Что такое овр электрика
Как работают устройства автоматики включения резерва (АВР) в электрических сетях
В статье, описывающей работу устройств АПВ, рассмотрены случаи пропадания электроэнергии по различным причинам и методы ее восстановления автоматикой линий электропередач в том случае, когда причины создания аварийных ситуаций самоустранились и перестали действовать.
Птица, пролетающая между проводами воздушной ЛЭП, может создать короткое замыкание через свои крылья. Это повлечет снятие напряжения с ВЛ отключением от защит силового выключателя на питающей подстанции.
Устройства АПВ через несколько секунд восстановят питание потребителей электроэнергией, а защиты в этот момент уже не отключат его потому, что пораженная током птица успеет упасть на землю.
Однако, если на воздушную ЛЭП от порыва ураганного ветра упадет рядом выросшее дерево, сломав опору, то произойдет длительное короткое замыкание, оборвутся провода, которые исключат быстрое автоматическое восстановление электроснабжения подключенных объектов.
Все потребители этой линии не смогут получать питание до полного окончания ремонтных работ, которые могут растянуться на несколько суток…
Представим, что такое повреждение произошло на линии, которая снабжает электроэнергией районный город с большими производственными мощностями, например, использующими электрические печи в автоматическом режиме для плавки стекла.
С отключением электроэнергии плавильные ванны перестанут работать, а все жидкое стекло затвердеет. В итоге предприятие потерпит огромные материальные убытки, будет поставлено перед необходимостью остановки производства, проведения дорогостоящего ремонта…
Чтобы избежать подобных ситуаций на всех крупных производственных объектах предусматривается источник резервного электропитания, состоящий из дублирующей линии электропередачи от другой подстанции или собственная мощная генераторная установка.
На питание от нее потребуется переходить быстро и надежно. Для этого используются устройства автоматического включения резерва, сокращенно называемые АВР.
Таким образом, рассматриваемая автоматика предназначена для бесперебойного снабжения ответственных потребителей электроэнергией при возникновении серьёзных аварий на основной питающей линии за счет быстрого задействования резервного источника.
Требования, предъявляемые к АВР
Устройства автоматики ввода резервного питания должны срабатывать:
максимально быстро после потери электроэнергии на основной линии;
при любом пропадании напряжения на собственных шинах потребителя без анализа причин возникшей неисправности, если не предусмотрена блокировка запуска от определенного вида защит. Например, дуговая защита шин должна блокировать запуск АВР с целью предотвращения развития возникшей аварии;
с необходимой задержкой при выполнении определенных технологических циклов. Например, во время включения под нагрузку мощных электродвигателей возможна «просадка» напряжения, которая быстро заканчивается;
всегда только однократно, ибо иначе возможно многократное включение на не устраняемое короткое замыкание, способное полностью разрушить сбалансированную электрическую систему.
Естественным требованием, необходимым для надежной работы схемы, является постоянное поддержание ее в исправном состоянии и контроль технических параметров в автоматическом режиме.
Преимущества схемы АВР над параллельным питанием от двух источников
На первый взгляд, для питания ответственных потребителей можно вполне обойтись их одновременным подключением к двум разным линиям, берущих энергию от разных генераторов. Тогда при аварии на одной из ВЛ эта цепочка разорвется, а другая останется в работе и будет осуществлять бесперебойное питание.
Такие схемы уже создавались, но не получили массового практического применения из-за следующих недостатков:
при возникновении коротких замыканий на любой линии токи значительно увеличиваются за счет подпитки энергией от обоих генераторов;
на питающих трансформаторных подстанциях увеличиваются потери мощности;
значительно усложняется схема управления электроснабжением за счет использования алгоритмов, одновременно учитывающих состояние потребителя и двух генераторов, возникновения перетоков мощностей;
сложность реализации защит, взаимосвязанных алгоритмами на трех удаленных концах.
Поэтому питание потребителя от одного основного источника и автоматический переход на резервный генератор при пропадании напряжения считается наиболее перспективным. Время перерыва в энергоснабжении при этом способе может быть менее 1 секунды.
