти невозможно. Такие вещества называются изоляторами. В ряде веществ движение зарядов весьма затруднено. Такие вещества получили название полупроводников. Значительное количество веществ относится к категории проводников. Они характерны тем, что движущиеся заряды встречают в них минимальное сопротивление. Однако даже самые лучшие проводники, такие, как серебро или медь, все же оказывают движению зарядов определенное сопротивление, на преодоление которого приходится расходовать энергию.
Возможны ли случаи, когда движение зарядов происходит без сопротивления?
Мы знаем два таких случая.
Первый из них — движение зарядов в таком пространстве, которое мы условно называем пустотой (см. стр. 18). Если в подобное пространство, например в баллон, из которого выкачан газ и в котором нет электрического и магнитного полей, ввести заряд (например, способом термоэмиссии) и сообщить ему некоторую скорость, то он будет двигаться с этой скоростью, не затрачивая запасенной энергии.
Второй случай отсутствия сопротивления наблюдается у некоторых металлов в сверхпроводящем состоянии. Установлено, что ряд металлов, их сплавов и некоторых химических соединений при сильном охлаждении утрачивает сопротивление электрическому току, становится «сверхпроводником». К ним относятся, например, алюминий, свинец, цинк, уран, ртуть. Температуры, при которых наблюдается переход в сверхпроводящее состояние, колеблются в пределах примерно от 1 до 10 градусов абсолютной шкалы температур (нуль абсолютной шкалы соответствует температуре минус 273,16°С).
Физические явления, связанные со сверхпроводимостью, еще окончательно не выяснены. Они зависят от особенностей кристаллической структуры проводников и уменьшения тепловых колебаний при понижении температуры, но бесспорными тщательными опытами подтверждено, что сопротивление материалов в сверхпроводящем состоянии равно нулю или во всяком случае чрезвычайно близко к нему. Ток, возбужденный в кольце из сверхпроводника, не уменьшается и циркулирует все время, пока поддерживается нужная температура.
Возможно ли сопротивление меньше нуля, т. е. сопротивление отрицательное? Попробуем рассмотреть этот вопрос с чисто физической точки зрения, не вдаваясь в его формально-теоретические математические аспекты.
В радиотехнике приходится встречаться с понятием отрицательного сопротивления.
В действительности это объясняется динатронным эффектом. Электроны, образующие анодный ток, ударяясь об анод, выбивают из него другие электроны, которые называются вторичными.
Вторичные электроны, получив в результате удара некоторый запас энергии, отлетают от анода по направлению к экранирующей сетке и могут настолько приблизиться к ней, что притягивающее действие экранирующей сетки превысит притягивающее действие анода.
Поэтому такие электроны летят к экранирующей сетке, образуют в лампе ток, направленный навстречу основнову анодному току, и уменьшают его. Действующий анодный ток равен разности двух указанных токов.
При увеличении анодного напряжения электроны с большей силой ударяются об анод и выбивают из него больше вторичных электронов, вылетающих с увеличенной скоростью. Поток вторичных электронов непропорционально возрастает — в итоге действующий анодный ток становится меньше.
При дальнейшем увеличении анодного напряжения явление прекращается, потому что выбитые из анода электроны снова притягиваются к нему и экранирующая сетка уже не может «перехватить» их.
Как видим, в данном случае нельзя усмотреть присутствия какого-либо сопротивления, обладающего необычным свойством. Суть явления заключается в возникновении второго потока электронов, направление которого противоположно направлению основного потока.
Не менее часто понятие отрицательного сопротивления используется для объяснения работы регенеративных приемников, гетеродинов и т. п.
Это объяснение сводится к тому, что обратная связь вносит в колебательный контур отрицательное сопротивление и этим уменьшает его положительное сопротивление — сопротивление потерь. Когда отрицательное сопротивление по величине становится равным положительному, действующее сопротивление контура делается равным нулю. При дальнейшем возрастании вносимого отрицательного сопротивления общее сопротивление контура становится отрицательным. Контур с отрицательным сопротивлением превращается в генератор и становится источником колебаний.
В этом случае тоже нельзя говорить об отрицательном сопротивлении контура, как о реально существующем. Сопротивление контура движению электрических зарядов остается неизменным при любом значении обратной связи.
