Что такое парабола в геометрии
Что такое Парабола
Определение Параболы
Парабола (от греч. παραβολή — сравнение, приближение, кривая линия) — в геометрии это плоская кривая линия (в форме арки), где каждая из точек M (на рисунке ниже) равноудалена от неподвижной точки F (фокус) и от неподвижной линии DA, называемой директрисой (MF = MA).
Расстояние от фокуса до директрисы называется фокальным параметром параболы и обозначается как p.
В литературе парабола — это аллегория, под которой скрывается важная истина.
Как выглядит парабола, когда меняется фокальный параметр (p)
Изменения фокального параметра, когда фокус находится на оси OX:
Изменения фокального параметра, когда фокус находится на оси OY:
Квадратичная функция и как построить график параболы
Квадратичная функция выглядит следующим образом:
y = ax² + bx + c, где a≠0
(a — старший коэффициент; b — второй коэффициент; с — свободный член).
Построение графика квадратичной функции
Шаги построения графика
1. Как определить, куда направлены ветви параболы
Т. е. a (старший коэффициент) в данном случае равен 1, b (второй коэффициент) и c (свободный член) оба равны 0.
Ветви параболы будут направлены вверх, когда a > 0.
А в данном случае a = –1 (b = 0, с = 0).
Ветви параболы будут направлены вниз, когда a 0, то у квадратичной параболы будут две точки пересечения с осью ОХ, которые можно найти по этим формулам:
3. Как вычислить координаты вершины параболы
Формулы для их вычисления:
4. Как посчитать точку пересечения параболы с осью OY
Точка пересечения параболы с осью OY имеет координаты (0;c). Так как абсцисса любой точки, лежащей на оси OY, равна нулю.
Чтобы найти точку пересечения параболы с осью OY, нужно всего лишь в вашу формулу вида ax² + bx + c вместо х подставить ноль.
Пример построения графика квадратичной функции
Например, нужно построить график квадратичной функции y = x² − 7x + 10.
1) Если квадратичная функция выглядит как y = ax² + bx + c, получается, в нашем случае: a = 1, b = −7, c = 10.
a = 1, а это a > 0, следовательно ветви параболы будут направлены вверх
2) Определяем нули функции, это значит ax² + bx + c = 0, в нашем случае: x² − 7x + 10 = 0
Ищем дискриминант по формуле: D = b² − 4ac, это D = (−7)² − 4*1*10 = 49 − 40 = 9
Потом вычисляем х1 и х2:
х1 = (−b + ²√D) / 2a = (7 + ²√9) / (2*1) = 5
х2 = (−b − ²√D) / 2а = (7 − ²√9) / (2*1) = 2
3) Вычисляем координаты вершины параболы:
х0 = −b / 2a = 7 / (2*1) = 3,5
y0 = −D / 4а = −9 / (4*1) = −2,25
4) Точка пересечения параболы с осью OY имеет координаты (0;c), следовательно, если c = 10, она пересекает её на (0;10).
Таким образом, получилась парабола такого вида:
Свойства квадратичной функции y = x²
График функции y = x² выглядит следующим образом:
Свойства
1) Область определения функции y = x² — множество всех действительных чисел, т. е. D(y) = R = (−∞; +∞).
2) Множество значений функции — положительная полупрямая: E(y) = [0; +∞).
3) В точке x = 0 (и y = 0) функция принимает минимальные значения (наибольшего значения у функции нет).
Эта точка (с координатами (0;0)) является вершиной параболы; одновременно точка (0;0) является единственной общей точкой параболы с осями координат (начало координат).
4) Функция у = x² чётная, график симметричен относительно оси Оу, т. е. f(−x) = (−x)² = x² = f(x).
5) Функция непрерывна на всей области определения. На (−∞; 0) функция монотонно убывает, а на (0; + ∞) функция монотонно возрастает.
6) Функция у = x² непериодическая.
7) Единственный нуль функции — значение аргумента x = 0.
8) Функция у = x² не имеет асимптот.
9) Функция принимает положительные значения на всех точках параболы, кроме начала координат, т. е. в: (−∞;0) ∪ (0;+∞).
Парабола
Парабола, её фокус и директриса | |
Коническое сечение: | |
Эксцентриситет: | |
Уравнение: | |
гипербола · парабола · эллипс · окружность |
Пара́бола (греч. παραβολή — приложение) — геометрическое место точек, равноудалённых от данной прямой (называемой директрисой параболы) и данной точки (называемой фокусом параболы).
Наряду с эллипсом и гиперболой, парабола является коническим сечением. Она может быть определена как коническое сечение с единичным эксцентриситетом.
Содержание
Уравнения
0″ border=»0″ /> (или
, если поменять местами оси).
Уравнение директрисы :
, фокус —
, таким образом начало координат
— середина отрезка
. По определению параболы для любой точки
, лежащей на ней выполняется равенство
.
и
, тогда равенство приобретает вид:
.
После возведения в квадрат и некоторых преобразований получается равносильное уравнение .