Особенности создания схем АВР
Для работы автоматики может быть заложен один из следующих алгоритмов:
одностороннее питание от рабочей станции с нахождением в горячем резерве дополнительной, вводимой в работу только при пропадании напряжения от основного источника;
возможности двухстороннего использования любого из источников в качестве рабочей станции;
способности схемы АВР автоматически возвращаться на питание от основного источника после восстановления напряжения на шинах входящего выключателя. При этом создается последовательность срабатывания силовых коммутационных устройств, исключающих возможность подключения потребителя в режим параллельного питания от двух источников;
простая схема АВР, исключающая переход на режим восстановления питания от основного источника в автоматическом режиме;
ввод резервного питания должен происходить только в том случае, когда приняты меры подачи напряжения на поврежденный силовой элемент основного питания отключением соответствующего выключателя.
В отличие от автоматики АПВ устройства АВР показывают наибольшую эффективность при пропадании питания, оцениваемую в 90÷95%. За счет этого они широко применяются в системах энергоснабжения промышленных предприятий.
Автоматическое включение резерва применяется для питания линий электропередач, трансформаторов (силовых и собственных нужд), секционных выключателей.
Принципы, заложенные в работу АВР
Для анализа напряжения на линии основного питания используется измерительный орган, состоящий из реле контроля напряжения РКН в комплексе с измерительным трансформатором и его цепями. Высоковольтное напряжение первичной сети, пропорционально преобразованное во вторичную величину 0÷100 вольт, поступает на обмотку контролирующего реле, которое выполняет роль пускового органа.
Настройка уставок реле РКН имеет особенность: требуется учитывать низкий необходимый уровень срабатывания пускового органа, обеспечивающего снижение напряжения до 20÷25% номинальной величины.
Это связано с тем, что при близких коротких замыканиях происходит кратковременное «проседание напряжения», ликвидируемое срабатываниями токовых защит. А пусковые органы РКН необходимо отстраивать от этих процессов. Но при этом нельзя использовать обычные типы реле из-за их неустойчивой работы на начальном пределе шкалы.
Для эксплуатации в пусковых органах АВР используются специальные конструкции реле, исключающие вибрации и дребезг контактов при срабатывании на нижних пределах.
Когда питание оборудования происходит нормально по основной схеме, то реле контроля напряжения просто отслеживает этот режим. Стоит только напряжению исчезнуть, как РКН переключает свои контакты и этим выдает сигнал на электромагнит включения соленоида резервного выключателя для ввода его в работу.
При этом соблюдается определенная последовательность срабатывания силовых элементов первичной схемы, которая заложена в логику управления системы АВР при ее создании и настройке.
Кроме пропадания напряжения на основной линии питания, для полного срабатывания пускового органа АВР обычно необходимо выполнить проверку еще нескольких условий, например:
отсутствие неустраненного КЗ на защищаемой зоне;
включение вводного выключателя;
наличие напряжения на резервной линии питания и некоторые другие.
Все пусковые факторы, введенные для срабатывания АВР, проверяются в алгоритме логики и при соблюдении необходимых условий выдается команда на исполнительный орган с учетом выставленной временно́й уставки.
Примеры выполнения некоторых схем АВР
В зависимости от величины рабочего напряжения системы и сложности конфигурации сети схема АВР может иметь разную структуру, выполняться на постоянном или переменном оперативном токе или обходиться вообще без него за счет использования основного напряжения сети в схемах 0,4 кВ.
АВР высоковольтной линии на постоянном оперативном токе
Кратко рассмотрим логику работы релейной схемы резервирования питания линии с основным источником питания №1.
Если на участке Л-1 произойдет КЗ, то защиты отключат выключатель В-1 и на шинах присоединения пропадет напряжение. Реле минимального напряжения «Н
От его контактов запустятся команды на срабатывание целого ряда реле, выполняющих различные функции контроля и выдачи управляющего сигнала на соленоид включения силового выключателя В-2.
В схеме обеспечивается однократность действия и выдача информации о срабатываниях сигнальными реле.
