Что такое ответная реакция организма
Теория стресса
На организм человека в течение всей жизни влияет множество факторов. В ответ на любое воздействие возникает в свою очередь серия стереотипных приспособительных реакций, направленных на обеспечение защиты организма. Совокупность этих защитных реакций выдающийся канадский ученый Ганс Селье, прародитель учения о стрессе, назвал адаптационным (приспособительным) синдромом или стрессом. Форма этого состояния многогранна, бесконечно интересна и, разумеется, вызывает массу вопросов. Как организм компенсирует воздействие повреждающих факторов и отвечает на стресс, какие особенности метаболизма развиваются вслед за воздействием стрессоров, что в первую очередь необходимо организму человека в качестве нутритивной поддержки и как обеспечить адекватное питание. Все эти направления любопытно рассмотреть с позиций патофизиологии адаптационных реакций, изменяющих состояние внутренней среды организма.
Что такое стресс
Стресс — это генерализованная неспецифическая реакция организма, возникающая под действием различных факторов различного характера, силы или длительности.
Зайчик А. Ш., Чурилов Л. П., «Общая патофизиология», 2001 г.:
«В вопросе о том, что такое стресс, как указывали Г. Селье и Х. Роулингс (1975, 1981), часто допускают две крайности. Первая — трактовка стресса как ответа исключительно на неприятности — выходит к бытовому пониманию английского “stress” — „напряжение, нажим, ударение“. Другая крайность сформулирована в ранних работах Г. Селье как принцип „Все есть стресс“».
Стресс — это состояние, в котором постоянно пребывает каждый человек, живущий на планете. В связи с этим возникает немало вопросов: как и почему мы по- разному реагируем на стрессорные факторы, что становится основой дезадаптации и нарушения общей резистентности организма? На все эти вопросы ответы могут быть различными в зависимости от того, с точки зрения какой науки их рассматривать. Так, развитие науки диетологии дает свое представление о влиянии стресса на организм человека и о формировании последствий при его воздействии.
Стрессовое состояние, как правило, вызвано стрессорами, которые могут угрожать гомеостазу. Такими, например, как боль, гипоксия, голод, антигенная агрессия, а также большое количество чрезвычайных факторов. Выделяются также потенциально опасные раздражители, действие которых начинается до момента фактического повреждения: вид хищного животного, змеи и т. д. В этих случаях стресс развивается на основе условных рефлексов, организм предполагает развитие опасности. Однако по Гансу Селье «не имеет значения, приятна или неприятна ситуация, с которой мы столкнулись, имеет значение лишь интенсивность потребности в перестройке или адаптации».
Причинами стресс-реакции являются те же факторы, что и вызывающие адаптационный синдром. Воздействие любого чрезвычайного фактора вызывает в организме два взаимосвязанных процесса:
Физиология и патофизиология стресса
Во время стресса активируются метаболические пути и в центральной нервной системе, что обеспечивает формирование возбуждения, проворства, бдительности, повышение познавательной способности, внимания и агрессии. Реакция адаптационной системы на стрессорное воздействие нуждается в первую очередь в дополнительном обеспечении энергией, поэтому в организме сразу после воздействия стрессоров происходит активация функционирования надпочечников как как основного эффектора стресса.
В результате в организме происходит адаптивное перераспределение энергии в сторону периферии:
При длительном течении стрессорной реакции действия адреналина оказывается недостаточным для обеспечения защитной реакции, происходит его разрушение вслед за реакциями тревоги (первая стадия стресса), развиваются стадии резистентности и истощения.
Первая стадия стресса
Стадия тревоги стресса — первая стадия стресса. Это общая реакция тревоги (от англ. alarm reaction).
Возникает картина, характерная для шока: наблюдается падение артериального давления (АД), нарушение дыхания, депрессия центральной нервной системы, нарушение метаболизма, гипотермия, преобладание катаболизма над анаболизмом. Фаза шока сменяется фазой контршока. Происходит включение компенсаторных реакций организма. Затем из-за возбуждения симпатической нервной системы и эндокринных механизмов совершается выброс симпатомиметических гормонов: ТТГ, тироксина, АКТГ, глюкокортикоидов, вазопрессина, адреналина.
Под воздействием симпатической системы, выброса гормонов происходит восстановление нарушенных функций. Если будут преобладать симптомы фазы шока, организм может погибнуть на стадии тревоги. Если более активными останутся противошоковые реакции, организм перейдет в следующую стадию стресса — стадию резистентности.