Качающийся маятник, предоставленный самому себе, скоро остановится. Но мы можем сообщить маятнику толчки, совпадающие по частоте и направлению с его
колебаниями. Интенсивность толчков можно подобрать так, что они будут как раз компенсировать действие всех «сопротивлений» (сопротивление воздуха, трение в точке подвеса и т. д.), и колебания маятника из затухающих превратятся в незатухающие. Увеличив еще более силу толчков, мы превратим колебания маятника в
нарастающие (их амплитуда будет увеличиваться) и сможем заставить его совершать какую-нибудь работу. Та дополнительная энергия подталкивания, которая расходовалась бы на увеличение амплитуды колебаний маятника, будет теперь расходоваться на совершение работы, а амплитуда колебаний останется постоянной.
По аналогии с колебательным контуром и в этом случае можно было бы считать, что все сопротивления, тормозившие ранее движение маятника, стали отрицательными и не только не тормозят его, а, наоборот, подгоняют. Однако мы знаем, что это не так: маятник, совершая работу, продолжает качаться только потому, что мы периодически пополняем своими толчками запас его энергии.
Подобным же образом пополняются потери энергии и в колебательном контуре. Поле катушки обратной связи, изменяясь в такт с электрическими колебаниями в контуре, поддерживает их, пополняя энергию, которая затрачивается на преодоление сопротивлений контура и излучение.
Понятие отрицательного сопротивления нередко привлекается для пояснения особенностей работы «генерирующих» кристаллических детекторов, к которым относится ряд детекторов от цинкитного детектора О. Лосева до современного германиевого диода, включая новейшие «туннельные» диоды. Генерирование таких детекторов объясняют наличием в их характеристике участка с отрицательным сопротивлением. При работе на таком участке характеристики увеличение текущего через детектор тока сопровождается не увеличением падения напряжения на детекторе, а его уменьшением.
Физические процессы, происходящие в детекторах подобного типа, полностью не прослежены, но ясно, что они вызывают в кристалле детектора (диода) возникновение дополнительного тока, по направлению совпадающего с основным. Например, в «туннельном» диоде при некоторых напряжениях ток растет значительно быстрее, чем в обычном диоде, из-за «туннельного» эффекта — прохода электронов, не имеющих энергии для преодоления потенциального барьера, сквозь некоторые «туннели» в этом барьере. При дальнейшем увеличении напряжения «туннельный» эффект уменьшается и затем исчезает совсем. На этом участке увеличение напряжения вследствие постепенного исчезновения «туннельного» эффекта сопровождается уменьшением тока, а не его увеличением, как следовало бы. При более значительном увеличении напряжения работа «туннельного» диода не отличается от работы обычного диода. Поэтому на некотором участке его характеристики наблюдается уменьшение тока при увеличении напряжения.
Таким образом, сопротивление электрическому току может либо иметь какое-то определенное положительное значение, либо равняться нулю. Отрицательного сопротивления как физического свойства вещества не существует, хотя отдельные цепи в результате происходящих в них процессов могут вести себя так, как если бы их сопротивление было отрицательным. Однако при этом в таких цепях обязательно находятся источники электрического тока, энергия которых и расходуется на поддержание всех происходящих в цепях процессов.
Отрицательное дифференциальное сопротивление
Отрица́тельное дифференциа́льное сопротивле́ние — свойство отдельных элементов или узлов электрических цепей, проявляющееся в возникновении на вольтамперной характеристике участка, где напряжение V уменьшается при увеличении протекающего тока I (dV/dl = R
Понятие отрицательного дифференциального сопротивления используют при рассмотрении устойчивости различных радиотехнических цепей. Такое сопротивление может компенсировать некоторую часть потерь в электрической цепи, если его абсолютная величина меньше активного сопротивления; в противоположном случае состояние становится неустойчивым, возможен переход в другое состояние устойчивого равновесия (переключение) или возникновение колебаний (генерация). В однородном образце полупроводника в области существования отрицательного дифференциального сопротивления неустойчивость может приводить к разбиению образца на участки сильного и слабого поля (доменная неустойчивость) для характеристики N-типа или шнурованию тока по сечению образца для характеристики S-типа.