Квадратное уравнение при
также представляет собой параболу и графически изображается той же параболой, что и
, но в отличие от последней имеет вершину не в начале координат, а в некоторой точке
, координаты которой вычисляются по формулам:
где
— дискриминант
Ось её симметрии проходит через вершину параллельно оси ординат, при a>0 (a Расчёт коэффициентов квадратного уравнения
Если для уравнения известны координаты 3-х различных точек его графика
,
,
, то его коэффициенты могут быть найдены так:
Свойства
Связанные определения
Параболы в физическом пространстве
Траектории некоторых космических тел (комет, астероидов и других), проходящих вблизи звезды или другого массивного объекта (звезды или планеты) на достаточно большой скорости имеют форму параболы (или гиперболы). Эти тела вследствие своей большой скорости не захватываются гравитационным полем звезды и продолжают свободный полёт. Это явление используется для гравитационных манёвров космических кораблей (в частности аппаратов Вояджер).
При отсутствии сопротивления воздуха траектория полёта тела в приближении однородного гравитационного поля представляет собой параболу.
Также параболические зеркала используются в любительских переносных телескопах систем Кассергена, Шмидта — Кассергена, Ньютона, а в фокусе параболы устанавливают вспомогательные зеркала, подающие изображение на окуляр.
При вращении сосуда с жидкостью вокруг вертикальной оси поверхность жидкости в сосуде и вертикальная плоскость пересекаются по параболе.
Свойство параболы фокусировать пучок лучей, параллельных оси параболы, используется в конструкциях прожекторов, фонарей, фар, а также телескопов-рефлекторов (оптических, инфракрасных, радио…), в конструкции узконаправленных (спутниковых и других) антенн, необходимых для передачи данных на большие расстояния, солнечных электростанций и в других областях.
Форма параболы иногда используется в архитектуре для строительства крыш и куполов.
Параболическая орбита и движение спутника по ней (анимация)
Параболические траектории струй воды
Вращающийся сосуд с жидкостью
См. также
Примечания
Литература
Ссылки
Циклоида • Эпициклоида • Гипоциклоида • Трохоида (Удлинённая + Укороченная циклоида) • Эпитрохоида (Удлинённая + Укороченная эпициклоида • («Роза») • Гипотрохоида • Скорейшего спуска (Брахистохрона, дуга циклоиды)
Главные типы | Эллипс • Гипербола • Парабола |
---|---|
Вырожденные | Точка • Прямая • Пара прямых |
Частный случай эллипса | Окружность |
Геометрическое построение | Коническое сечение • Шары Данделена |
См. также | Коническая константа |
Математика • Геометрия |
Полезное
Смотреть что такое «Парабола» в других словарях:
ПАРАБОЛА — (греч. parabole, от parabollo сближаю). 1) иносказание, притча. 2) кривая линия, происходящая от сечения конуса плоскостью, параллельною какой нибудь его производящей. 3) кривая линия, образующаяся при полете бомбы, ядра и т. п. Словарь… … Словарь иностранных слов русского языка
парабола — иносказание, притча (Даль) См. пример … Словарь синонимов
ПАРАБОЛА — (греч. parabole) плоская кривая (2 го порядка). Парабола множество точек М, расстояния которых до данной точки F (фокуса) и до данной прямой D1D2 (директрисы) равны. В надлежащей системе координат уравнение параболы имеет вид: y2=2px, где р=2OF.… … Большой Энциклопедический словарь
ПАРАБОЛА — ПАРАБОЛА, математическая кривая, КОНИЧЕСКОЕ СЕЧЕНИЕ, образуемое точкой, двигающейся таким образом, что ее расстояние до неподвижной точки, фокуса, равно ее расстоянию до неподвижной прямой, директрисы. Парабола образуется при разрезе конуса… … Научно-технический энциклопедический словарь
ПАРАБОЛА — жен., греч. иносказанье, притча. | мат. кривая черта, из числа конических сечений; разрез сахарной головы накось, опостен (параллельно) противной стороне. Парабольные вычисленья. Параболическое реченье, инословие, иноречие, переносное.… … Толковый словарь Даля
ПАРАБОЛА — (1) незамкнутая кривая линия 2 го порядка на плоскости, являющаяся графиком функции у2 = 2рх, где р параметр. Параболу получают при пересечении кругового (см.) плоскостью, не проходящей через его вершину и параллельной одной из его образующих.… … Большая политехническая энциклопедия
ПАРАБОЛА — (от греческого parabole), плоская кривая, расстояния любой точки M которой до данной точки F (фокуса) и до данной прямой D 1D1 (директрисы) равны (MD=MF) … Современная энциклопедия
ПАРАБОЛА — ПАРАБОЛА, параболы, жен. (греч. parabole). 1. Кривая второго порядка, представляющая коническое сечение прямого кругового конуса плоскостью, параллельною одной из образующих (мат.). || Путь, описываемый тяжелым телом (напр. пулей), брошенным под… … Толковый словарь Ушакова
ПАРАБОЛА — ПАРАБОЛА, ы, жен. В математике: состоящая из одной ветви незамкнутая кривая, образующаяся при пересечении конической поверхности плоскостью. | прил. параболический, ая, ое. Толковый словарь Ожегова. С.И. Ожегов, Н.Ю. Шведова. 1949 1992 … Толковый словарь Ожегова
ПАРАБОЛА — «ПАРАБОЛА», Россия, 1992, цв., 30 мин. Документальное эссе. Попытка понять мистическую суть сказаний удмуртов маленького народа в Поволжье. Режиссер: Светлана Стасенко (см. СТАСЕНКО Светлана). Автор сценария: Светлана Стасенко (см. СТАСЕНКО… … Энциклопедия кино
Парабола
Парабола, её форма, фокус и директриса.