Стресс с позиции диетологии
Стресс — это ответная реакция организма на экстремальные условия, нарушающие эмоциональное спокойствие и равновесие человека, которая сопровождается процессами, направленными на повышение потребности организма в основных нутриентах. При стрессовом воздействии белки, витамины и микроэлементы экстренно расходуются в организме. Одновременно происходит выработка большого количества гормонов, для синтеза которых необходимы белок, витамины С, В, цинк, магний и другие минеральные вещества.
Пусковыми факторами стадии тревоги стресса являются:
В ответ на воздействие перечисленных факторов усиливается поток афферентных сигналов, изменяющих деятельность корковых и подкорковых нервных центров регуляции жизнедеятельности организма. На стадии тревоги стресс-реакции закономерно активируются симпатико-адреналовая, гипоталамо-гипофизарно-надпочечниковая системы, щитовидная, поджелудочная и другие железы внутренней секреции. Все это приводит к быстрой мобилизации комплекса различных адаптивных механизмов: компенсаторных, защитных, восстановительных.
Адаптационный ответ организма на стрессорное воздействие в целом направлен на минимизирование нарушений баланса и восстановление гомеостаза. Эти механизмы, являясь неспецифическим компонентом стадии срочного (экстренного) приспособления общего адаптационного синдрома, обеспечивают:
Эти реакции достигаются благодаря активирующему эффекту действия катехоламинов, глюко- и минералокортикоидов, глюкагона, тиреоидных и ряда гипофизарных гормонов. Происходит образование энергоемких соединений, субстратов метаболизма, активация пластических процессов, специфических и неспецифических механизмов защиты.
Стресс с позиции диетологии
Когда пища адекватна, человек может годами противостоять стрессу без заметных нарушений, обеспечивая действие стрессора совместно с возможностями адаптации и нормализацию выработки гормонов стресса и адаптацию организма к изменившимся условиям. На «стадии сопротивления» организм восстанавливает себя (тимус, лимфоузлы) с помощью адекватного сбалансированного питания с высокой квотой белков в пищевом рационе. Признаки «реакции тревоги» исчезают, а уровень сопротивления поднимается значительно выше обычного.
Ключевая роль в осуществлении указанных процессов стресса принадлежит гипоталамо-гипофизарно-надпочечниковой системе и биологически активным веществам, образующимся при ее активации.
На стадии тревоги стресс- реакции начинает осуществляться транспорт энергетических, метаболических и пластических ресурсов из не активировавшихся при действии данного фактора тканей и органов к тем, которые реализуют специфические адаптивные реакции, к так называемым доминирующим органам. Продолжающаяся стадия тревоги стресс-реакции, сопровождающаяся гиперкатехоламинемией, повышенным уровнем глюко- и минералокортикоидов, тиреоидных гормонов и других биологически активных веществ, а также ишемией отдельных органов и тканей, может обусловить развитие в них дистрофических изменений, гипотрофии, эрозий, язв и некроза. Такие изменения закономерно выявляются при различных видах тяжелого затяжного стресса в органах пищеварения, мочевыделительной, сердечно-сосудистой системе и лимфоидной системе.
Стресс с позиции диетологии
Стадия «реакция тревоги», ее интенсивность зависит от степени стресса, идет усиленный синтез и распад белков. Формируется дефицит белка в суточном рационе. Процесс этот выглядит следующим образом:
Активация обмена веществ, пластических процессов и функционирования тканей, органов и их систем, как правило, обеспечивает генерализованную мобилизацию адаптивных механизмов. Благодаря этому через некоторое время общая устойчивость его к действию стресс-факторов начинает повышаться.
Вторая стадия стресса
Вслед за стадией тревоги развивается стадия повышенной резистентности при стрессе. Во второй стадии стресса происходит повышение общей резистентности организма к стрессорным воздействиям.
Этапы стадии резистентности:
По ходу формирования и реализации второй стадии стресса нормализуются функционирование органов и их систем, интенсивность обмена веществ, уровни гормонов и субстратов метаболизма. В основе этих изменений при стрессе лежит гипертрофия и гиперплазия структурных элементов тканей и органов, обеспечивающих развитие повышенной резистентности организма: желез внутренней секреции (включая гипофиз, надпочечники, щитовидную железу), сердца, печени, кроветворных органов и др.