Содержание
Примеры элементов с отрицательным внутренним сопротивлением
v/L) и может достигать
См. также
Примечания
Литература
3. Ф. Бенинг Отрицательные сопротивления в электронных схемах. М. 1975
Полезное
Смотреть что такое «Отрицательное дифференциальное сопротивление» в других словарях:
ОТРИЦАТЕЛЬНОЕ ДИФФЕРЕНЦИАЛЬНОЕ СОПРОТИВЛЕНИЕ — свойство нек рых элементов электрич. цепей, выражающееся в уменьшении падения напряжения V на них при увеличении протекающего тока I (или наоборот). О. д. с. характеризуется величиной R=(DV/DI) … Физическая энциклопедия
ОТРИЦАТЕЛЬНОЕ ДИФФЕРЕНЦИАЛЬНОЕ СОПРОТИВЛЕНИЕ — свойство некоторых нелинейных элементов электрических цепей, выражающееся в уменьшении падения напряжения на них при увеличении протекающего тока (или наоборот; см., напр., Туннельный диод) … Большой Энциклопедический словарь
отрицательное дифференциальное сопротивление — свойство некоторых нелинейных элементов электрических цепей, выражающееся в уменьшении падения напряжения на них при увеличении протекающего тока (или наоборот; см., например, Туннельный диод). * * * ОТРИЦАТЕЛЬНОЕ ДИФФЕРЕНЦИАЛЬНОЕ СОПРОТИВЛЕНИЕ… … Энциклопедический словарь
Отрицательное сопротивление — отрицательное дифференциальное сопротивление, свойство некоторых элементов электрических цепей, выражающееся в уменьшении падения напряжения U на них при увеличении протекающего тока I (или наоборот). О. с. характеризуется величиной:… … Большая советская энциклопедия
Генерирование электрических колебаний — процесс преобразования различных видов электрической энергии в энергию электрических (электромагнитных) колебаний. Термин «Г. э. к.» применяется обычно к колебаниям в диапазоне радиочастот, возбуждаемым в устройствах (системах) с… … Большая советская энциклопедия
ШНУРОВАНИЕ ТОКА — возникновение в диэлектриках и ПП в сильных электрич. полях токовой нити (шнура) с радиусом R, меньшим поперечного размера образца. Плотность тока в шнуре больше, чем в окружающем объёме. Несмотря на то что сечение токового шнура обычно во много… … Физическая энциклопедия
Туннельный диод — двухэлектродный электронный прибор на основе полупроводникового кристалла, в котором имеется очень узкий потенциальный барьер, препятствующий движению электронов; разновидность полупроводникового диода (См. Полупроводниковый диод). Вид… … Большая советская энциклопедия
Импульсный стабилизатор напряжения — Импульсный стабилизатор напряжения это стабилизатор напряжения, в котором регулирующий элемент работает в ключевом режиме[1], то есть большую часть времени он находится либо в режиме отсечки, когда его сопротивление максимально, либо в… … Википедия
РЕЗОНАНСНЫЙ УСИЛИТЕЛЬ — усилитель электрических колебаний, содержащий резонансный колебательный контур и имеющий вследствие этого большое усиление в сравнительно узкой полосе частот вблизи резонансной частоты (см. также Резонанс), что позволяет с помощью Р. у. не только … Физическая энциклопедия
Люминесцентная лампа — Различные виды люминесцентных ламп Люминесцентная лампа газоразрядный источник … Википедия
Отрицательное сопротивление, импеданс. Схема. Преобразователь в противоположное. Преобразовать. Туннельный диод.
Понятие отрицательного сопротивления. Схемы с отрицательным сопротивлением. (10+)
Когда изучаешь закон Ома, встает вопрос, почему бы не существовать средам, ток через которые бы уменьшался по мере увеличения напряжения на них. Сначала такое явление, как отрицательное сопротивление, казалось математической абстракцией. Но потом появились электронные детали и интегральные схемы, обладающие отрицательным омическим сопротивлением.
Отрицательное сопротивление интересно тем, что включая такой элемент в электрическую цепь, мы получаем усилитель.