Параболой называется линия, которая в некоторой декартовой прямоугольной системе координат определяется каноническим уравнением
$$
y^<2>=2px\label
$$
при условии \(p > 0\).
Из уравнения \eqref
Форма параболы известна из курса средней школы, где она встречается в качестве графика функции \(y=ax^<2>\). Отличие уравнений объясняется тем, что в канонической системе координат по сравнению с прежней оси координат поменялись местами, а коэффициенты связаны равенством \(2p=a^<-1>\).
Фокусом параболы называется точка \(F\) с координатами \((p/2, 0)\) в канонической системе координат.
Директрисой параболы называется прямая с уравнением \(x=-p/2\) в канонической системе координат (\(PQ\) на рис. 8.11).
Рис. 8.11. Парабола.
Свойства параболы.
Расстояние от точки \(M(x, y)\), лежащей на параболе, до фокуса равно
$$
r=x+\frac
<2>.\label
$$
Вычислим квадрат расстояния от точки \(M(x, y)\) до фокуса по координатам этих точек: \(r^<2>=(x-p/2)^<2>+y^<2>\) и подставим сюда \(y^<2>\) из канонического уравнения параболы. Мы получаем
$$
r^<2>=\left(x-\frac
<2>\right)^<2>+2px=\left(x+\frac
<2>\right)^<2>.\nonumber
$$
Отсюда в силу \(x \geq 0\) следует равенство \eqref
Заметим, что расстояние от точки \(M\) до директрисы также равно
$$
d=x+\frac
<2>.\nonumber
$$
Следовательно, мы можем сделать следующий вывод.
Для того чтобы точка \(M\) лежала на параболе, необходимо и достаточно, чтобы она была одинаково удалена от фокуса и от директрисы этой параболы.
Докажем достаточность. Пусть точка \(M(x, y)\) одинаково удалена от фокуса и от директрисы параболы:
$$
\sqrt<\left(x-\frac
<2>\right)^<2>+y^<2>>=x+\frac
<2>.\nonumber
$$
Возводя это уравнение в квадрат и приводя в нем подобные члены, мы получаем из него уравнение параболы \eqref
Параболе приписывается эксцентриситет \(\varepsilon=1\). В силу этого соглашения формула
$$
\frac
$$
верна и для эллипса, и для гиперболы, и для параболы.
Уравнение касательной к параболе.
Выведем уравнение касательной к параболе в точке \(M_<0>(x_<0>, y_<0>)\), лежащей на ней. Пусть \(y_ <0>\neq 0\). Через точку \(M_<0>\) проходит график функции \(y=f(x)\), целиком лежащий на параболе. (Это \(y=\sqrt<2px>\) или же \(y=-\sqrt<2px>\), смотря по знаку \(y_<0>\).) Для функции \(f(x)\) выполнено тождество \((f(x))^<2>=2px\), дифференцируя которое имеем \(2f(x)f'(x)=2p\). Подставляя \(x=x_<0>\) и \(f(x_<0>)=y_<0>\), находим \(f'(x_<0>)=p/y_<0>\) Теперь мы можем написать уравнение касательной к параболе
$$
y-y_<0>=\frac
$$
Упростим его. Для этого раскроем скобки и вспомним, что \(y_<0>^<2>=2px_<0>\). Теперь уравнение касательной принимает окончательный вид
$$
yy_<0>=p(x+x_<0>).\label
$$
Заметим, что для вершины параболы, которую мы исключили, положив \(y_ <0>\neq 0\), уравнение \eqref
Касательная к параболе в точке \(M_<0>\) есть биссектриса угла, смежного с углом между отрезком, который соединяет \(M_<0>\) с фокусом, и лучом., выходящим из этой точки в направлении оси параболы (рис. 8.12).
Рассмотрим касательную в точке \(M_<0>(x_<0>, y_<0>)\). Из уравнения \eqref
$$
(\overrightarrow
<2>y_<0>+py_<0>=y_<0>(x_<0>+\frac
<2>).\nonumber
$$
Но \(|\overrightarrow
Заметим, что \(|FN|=|FM_<0>|\) (см. рис. 8.12).