Одновременно признаки гипертрофии и гиперплазии структур выявляются и в органах, обеспечивающих специфическое долговременное приспособление организма к данному агенту.
Исследованиями Ганса Селье установлено, что адаптационный синдром, развивающийся как первая фаза стрессовой реакции, не является патологической реакцией. Это защитная физиологическая реакция, развивающаяся на действие любого фактора, вызывающего повреждение. В зависимости от состояния организма, возможности быстрого восстановления затраченной энергии и пластических веществ формирование ответной реакции организма не всегда оказывается оптимально эффективным.
Если действие стрессорного фактора продолжается, а резервные возможности организма недостаточны, возможно развитие декомпенсации, снижение резистентности, развивается стадия истощения с последующими дистрофическими изменениями вплоть до гибели организма.
Если причина, вызвавшая стресс, продолжает действовать, сохраняется или нарастает ее интенсивность, отсутствует коррекция потребности организма в белке, витаминах, микроэлементах и энергообеспечении, реакции адаптации, общей защиты, приспособления и компенсации становятся недостаточными, развивается следующая стадия стресс-реакции — истощения стресса.
Первые две стадии стресса характеризуются постоянными разрушениями и восстановлениями, большая часть болезней приходится на третью стадию, которая наступает при невозможности восстановления. Если стрессорный фактор продолжает действовать, адаптивные реакции организма истощаются, а питание остается несбалансированным, наступает третья стадия — стадия истощения.
Третья стадия стресса
Этапы стадии истощения:
Истощение характеризуется нарушением процессов нервной и гуморальной регуляции, сдвигом обменных процессов в сторону катаболизма, нарушением функционирования органов и систем. Происходит снижение общей резистентности организма, нарушается система адаптации к действию стрессоров. Высокая концентрация катехоламинов, глюкокортикоидов, АДГ, СТГ вызывает чрезмерную мобилизацию глюкозы, липидов и белковых соединений в различных тканях.
С одной стороны, этот процесс обеспечивает субстратами метаболизма доминирующие органы и ткани, интенсивно функционирующие при стресс-реакции. С другой стороны, если реакция мобилизации субстратов метаболизма избыточно длительна или интенсивна, это приводит к дефициту веществ, развитию дистрофических процессов, частичному некрозу как клеток, повышенно функционирующих, так и других тканей и органов. При развитии повторной стресс-реакции или ее усилении развивается перераспределение кровотока.
Кровоток усиливается в органах, на которые выпадает основная нагрузка, обусловленная действием стрессорного фактора. В тех органах, которые не задействованы в ответной стрессорной реакции организма, происходит снижение кровотока в тех органах, которые не были задействованы в ответной стрессорной реакции организма. Гипоперфузия тканей вызывает развитие дистрофий, эрозий и язв. Как осложнение течения стрессорной реакции развиваются эрозии и язвы в желудке, кишечнике, формируется гипотрофия лимфоидных органов и тканей. При чрезмерно длительном, выраженном или повторном стрессе снижается эффективность системы иммунобиологического надзора и облегчается экспрессия клеточных генов. В связи с этим активируется синтез нуклеиновых кислот и белков. Сочетание этих двух феноменов может создать условия для экспрессии онкогенов и развития опухолей.
Болезни адаптации
Заболевания, при которых неадекватность синдрома адаптации имеет даже большее значение, чем специфический эффект патогенного агента, относятся преимущественно к «болезням адаптации».
Вариабельность патологических изменений при болезнях адаптации Ганс Селье объясняет преимущественно обусловленностью, зависящей от предшествующей сенсибилизации. Он пишет, что в зависимости от обстоятельств синдром адаптации может быть полезным или вредным для организма. Воздействие стрессоров нельзя рассматривать как обязательную причину возникновения заболеваний. У человека под влиянием стресса заболевания склонны возникать только как следствие неблагоприятных кондициональных факторов, которые препятствуют адаптационному синдрому развернуться естественным образом.
Источник: medicalplanet.su.
Хотите больше новой информации по вопросам диетологии?
Оформите подписку на информационно-практический журнал «Практическая диетология»!