Вашему вниманию подборка материалов:
Практика проектирования электронных схем Искусство разработки устройств. Элементная база. Типовые схемы. Примеры готовых устройств. Подробные описания. Онлайн расчет. Возможность задать вопрос авторам
Полупроводниковым прибором, обладающим отрицательным сопротивлением, является туннельный диод. Туннельный диод обладает отрицательным сопротивлением только в определенном режиме, на определенном участке своей вольт-амперной характеристики. Однако, подав на туннельный диод нужное напряжение, мы получаем нужный режим.
На рисунке приведена типичная схема на туннельном диоде. Вообще туннельный диод уступает практически по всем параметрам интегральным приборам с отрицательным сопротивлением. Во-первых, его характеристика нелинейна. Во-вторых, отрицательное сопротивление проявляется только на ограниченном участке характеристики. Однако у него есть одно преимущество. Он может работать на очень высоких частотах. Некоторые образцы работают на частотах до 10 ГГц.
Так что приведенная схема является практически единственным промышленным применением туннельных диодов. В зависимости от напряжения смещения, которое регулируется резистором R2, схема может быть приемником или передатчиком сигнала. В режиме приемника через C3 снимается сигнал. В режиме передатчика управляющий сигнал подается через C3. Так как характеристика туннельного диода нелинейна, то сигнал, поданный через C3, модулирует колебания в колебательном контуре.
Устройство питается от одной пальчиковой батареи 1.5 В.
Преобразователь полного сопротивления (импеданса) в противположный
Схема (A) эквивалентна отрицательному сопротивлению, подключенному к общему проводу. Схема (B) имитирует подвешенный отрицательный резистор (не подключенный к общему проводу и шинам питания).
Приятная особенность приведенных схем в том, что они не только могут преобразовать сопротивление в противоположное ему (отрицательное). Они могут преобразовать в противоположный любой комплексный импеданс, подключенный вместо R3. Катушку индуктивности можно преобразовать в минус катушку индуктивности, конденсатор в минус конденсатор. Вообще импеданс любой RLC цепь можно преобразовать в противоположный.
Действительно, ток через R1, а во второй схеме еще через R5 равен минус току через R2 (и R4 во второй схеме). Это верно в силу того, что у операционного усилителя напряжения на инвертирующем и неинвертирующем входах равны. В свою очередь ток через R2 (R4) равен току через R3 или цепочку, которую мы подключим вместо его. То есть сила входного тока пропорциональна минус R3.
Необходимо помнить, что все интересные эффекты в этих электронных схемах имитируются за счет цепей питания, так что напряжения на выводах такой схемы должны быть в интервале между напряжениями на питающих шинах и должны иметь небольшую амплитуду.
По ссылке можно посмотреть статью про гиратором с отрицательным омическим сопротивлением и схемы на его основе.
К сожалению в статьях периодически встречаются ошибки, они исправляются, статьи дополняются, развиваются, готовятся новые. Подпишитесь, на новости, чтобы быть в курсе.
Если что-то непонятно, обязательно спросите!
Задать вопрос. Обсуждение статьи.
Как не перепутать плюс и минус? Защита от переполюсовки. Схема.
Схема защиты от неправильной полярности подключения (переполюсовки) зарядных уст.
Практика проектирования электронных схем. Самоучитель электроники.
Искусство разработки устройств. Элементная база радиоэлектроники. Типовые схемы.
Инвертор, преобразователь, чистая синусоида, синус.
Как получить чистую синусоиду 220 вольт от автомобильного аккумулятора, чтобы за.
Проверка биполярного, полевого транзисторов, МОП, FET, MOSFET. Провери.
Как проверить исправность биполярного и полевого транзисторов. Методика испытани.
Преобразователь однофазного напряжения в трехфазное. Принцип действия.
Принцип действия, сборка и наладка преобразователя однофазного напряжения в трех.
Искровой запал, трансформатор розжига, поджига. Запальный блок. Источн.
Как сделать запальный блок с питанием от 12 вольт. Схема, принцип действия, инст.
Что такое входное сопротивление и как его измерить
При работе со сложными схемами нужно уметь определять характеристики их отдельных блоков и элементов. В частности, входное и выходное сопротивление. Важно знать, что они из себя представляют, как определяются и какую роль играют в работе устройства.