АВР секционного выключателя на постоянном оперативном токе
Рабочие силовые трансформаторы Т1 и Т2 запитывают свою секцию шин, разъединенных секционным выключателем В-5.
При отключении или выводе из работы любого из этих трансформаторов подача питания на отключенный участок осуществляется коммутацией выключателя В-5. Реле РПВ обеспечивает однократность действия АПВ.
Работа схемы построена на взаимодействии блок-контактов выключателя с подачей + опер тока на обмотки реле РПВ и сигнальные блинкера. Здесь же предусмотрено оперативное ускорение ОУ, вводимое в работу на время выполнения переключений дежурным персоналом.
Принцип формирования логики работы АВР может быть изменен. Например, при эксплуатации схемы с включением дополнительного секционного выключателя, как показано на картинке ниже, потребуются дополнительные пусковые и логические элементы.
АВР секционного выключателя на переменном оперативном токе
Особенности работы автоматики на источниках, использующих энергию от расположенных на подстанции измерительных ТН, можно оценить по следующей схеме.
Здесь контроль напряжения на каждой секции выполняют реле 1РН и 2РН. Их контакты запускают в работу органы отсчета времени 1РВ или 2РВ, которые воздействуют через блок-контакты и обмотки блинкеров на соленоиды силовых выключателей.
Принцип выполнения АВР потребителей сети 0,4 кВ
При создании резервного питания трехфазной сети используют магнитные пускатели КМ1, КМ2 и реле минимального напряжения kV, контролирующее параметры основной линии Л1.
Обмотки пускателей подключены от одноименных фаз своих линий через коммутационные контакты логики к заземленному нулю, а силовые контакты врезаны в шины питания потребителя с обеих сторон.
Контактная система реле напряжения в любом положении подключает в сеть только один какой-то пускатель. При наличии напряжения на линии Л1 kV сработает и своим замыкающим контактом включит обмотку пускателя КМ1, который своей силовой цепью будет запитывать потребителя и подключит свою сигнальную лампочку, одновременно выводя из работы обмотку КМ2.
При пропадании напряжения на Л1 реле kV разрывает цепь питания обмотки пускателя КМ1 и запускает КМ2, выполняющего для линии Л2 те же функции, что и КМ1 для своей цепочки в предыдущем случае.
Силовые рубильники QF1 и QF2 служат для полного снятия напряжения со схемы.
Этот же алгоритм может быть взят за основу для создания питания ответственных потребителей в сети однофазного питания. Просто в нем надо исключить лишние элементы и применить однофазные пускатели.
Особенности современных комплектов АВР
Для объяснения принципов построения алгоритмов автоматики была намеренно использована старая релейная база, позволяющая более доступно понять работающие алгоритмы.
Современные статические и микропроцессорные устройства работают по этим же схемам, но имеют улучшенный вид, меньшие габариты, обладают более удобными настройками и возможностями.
Их создают отдельными блоками или целыми комплектами, собранными в специальных модулях.
Для промышленного использования комплекты АВР выпускают полностью готовыми к использованию комплектами, размещенными в специальных защищенных корпусах.
Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!
Подписывайтесь на наш канал в Telegram!
Просто пройдите по ссылке и подключитесь к каналу.
Не пропустите обновления, подпишитесь на наши соцсети:
3 схемы автоматического ввода резерва для дома. Ввод 1 — Ввод 2 — Генератор.
При сборке схемы автоматического ввода резерва можно выбрать три варианта. Два более простых и один посложнее.
Рассмотрим каждый из вариантов схемы поподробнее.
Простейшая схема АВР для двух однофазных вводов собирается всего лишь на одном магнитном пускателе. Для этого понадобится контактор с двумя парами контактов:
Если таковых в вашем контакторе не оказалось, можно использовать специальную приставку.
Только учтите, что контакты у большинства из них не рассчитаны на большие токи. А если вы решите подключать через АВР нагрузку всего дома, то уж точно не стоит этого делать, используя блок контакты расположенные по бокам стандартных пускателей.