ОТВЕТНАЯ РЕАКЦИЯ
Смотреть что такое «ОТВЕТНАЯ РЕАКЦИЯ» в других словарях:
ответная реакция — Набор откликов получателя, возникших в результате контакта с обращением. [http://o city.ru/legislation/terminologiya/] Тематики реклама … Справочник технического переводчика
ЗАВИСИМОСТЬ “ДОЗА — ОТВЕТНАЯ РЕАКЦИЯ” — прямая зависимая связь между дозой вещества (загрязнитель, минеральное удобрение и др.), воспринятой животным (растением, человеком), и его реакцией. Экологический энциклопедический словарь. Кишинев: Главная редакция Молдавской советской… … Экологический словарь
взаимосвязь доза-ответная реакция — rus взаимосвязь (ж) доза ответная реакция eng dose response relationship fra relation (f) dose réponse deu Dosis Wirkungsrelation (f) spa relación (f) dosis respuesta … Безопасность и гигиена труда. Перевод на английский, французский, немецкий, испанский языки
медленная ответная реакция — — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN slow response … Справочник технического переводчика
РЕАКЦИЯ — (от ре. и лат. actio действие), 1) в аутэкологии ответная реакция организма на раздражения среды (акций). Например, организм может быть термофильным (по отношению к температуре) или психрофильным (по отношению к влаге); 2) в синэкологии… … Экологический словарь
Реакция нападения / бегства (fight / flight reaction) — Нападение или бегство яв ся двумя осн. реакциями, имеющимися в распоряжении большинства животных, в том числе и людей, когда они сталкиваются с опасностью. Угроза выживанию организма будет встречена одним или обоими типами поведения. Угроза может … Психологическая энциклопедия
Пороговая реакция — – ответная реакция возбудимой ткани на действие минимального (порогового) по силе раздражителя … Словарь терминов по физиологии сельскохозяйственных животных
рефлекс — ▲ реакция (на) ↑ автоматический, нервная система рефлекс опосредствованная нервной системой ответная реакция организма на раздражитель; физиологическая неконтролируемая реакция; автоматическая реакция организма. рефлектировать. рефлекторный.… … Идеографический словарь русского языка
Рефлекс (Jerk) — ответная реакция организма на то или иное воздействие, осуществляющаяся через нервную систему. Например, коленный рефлекс (knee jerk) (см. Рефлекс пателлярный) заключается в осуществлении резкого подбрасывающего движения ногой, возникающего в… … Медицинские термины
Что такое ответная реакция организма
Метеотропные реакции – это физиологические реакции организма человека на влияние собственно метеорологических факторов. Здоровые люди легко переносят изменения погоды, адаптивные физиологические механизмы позволяют им приспосабливаться без заметных расстройств к любым метеоусловиям, вместе с тем снижение эффективности этих механизмов приводит к возникновению различных патологических реакций. В большинстве случаев они непродолжительны и сопровождаются такими симптомами, как головные боли, раздражительность, повышенная возбудимость, бессонница, депрессия, ревматоидные боли и др. Развитие таких ответных реакций на влияние погоды чаще всего обозначают как метеочувствительность. Во многих исследованиях показано, что существует достоверная связь между обострением ряда патологических состояний и изменениями погодных условий [1–3].
В большинстве публикаций выделяются следующие основные погодные факторы, оказывающие влияние на здоровье человека: температура окружающей среды, влажность воздуха, атмосферное давление, скорость ветра, солнечная активность, геомагнитная активность и атмосферное электрическое поле [4, 5]. Помимо этих факторов анализируется влияние сезонов года и состояния окружающей среды [6]. Несмотря на многолетнюю историю изучения метеочувствительности, физиологические механизмы воздействия погоды на человека остаются не до конца ясными. Наиболее изучены механизмы влияния на организм человека температуры окружающего воздуха.
На увеличение температуры окружающей среды реагируют тепловые терморецепторы кожи, импульсы от них поступают в центры терморегуляции, расположенные в гипоталамусе, которые в свою очередь запускают каскад реакций, индуцирующих кожную вазодилятацию и потоотделение. Возрастание кожного кровотока увеличивает теплоотдачу во внешнюю среду и обеспечивает потовые железы кислородом и жидкостью для выделения пота. Потоотделение – это самый эффективный механизм срочной адаптации к высокой температуре окружающей среды, который позволяет за счет интенсивного испарения пота с кожи (до 3 кг/ч) значительно увеличить выделение тепла из организма. Однако с потом, помимо воды, организм теряет и электролиты (до 10–30 г хлористого натрия в день), что индуцирует интенсивный переход жидкости в кровяное русло для компенсации потери на потоотделение. Перераспределение жидкости стимулирует почки к усилению ретенции солей и воды. Дилатация кожных сосудов (прежде всего открытие артериовенозных анастамозов) обуславливает реакции, индуцирующие увеличение объема циркулирующей крови, при этом в норме артериальное давление не изменяется или несколько снижается, а частота сердечных сокращений увеличивается. Кровоток во внутренних органах (печень и почки) может снижаться [7].