Понятие входного сопротивления для постоянного тока
Радиоэлектронные устройства могут быть не только относительно, но и очень сложными, состоящими из многих блоков. Однако независимо от сложности устройства, количества используемых в нем деталей, схему можно рассматривать в качестве совокупности простых частей с определенной разностью потенциалов на входе. На выходе блока имеется ещё два контакта, на которых также присутствует напряжение. В первом случае его называют входным, в другом — выходным. Сказанное можно пояснить следующим рисунком.
Входное сопротивление цепи можно легко измерить с помощью вольтметра. Также нетрудно определить силу тока, протекающего между контактами. Для этого достаточно к схеме последовательно подключить амперметр. Получив эти два параметра, по закону Ома можно определить сопротивление схемы. Его называют входным. Иногда при этом рассматривают входное сопротивление длинной линии. Его определяющим свойством является то, что при подключении нагрузки к клеммам источника питания электрические характеристики не меняются.
Устройство блока может быть достаточно сложным, но в рассматриваемом случае не принимаются во внимание особенности его конструкции. Фактически можно представить, что внутри как бы находится резистор с определенным активным сопротивлением, соответствующим измеренному.
Входное электрическое сопротивление рассматривается как общая характеристика конкретного блока. Напряжение на вход может поступать с выхода другого блока или, например, с клемм аккумулятора или батареи.
Что такое внутреннее сопротивление при переменном токе
В предыдущем разделе было рассмотрено чисто активное сопротивление. При наличии в цепи только активного сопротивления фазы напряжения и тока совпадают. В реальных схемах обязательно присутствует реактивное сопротивление, которое делится еще на ёмкостное и индуктивное. Для постоянного тока его значение принято считать пренебрежимо малым и не принимать во внимание при расчёте параметров.
Если используется переменное напряжение на входе, тогда рассматривается полное сопротивление, состоящее из активного и реактивного. Их суммируют, используя правило прямоугольного треугольника. В этом случае один катет соответствует активному сопротивлению, второй — реактивному, а гипотенуза — полному или импедансу.
Важно учитывать, что в цепи с переменным током фаза напряжения сдвигается относительно фазы тока. Сдвиг фаз зависит от соотношения активного и реактивного сопротивлений конкретной цепи.
При отсутствии конденсаторов и катушек индуктивности в цепи емкостным и индуктивным сопротивлениями можно пренебречь и учитывать только активное. В этом случае ток будет следовать за напряжением, одновременно принимая нулевые и максимальные значения.
Если же в цепь включить катушку или конденсатор, создающих индуктивное или емкостное сопротивление настолько большого значения, что активное становится пренебрежимо малым, то сдвиг фаз будет равен π/2.
Так как реактивное сопротивление зависит от частоты поступающего сигнала, то чтобы более точно определить импеданс, необходимо узнать нужные параметры при двух различных частотах.
Следует принимать во внимание, что входное полное сопротивление линии может быть различным в отличающихся температурных условиях. Характер и величина отличий зависит от конкретного устройства рассматриваемого блока. Также требуется учитывать обратное влияние самой процедуры измерения на электрические параметры схемы.
Входное сопротивление зависит еще и от того, каким способом вводится в цепь сигнал обратной связи (ОС). Если этот сигнал отсутствует, то входное сопротивление определяется напряжением и током, присутствующими на входе. В том случае, когда обратную связь вводят по последовательной схеме, сопротивление на входе увеличивается при отрицательной ОС и уменьшается при положительной ОС.
При использовании параллельной схемы введения ОС входное сопротивление уменьшается и при отрицательной, и при положительной ОС. При небольшом сопротивлении в цепи ОС оно может составлять десятые, и даже тысячные доли Ома.
Как измерить
При определении входных параметров блока его устройство не рассматривается, но при этом может возникнуть необходимость провести измерение входного сопротивления. Блок выглядит как чёрный ящик, имеющий две входных и две выходных клеммы. Наиболее простым решением является определение входного напряжения и силы тока. Для простоты можно предположить, что рассматривается постоянный ток. Определить входное электрическое сопротивление в этом случае можно способом, который описан далее.
Найти входное сопротивление можно, разделив напряжение на силу тока. Однако в рассматриваемом случае нужно понимать, что если напряжение подаётся с батареи, то на показания будет влиять внутреннее сопротивление источника тока.