Вот самая простая схема АВР:
Катушка магнитного пускателя подключается на один из вводов. В нормальном режиме напряжение поступает на катушку, она замыкает контакт КМ1-1, а контакт КМ1-2 размыкается.
SF1 и SF2 в схеме – это однополюсные автоматические выключатели.
Напряжение через контактор поступает к потребителю. Дополнительно в схеме могут быть подключены сигнальные лампы. Они визуально будут показывать какой из вводов в данный момент подключен. Немного измененная схемка с лампочками:
Если напряжение на первом вводе исчезло, контактор отпадает. Его контакты КМ1-1 размыкаются, а КМ2-1 замыкаются. Напряжение начинает поступать к потребителю с ввода №2.
Если вам в нормальном режиме просто нужно проверить работоспособность схемы, то выключите автомат SF1 и смотрите как реагирует сборка. Все ли работает исправно.
Самое главное здесь изначально проконтролировать на какой ток рассчитаны эти самые нормально замкнутые и разомкнутые контакты.
При этом обратите внимание, что эту простейшую схему можно собрать двумя способами:
Без разрыва можно применять в том случае, если у вас есть две независимые линии эл.передач или кабельных ввода, от которых вы собственно и подключаете весь дом. А вот когда резервной линией является какой-то автономный источник энергии – ИБП или генератор, то здесь придется разрывать как фазу, так и ноль.
Естественно, что все контакторы подключаются после счетчика kWh. QF – это модульные автоматы в щитке дома.
Если у вас второй источник питания подает напряжение не автоматически, например бензиновый генератор без пусковой аппаратуры. Который нужно сначала вручную завести, прогреть и только потом переключиться, то схемку можно немного изменить, добавив туда одну единственную кнопку.
За счет нее не будет происходить автоматического переключения. Вы сами выберите для этого нужный момент, нажав ее когда потребуется. Монтируется эта кнопка SB1 параллельно катушке контактора.
Когда у вас напряжение на основном вводе не исчезает на долго, а периодически пропадает и появляется (причины могут быть разными), в этом случае не желательны постоянные переключения контакторов туда-обратно. Здесь целесообразно использовать специальную приставку к контактору типа ПВИ-12 с задержкой времени.
Трехфазная схема практически аналогична однофазной.
Только особо следите за правильной фазировкой АВС. Она должна совпадать на вводе-1 с вводом-2. Иначе 3-х фазные двигатели после переключения будут крутиться в обратную сторону.
Вторая схема немного посложнее. В ней используется уже два магнитных пускателя.
Допустим, у вас есть два трехфазных ввода и один потребитель. В схеме применены магнитные пускатели с 4-мя контактами:
Катушка пускателя КМ1 подключается через фазу L3 от первого ввода и через нормально замкнутый контакт КМ2. Таким образом, когда вы подаете питание на ввод №1, катушка первого пускателя замыкается и вся нагрузка подключается к источнику напряжения №1.
Второй контактор при этом отключен, так как нормально замкнутый разъем КМ1, будет в этот момент размокнут, и питание на катушку второго пускателя поступать не будет. При исчезновении напряжения на первом вводе, отпадает контактор-1 и включается контактор-2. Потребитель остается со светом.
Самый главный плюс этих схем – их простота. А минусом является то, что подобные сборки называть схемами автоматизации можно с очень большой натяжкой.
Стоит лишь исчезнуть напряжению на той фазе, которая питает катушку включения и вы легко можете получить встречное КЗ.
Можно конечно усовершенствовать всю систему, выбрав катушку контактора не на 220В, а на 380В. В этом случае будет осуществлен контроль уже по двум фазам.
Но на 100% вы все равно себя не обезопасите. А если учесть момент возможного залипания контактов, то тем более.
Кроме того, вы никак не будете защищены от слишком низкого напряжения. Пускатель №1 может отключиться, только если U на входе будет ниже 110В. Во всех остальных случаях, ваше оборудование будет продолжать получать не качественную электроэнергию, хотя казалось бы, рядом и есть второй исправный ввод.