При недостаточности адаптационных механизмов, направленных на поддержание объема плазмы крови и ее электролитного состава, или при интенсивном и длительном потоотделении наблюдается уменьшение объема циркулирующей крови и существенное снижение артериального давления. В связи с этим при срочной адаптации к повышению температуры основная нагрузка ложится на сердечно-сосудистую систему, которая, при наличии функциональных нарушений может не справляться с возросшими потребностями. Поэтому в жаркую погоду, особенно в периоды «волн жары» (нескольких последовательных аномально жарких дней), в наибольшей степени страдают пациенты с болезнями системы кровообращения, адаптивные резервы у которых оказываются недостаточными.
Кроме того, перераспределение крови, направленное на значительное увеличение кожного кровотока и уменьшение кровотока во внутренних органах – органах с высоким уровнем обменных процессов, с одной стороны, приводит к увеличению теплоотдачи с поверхности тела, а с другой – к уменьшению теплопродукции внутренними органами при их сниженном кровоснабжении. Вместе с тем уменьшение кровотока в органах с высоким метаболизмом, особенно у больных с атеросклерозом или заболеваниями печени и почек может индуцировать их гипоксию. Во многих исследованиях показано, что при напряженной адаптации, видимо, вследствие возникающей гипоксии индуцируется окислительный стресс [8–11], который характеризуется накоплением высокотоксичных продуктов свободнорадикального окисления в крови и тканях вследствие усиленного генерирования активных форм кислорода (АФК) и/или подавления активности утилизирующих АФК антиоксидантных ферментов. В исследовании М.Д. Смирновой с соавторами [9] отмечено, что летняя жара провоцирует развитие окислительного стресса у 2/3 больных сердечно-сосудистыми заболеваниями. У них увеличивается содержание продуктов перекисного окисления липидов в отсутствие изменений активности фермента, утилизирующего активные формы кислорода [10]. Кроме того, у этих же пациентов отмечена большая частота развития сердечно-сосудистых осложнений, включая гипертонические кризы, по сравнению с пациентами с большей активностью антиоксидантной системы. При этом показано, что использование антигипоксантов и антиоксидантов позволяет улучшить переносимость летней жары пациентами с сердечно-сосудистыми заболеваниями [11].
На снижение температуры окружающей среды ниже комфортной реагируют холодовые терморецепторы кожи, импульсы от них поступают в центр терморегуляции в гипоталамусе, который, в свою очередь, запускает каскад реакций, индуцирующих кожную вазоконстрикцию и увеличение теплопродукции. Основное увеличение теплопродукции достигается за счет сократительной деятельности мышц (дрожь и терморегуляционный мышечный тонус), разобщения окисления и фосфорилирования, а также снижения эффективности клеточных насосов (АТФаз), что стимулируется норадреналином и тиреоидными гормонами и сопровождается увеличением потребления кислорода и энергетических субстратов. При длительной адаптации к холоду увеличивается количество и активность митохондрий для обеспечения возросшего потребления АТФ. Подробный анализ основных механизмов адаптации к холоду сделан в обзоре [12]. Органами, дающими основной вклад в теплопродукцию при адаптации человека к холоду, являются скелетные мышцы и, в меньшей степени, печень. Увеличение активности митохондрий при холодовой адаптации приводит к усилению генерации активных форм кислорода, поскольку митохондрии являются одним из основных источников АФК в физиологических условиях. На уровне организма систематическое холодовое воздействие вызывает стимуляцию собственных защитных ресурсов посредством усиления окислительных процессов, которые, в свою очередь, инициируют активацию антиоксидантной системы и повышают общую устойчивость организма к стрессовым факторам различной природы. Однако при недостаточности адаптационного потенциала, например при болезнях системы кровообращения, усиление кровотока для обеспечения кровоснабжения активно работающих (производящих тепло) органов лимитируется сердечно-сосудистой системой, недостаточный ее потенциал может обуславливать гипоксию и чрезмерное увеличение АФК. Мобилизация антиоксидантной системы при этом также может быть недостаточной, что в свою очередь будет приводить к окислительному стрессу, усилению перекисного окисления липидов и обострению заболевания. Во многих исследованиях показано, что окислительный стресс является этиологическим и патогенетическим фактором риска развития заболеваний сердечно-сосудистой системы [13, 14].