Если в блоке используется конденсатор, то нужно учитывать, что через него ток проходить не будет. С другой стороны, для переменного тока он помехой не является. Для переменного тока в качестве входного сопротивления цепи рассматривается полное сопротивление (импеданс). Оно представляет собой векторную сумму активного (омического) и реактивного (индуктивного и ёмкостного) сопротивлений. Однако его значение будет отличаться при различных частотах. Поэтому процедура измерения является более сложной по сравнению с постоянным током. В этом случае может быть использована следующая схема.
В данной схеме применён генератор переменного тока, который расположен слева. Его соединяют с исследуемым блоком, подавая на него переменный ток. На одном из соединительных проводов ставится резистор с известным сопротивлением R.
Напряжение измеряют дважды — перед резистором и после него. Пусть его значение будет равно U1 и U2 соответственно. Как известно, при переменном входном токе I(вх) падение напряжения на этой детали составит U2 – U1. С другой стороны оно будет равно I(вх) × R. В результате может быть получена следующая формула:
Из этой формулы можно определить величину входного тока:
На вход исследуемого блока поступает напряжение U2:
Входное сопротивление R(вх) найдем, используя формулу:
( U2 − U1 ) / R = U2 / R(вх).
Определяем значение сопротивления:
R(вх) = R × U2 / ( U2 − U1 ).
Все величины в правой части равенства являются известными или были измерены. Подставив их формулу, можно определить величину входного сопротивления схемы.
Применение описанного здесь способа позволяет точно вычислять входное сопротивление даже в тех случаях, когда оно очень велико.
Выходное напряжение
При рассмотрении упрощённой схемы блока видно, что у него имеется выходное напряжение. Оно появляется на контактах, указанных на изображении справа.
На рисунке показан идеальный источник тока, который, как предполагается, не имеет внутреннего сопротивления. Это означает, что может быть создан сколько угодно большой ток. Имеющийся на схеме резистор нарушает определенную идеальность, ограничивая величину тока при коротком замыкании.
Измерение выходного тока может быть выполнено следующим образом. Напряжение U является известной величиной. При коротком замыкании может быть измерен проходящий по контактам ток. Выходное сопротивление R(вых) определяется по закону Ома. Для его вычисления необходимо напряжение разделить на ток.
Однако этот способ неудобен, так как большой ток нарушает условия функционирования схемы и может привести к поломкам. Поэтому на практике между клеммами ставят дополнительный резистор с известной величиной сопротивления R и только после этого измеряют значение силы тока I и напряжения U2. Предварительно следует определить разность потенциалов U1 с помощью вольтметра. Исходя из закона Ома, получают следующую формулу:
R(вых) = ( U2 – U1 ) / ( U2 / R ).
Практическое применение
Понятие входного сопротивления играет важную роль при согласовании характеристик соединённых между собой блоков. Сказанное можно пояснить на следующем примере.
Предположим, что первым блоком является источник питания. Если к его клеммам присоединён следующий блок, то при практическом определении его входного сопротивления станет понятно, что оно немного меньше расчётной величины.
Это связано с наличием внутреннего сопротивления аккумулятора. Чем оно больше, тем искажение заметнее. Аналогичная ситуация наблюдается при соединении двух любых других блоков. Чтобы передача сопротивления проходила с минимальными потерями, необходимо, чтобы выходное сопротивление предыдущего блока было намного меньше входного у последующего.
С учетом этого обстоятельства необходимо уметь определять рассматриваемые величины, а при создании схемы обеспечивать их правильное соотношение. Если оно будет нарушено, то произойдёт значительное падение напряжения при передаче.
На практике обычно сталкиваются с очень большими значениями входных сопротивлений. В некоторых случаях они могут достигать 1 МОм. Это часто происходит при относительно небольшом входном напряжении. В результате сила рассматриваемого тока получается также небольшой.
В электронике входное и выходное сопротивление играют важную роль. Все качественные измерительные приборы стараются делать с очень высоким входным сопротивлением, чтобы оно минимально сказывалось на измеряемом сигнале и не гасило его амплитуду.
Что касается качественных источников питания, то их выпускают с очень небольшим выходным сопротивлением, чтобы при подключении низкоомной нагрузки напряжение на выходе «не проседало». Но даже если это случится, его можно подкорректировать вручную, используя регулировку выходного напряжения, присутствующую в каждом нормальном источнике питания.