Чтобы повысить надежность, придется усложнять схему и включать в нее дополнительные элементы:
Вдруг перед вами стоит более сложная задача. Например, нужно чтобы схема управляла сразу двумя вводами и вдобавок еще генератором. Причем генератор должен запускаться автоматически.
Алгоритм работы здесь следующий:
1.При неисправном вводе №1 происходит автоматическое переключение на ввод №2.
2.При отсутствии напряжения на обоих вводах осуществляется запуск генератора и переключение всей нагрузки на него.
Как и на чем реализовать подобный ввод резерва? Здесь можно применить схему АВР на базе AVR-02 от компании ФиФ Евроавтоматика.
В принципе есть смысл один раз потратиться и защитить себя и свое оборудование раз и навсегда.
Данное устройство является многофункциональным и с помощью него можно построить 8 разных схем АВР. Чаще всего применяются три из них:
Для чего нужен автоматический ввод резерва и как работает АВР
Назначение АВР
Назначение данной системы в электрике схоже с организацией бесперебойного питания. Главная задача автоматического ввода резервного питания — это быстрое восстановление электроснабжения без участия в этом процессе человека. На больших подстанциях всегда имеется два ввода на две, разделённые секционным выключателем, секции распределительного устройства, работающие автономно друг от друга. Согласно ПУЭ (правила устройства электроустановок) автоматическое подключение резервного питания и снабжение на 2 ввода является обязательной мерой обеспечения электричеством потребителей первой категории.
Простой пример необходимости данной системы можно привести относительно освещения какого-то важного охраняемого участка. То есть при отключении основного ввода система сама включит питание от резервного источника, при этом данный важный участок останется осветлен. Максимум что может возникнуть — это непродолжительное прекращение питания, которое визуально даже отследить тяжело. Это зависит от скорости срабатывания АВР, время включения резерва должно составлять порядка 0,3–0,8 секунд.
Как работает автоматический ввод резервного питания
Принцип действия АВР основан на контроле напряжения в цепи. Это может осуществляться с помощью любых реле напряжения либо цифровых логических блоков защиты. Однако принцип работы всё рано остаётся неизменным. Рассмотрим его на самом простом примере.
Это однолинейная схема, на которой видно, что контроль наличия напряжения осуществляется контактором КМ. Оба автомата QS1 и QS2 должны быть включены, при этом катушка КМ получит питание и будет втянута, а соответственно её замыкающий контакт в цепи основного ввода тоже замкнут и размыкающий контакт в цепи резервного ввода разомкнут. Тем самым электроснабжение потребителя осуществляется от основной сети и светятся соответствующие лампы. В случае неисправности питания по линии L12 и снижения напряжения до величины, когда контактор КМ отключится, произойдёт размыкание замыкающего контакта в основной линии и одновременно с этим контакт в цепи резервного питания линии L22 перейдёт в замкнутое состояние, тем самым подав напряжение к потребителю от резервного источника. Обратная ситуация произойдёт при возобновлении основного электроснабжения по линии L12.
На видео ниже наглядно рассмотрен принцип работы АВР в сетях 6 кВ:
Требования к системе
Основными требованиями, предъявляемыми к системам АВР являются:
Естественно, что простейшая схема на контакторах не сможет реализовать все предъявляемые требования к системе АВР. Для этого в современной электронике применяются логические системы, подающие сигнал на включение резервного источника питания только при соблюдении всех правил и блокировок. Также для дополнительной надёжности даже применяется механическая блокировка.
Классификация АВР и варианты реализации
Осуществляться резервное питание и его автоматический ввод может от отдельного генератора, аккумуляторной батареи либо отдельной линии.
В свою очередь все системы АВР по своему действию делятся на:
Также АВР может быть с восстановлением питания по нормальной схеме и без него. Во втором случае происходит полное погашение нерабочей сети и даже при повторном возобновлении питания схема не будет работать как прежде по двум линиям.