Среди неблагоприятных погодных факторов, помимо жаркой и холодной погоды, выделяют значительные колебания атмосферного давления [15, 16], которые обычно связаны с крупномасштабными (синоптическими) циркуляционными процессами в атмосфере. В ходе этих процессов изменяется вся совокупность метеорологических элементов. В весенний период наблюдаются наибольшие различия между дневными и ночными значениями атмосферного давления, и потенциальная зависимость обострения некоторых болезней системы кровообращения от резкого изменения атмосферного давления, видимо, может объяснить выявленный в исследовании K. Beseoglu с соавт. [17] весенний максимум смертности и количества обострений сосудистых заболеваний.
Еще одним погодным фактором, который, по мнению некоторых исследователей, оказывает существенное влияние на метеочувствительных людей, является влажность атмосферного воздуха [18–20]. P. Dilaveris с соавторами [18] установили, что среднемесячная смертность от инфаркта миокарда в Афинах является линейной функцией от среднемесячной относительной влажности (связь положительная) c максимальными значениями в зимние месяцы и минимальными в летние. Вместе с тем в средиземноморских странах высокая относительная влажность воздуха регистрируется в зимний период, а выявленная в работах [19] закономерность отражает установленный во многих исследованиях факт более высокой смертности зимой. При этом в странах с более холодным климатом в зимний период, когда наибольшее количество обострений болезней системы кровообращения, регистрируются низкие значения относительной и абсолютной влажности. В работах Б.Т. Величковского [20] показано, что значительное снижение абсолютной влажности воздуха в зимний период, обусловленное очень низкими значениями температуры атмосферного воздуха, приводит к снижению эффективности газообмена кислорода в органах дыхания. Кроме того, дыхание сухим воздухом может индуцировать повышение сосудистого сопротивления.
Разными исследователями было отмечено, что метеотропные реакции могут возникать за несколько дней до наступления неблагоприятных погодных условий. Это может быть обусловлено тем, что существенному изменению земной погоды обычно предшествуют изменения солнечной активности и сдвиги магнитной напряженности Земли.
В последние десятилетия был проведен ряд специальных исследований, направленных на анализ влияния космической погоды (гелио- и геомагнитной обстановки) на состояние здоровья.
Для характеристики солнечной активности обычно используют число Вольфа – индекс, характеризующий пятно-
образовательную деятельность Солнца. Для характеристики геомагнитной обстановки используют X-,Y- и Z-компоненты вектора напряженности магнитного поля Земли, а также индексы геомагнитной активности, характеризующие вариации магнитного поля Земли. Резкие изменения параметров геомагнитного поля Земли обычно называют геомагнитными возмущениями или бурями.
Как и при анализе влияния факторов земной погоды, результаты исследования влияния космической погоды на состояние здоровья весьма противоречивы. Анализ баз данных обращений за экстренной медицинской помощью [21–23] и наблюдения за больными в клиниках [21, 24] показали, что имеется достаточно широкий спектр реакций организма на изменение космической погоды. В исследованиях Ю.И. Гурфинкеля с соавторами [24] показано, что после магнитной бури образуются сгустки эритроцитов (сладжей) в микрососудах и отмечается ухудшение кровотока, которое приводит к развитию ишемии. В исследовании [22, 23] была показана положительная корреляционная связь между количеством обращений за экстренной медицинской помощью пациентов с болезнями системы кровообращения и уровнем геомагнитной активности (ГМА) и отмечено, что эта связь более выражена в зимние месяцы. В других исследованиях показано увеличение количества обострений болезней системы кровообращения как при очень высоких, так и при очень низких уровнях ГМА [23]. Вместе с тем T. Messner с соавторами [25] не выявили достоверной статистической связи между геомагнитной активностью и количеством инфарктов миокарда в северных районах Швеции. При этом изменения геомагнитной активности в полярных районах наибольшие [26].
Механизмы действия геомагнитного поля и солнечной активности на организмы человека и животных не выяснены. Существенная проблема связана с парадоксальностью биологического действия слабых низкочастотных магнитных полей (каким является и геомагнитное поле), энергия которых много меньше характерной энергии биохимических превращений [27]. Тем не менее в биологических и медицинских исследованиях показано достоверное влияние слабых магнитных полей на организм человека [22, 27, 28]. В биофизических исследованиях наиболее часто обсуждаются гипотетические молекулярные механизмы магниторецепции, рассматривающие влияние магнитного поля на скорость реакций с участием спин-коррелированных пар радикалов; квантовые вращения молекулярных групп внутри белков, а также изменения свойств жидкой воды в магнитном поле [21, 27]. В медико-биологических исследованиях наиболее часто обсуждается роль мелатонина [21, 29]. В исследованиях, проведенных на людях в условиях Крайнего Севера, показана прямая корреляционная зависимость между колебаниями электромагнитного поля Земли (Kp–индекс) и суточным ритмом секреции мелатонина, определяемым по его концентрации в слюне [29]. В исследованиях под руководством С.И. Рапопорта [3, 23] было показано, что у пациентов с заболеваниями сердечно-сосудистой системы в периоды геомагнитных возмущений и магнитных бурь отмечается достоверное подавление продукции мелатонина. При этом добавление мелатонина (3–6 мг в 22.00) к традиционной терапии снижало риск развития сердечно-сосудистых осложнений.
Еще одним фактором, потенциально обуславливающим метеочувствительность организма, может быть изменение электрического поля атмосферы (ЭПА). В районах ясной безоблачной погоды ЭПА направлено вниз, к земле, и его напряженность составляет около 1 В/м. Основными источниками ионизации воздуха являются космические лучи и излучения радиоактивных веществ, содержащихся в земной коре и атмосфере. Электрические характеристики приземного ЭПА определяются различными процессами: интенсивностью ионизации и перемешивания атмосферы, загрязненностью и увлажненностью воздуха (туман, дождь, снег), температурой и давлением воздуха, временем суток и временем года и др. В циклонических условиях погоды появление слоистой облачности верхнего и более низких ярусов, а также конвективной облачности индуцирует кардинальные изменения приземного электрического поля. Как правило, происходит переполюсовка (инверсия), в ходе которой поле становится направленным вверх, к нижней кромке облаков. Напряженность поля может увеличиваться до 2000 В/м и выше. Атмосферные ионы различаются по химической природе входящих в них молекул, массой и подвижностью. Подвижность отрицательных ионов, как правило, больше, чем положительных [30]. У земной поверхности над сушей концентрация тяжелых ионов значительно больше, чем легких. Это обусловлено тем, что в результате нормальных процессов ионизации создаются лишь легкие ионы, а тяжелые ионы могут образовываться лишь в случае присоединения легких к частицам аэрозоля, концентрация которого в нижних слоях воздуха больше. При запыленности воздуха вследствие увеличения числа взвешенных в атмосфере частиц число легких ионов убывает, а число тяжелых возрастает. Кроме того, концентрации ионов могут меняться вследствие их переноса под действием электрических сил, а также диффузии от мест с большей концентрацией и их механического переноса с движущимися массами воздуха. Концентрация легких отрицательно заряженных аэроионов возрастает при прохождении теплых воздушных фронтов и снижается в холодных фронтальных массах воздуха. Летом лёгких ионов больше, чем зимой. Особенно их много после дождя. Во многих исследованиях показано, что увеличение концентрации легких отрицательных ионов положительно влияет на организм [31, 32]. Таким образом, изменение состояния электрического поля атмосферы может влиять на самочувствие людей посредством механизмов, обусловленных динамикой концентрации легких отрицательных аэроионов, вызванной собственно электрическими процессами в тропосфере или изменением концентрации аэрозолей в воздухе. Кроме того, поскольку при изменении абсолютной влажности и атмосферного давления ионизация воздуха также может меняться, то эти же механизмы могут в какой-то степени обусловливать и чувствительность к перепадам атмосферного давления и влажности.
В заключение необходимо отметить, что метео- и гелиогеофизические факторы вызывают ответные реакции в организме любого человека, однако их негативное влияние, которое обычно называется метеочувствительностью, в основном связано с пониженными адаптационными резервами организма.