Особенности работы с бытовыми генераторами
Для того чтобы организовать автоматический ввод резерва в доме можно в качестве источника резервного питания использовать автономный генератор. Он даст возможность длительное время обеспечить электрической энергией целый дом, а величина подключаемой нагрузки зависит от мощности самого генератора. Вот схема подключения:
Введение генератора в качестве источника электроэнергии вместо сетевого напряжения можно практиковать в однофазной и трёхфазной сети с учетом модели генератора. Однако для того, чтобы этот процесс был полностью автоматизирован необходимо, чтобы генератор был оснащён стартером, а также понадобится специальный блок, состоящий из набора коммутационных устройств, включающих стартер только на время запуска и отключающих при возобновлении подачи сетевого напряжения. Выглядит он вот так:
Такой блок для генератора совместим с любым типом двигателя и имеет три положения: «Стоп», «Включен, «Запуск». Правда, в зимнее время необходим прогрев двигателя внутреннего сгорания, но этот блок можно запрограммировать, учитывая и эту особенность. Крепится он на дин рейку в распределительном щитке.
На видео доходчиво объясняется схема, по которой можно сделать автоматический ввод резерва для генератора своими руками:
АВР на аккумуляторах
С развитием преобразователей, трансформирующих постоянный ток в переменный, появляется возможность использовать, например, автомобильный аккумулятор в качестве источника резервного питания. Помимо аккумулятора, понадобится приобрести современный автомобильный инвертор, преобразующий 12 Вольт постоянного напряжения в 220 Вольт переменного.
Правда, этот источник вряд ли можно использовать для силовой нагрузки, но цепи освещения он может легко обеспечить стабильным напряжением на время непродолжительной аварии на линии. При этом длительность работы будет зависеть от мощности потребителей и емкости аккумуляторов.
Для увеличения ёмкости можно параллельно подключить несколько аккумуляторных батарей. Схема соединения самой системы АВР может быть реализована с помощью пускателя.
Пускатель включается в основную цепь, а при проблемах в сети его подвижная часть отпадает, тем самым его размыкающий блок-контакт, введённый в цепь аккумулятора, запускает систему автоматического электроснабжения. Этот способ менее затратный, нежели генераторный, но не способен выдавать длительное время ток для мощных бытовых приборов.
Применение логического контроллера
Для двух сетей электроснабжения трехфазным питанием применяются уже готовые блоки АВР с применением логического цифрового контролера, который может учитывать множество параметров, требуемых для создания идеальной системы. На нём имеется вся нужная маркировка и инструкция по управлению и подключению.
Правда, перед тем как подключить модуль и приобрести его, нужно задуматься, имеется ли резервный источник питания с более надёжным электроснабжением. Так как нет смысла подключать его к одной и той же системе трёхфазной сети, то есть питающейся от одного трансформатора 6/0,4 кВ.
Организация АВР в высоковольтных цепях
Для того чтобы выполнить организацию автоматического резервирования в цепях с напряжением больше 1000 Вольт, в качестве элемента, измеряющего и контролирующего сетевую энергию, служит специальный трансформатор напряжения, на вторичной обмотке которого в нормальном режиме работы 100 Вольт. Для связи его с системой АВР используется реле минимального напряжения или же реле контроля фаз. Оно реагирует не только на понижение величины сетевого напряжения, но и на исчезновение хотя бы одной фазы, например, при обрыве воздушной линии ВЛ. Здесь уже обязательно выполнение всех требований, касающихся правильному вводу АВР, а иногда даже при системе с восстановлением устанавливается выдержка времени на возврат в исходную первоначальную конфигурацию.
Также важно отметить, что в высоковольтных сетях схема автоматики АВР реализуется на электромеханических реле старого образца или современных многофункциональных микропроцессорных терминалах защиты, которые выполняют несколько функций, в том числе и АВР.
Напоследок рекомендуем просмотреть полезное видео по теме статьи:
Теперь вы знаете, что такое автоматический ввод резерва, какие бывают схемы АВР и какой принцип работы у данной системы электроснабжения. Надеемся, предоставленная информация и видео уроки были для вас полезными!
Наверняка вы не знаете: