Что такое пав в нефтянке
Поверхностно-активные вещества
Однако, ПАВ имеет предел растворимости (так называемую критическую концентрацию мицеллообразования или ККМ), с достижением которого при добавлении ПАВ в раствор концентрация на границе раздела фаз остается постоянной, но в то же время происходит самоорганизация молекул ПАВ в объёмном растворе (мицеллообразование или агрегация).
В результате такой агрегации образуются так называемые мицеллы.
Отличительным признаком мицеллообразования служит помутнение раствора ПАВ.
Водные растворы ПАВ, при мицеллообразовании также приобретают голубоватый оттенок (студенистый оттенок) за счёт преломления света мицеллами.
Теоретически любое химическое соединение, имеющее в молекуле гидрофильные и гидрофобные участки, будет поверхностно активным.
Однако в действительности только некоторые из них являются эффективными моющими средствами, стабилизаторамиэмульсий и пен, пленкообразователями и т. д.
По своему применению ПАВ данного класса делятся на смачиватели, солюбилизаторы, эмульгаторы, моющие агенты, пенообразователи.
Упрощенно действие поверхностно активных веществ можно описать следующим образом.
Благодаря тому, что ПАВ обладают поверхностной активностью, они снижают поверхностное натяжение воды, поэтому загрязнение лучше отстает от поверхности (кожи, волос).
Что и обеспечивает перевод загрязнений в раствор, т. е. отмывку загрязнений.
Происходит это благодаря тому, что молекула ПАВ имеете двойственную структуру один ее конец гидрофильный (т.е. любит воду) другой липофильный (т.е. любит жир).
Анионные ПАВ, отвечают за моющую способность любого щелочного мыла (детского, ручной работы, банного, туалетного и т.п.), а также большинства шампуней и жидких мыл.
В моющих средствах жирорастворимая часть молекулы анионного ПАВ связывает и обволакивает частицы грязи в секрете сальных желез, которые затем вымываются водой.
Одновременно водорастворимая часть молекулы ориентирует эти частицы в сторону от кожи, несущей отрицательный заряд.
При этом жирные загрязнения попадают внутрь молекулы ПАВ, благодаря чему не оседают на поверхности снова.
А уходят вместе с водой, удерживаясь в ней благодаря гидрофильной части.
Тем не менее, в мире потребляется ежегодно 9 млн. т мыла.
Таким образом, мыло остается наиболее распространенным в мире ПАВ.
Добыча нефти и газа
Изучаем тонкости нефтегазового дела ВМЕСТЕ!
Применение ПАВ и композиций на их основе для увеличения нефтеотдачи пластов. Механизм вытеснения нефти из пористой среды с применением ПАВ
Первые результаты экспериментальных и промысловых исследований по применению поверхностно-активных веществ (ПАВ) как добавок при заводнении нефтяных пластов опубликованы в США в 40-х, 50-х годах. В нашей стране эта проблема изучается более 30 лет.
За это время разработаны в основном физико-химические и технологические основы метода, обоснованы приближенные критерии применимости ПАВ, произведены испытания метода в различных геолого-промысловых условиях.
Однако до настоящего времени многие аспекты этой проблемы до конца не изучены, требуют уточнения и дальнейшего исследования. Механизм нефтеотдачи при воздействии водных растворов ПАВ на остаточную нефть в коллекторах различных типов сложен и многогранен, что предопределяет необходимость дальнейших экспериментальных и промысловых исследований на современной научной основе.
Под ПАВ понимают химические соединения, способные вследствие положительной адсорбции изменять фазовые и энергетические взаимодействия на различных поверхностях раздела жидкость — воздух, жидкость — твердое тело, нефть — вода. Поверхностная активность, которую в определенных условиях могут проявлять многие органические соединения, обусловлена как химическим строением, в частности, дифильностью (полярностью и поляризуемостью) их молекул, так и внешними условиями: характером среды и контактирующих фаз, концентрацией ПАВ, температурой.
Обычно ПАВ представляют собой органические вещества, содержащие в молекуле углеводородный радикал и одну или несколько полярных групп.
По ионной характеристике все ПАВ обычно разделяют на две большие группы: неионогенные соединения, которые при растворении в воде не диссоциируют на ионы, и ионогенные соединения. В зависимости от того, какие ионы обусловливают поверхностную активность ионогенных веществ, их принято подразделять: на анионоактивные (АПАВ), катионо-активные (КПАВ) и амфолитные. Анионные ПАВ более активны в щелочных растворах, катионные в кислых, амфолитные — в тех и других.
По растворимости в воде и маслах ПАВ подразделяют на три группы: водо-, водомасло- и маслорастворимые.
Водорастворимые ПАВ состоят из гидрофобных углеводородных радикалов и гидрофильных полярных групп, обеспечивающих растворимость всего соединения в воде. Характерная особенность этих ПАВ — их поверхностная активность на границе раздела вода — воздух.
Водомаслорастворимые ПАВ применяют в основном в системах нефть — вода. Гидрофильные группы в молекулах таких веществ обеспечивают их растворимость в воде, а достаточно длинные углеводородные радикалы — растворимость в углеводородах.
Маслорастворимые ПАВ не растворяются и не диссоциируют (или слабо диссоциируют) в водных растворах. Помимо разветвленной углеводородной части значительной молекулярной массы, обеспечивающей растворимость в углеводородах, маслорастворимые ПАВ часто содержат гидрофобные активные группы. Как правило, эти ПАВ слабо поверхностноактивны на границе раздела жидкость — воздух.
Наиболее широкое применение в технологии повышения нефтеотдачи нашли неионогенные поверхностно-активные вещества (НПАВ).
Этот вид ПАВ насчитывает более 50 веществ различных групп. Среди них наибольшее распространение получили оксиэтилированные изононилфенолы типов ОП-10, АФ9-4, АФ9-6, АФ9-10, АФ9-12, в основном из-за больших объемов их промышленного производства.
Преимущество НПАВ заключается в их совместимости с водами высокой минерализации и значительно меньшей адсорбции по сравнению с ионогенными ПАВ. Однако многолетний опыт применения индивидуальных ПАВ типа ОП-10 для увеличения нефтеотдачи не дал однозначных результатов. Об эффективности применения НПАВ, как метода увеличения нефтеотдачи, существуют различные мнения, как положительные, так и отрицательные.
Многочисленные экспериментальные исследования, выполненные в ТатНИПИнефти, показали, что применение концентрированных растворов ПАВ в условиях первичного вытеснения нефти из моделей терригенных пород существенно улучшает процесс вытеснения нефти. Максимальный прирост коэффициента вытеснения по сравнению с водой составил 2,2—2,7%. Несколько большее значение прироста коэффициента вытеснения, равное 3,5—4%, было получено при использовании моделей малопроницаемых пористых сред.
В процессе вытеснения нефти поверхностно-активные вещества оказывают влияние на следующие взаимосвязанные факторы: межфазное натяжение на границе нефть — вода и поверхностное натяжение на границах вода — порода и нефть — порода, обусловленное их адсорбцией на этих поверхностях раздела фаз. Кроме того, действие поверхностно-активных веществ проявляется в изменении избирательного смачивания поверхности породы водой и нефтью, разрыве и отмывании с поверхности пород пленки нефти, стабилизации дисперсии нефти в воде, приросте коэффициентов вытеснения нефти водной фазой при принудительном вытеснении и при капиллярной пропитке, в повышении относительных фазовых проницаемостей пористых сред.
,
где — свободная поверхностная энергия границ раздела фаз нефть — вода, вода — порода и нефть — порода соответственно.
Добавка к воде поверхностно-активных веществ приводит к изменению соотношения значений свободной поверхностной энергии благодаря адсорбционным процессам ПАВ на межфазных границах раздела. При этом межфазное натяжение, как правило, уменьшается.
Адсорбция ПАВ на гидрофобных участках поверхности пор, которые могут существовать в результате хемосорбции некоторых компонентов нефти, приводит к снижению и увеличению
в соответствии с правилом ориентации дифильных молекул. Данные обстоятельства и способствуют отделению нефти от поверхности.
На гидрофильных участках поверхности пор адсорбция ПАВ наоборот приводит к увеличению и снижению
т. е. к непроизводительным потерям ПАВ, и способствует прилипанию капель нефти к этим участкам.
Таким образом, для гидрофобных поверхностей ПАВ должны проявлять высокую поверхностную активность на границе раздела сред нефть — вода и вода — порода и ограничивать адсорбцию на гидрофильных участках поверхности пород.
Капиллярно-удерживаемая нефть в обводненных пластах заполняет пространство в виде капель или участков, разделенных пространством, заполненным водой.
На границах раздела существуют мениски, создающие капиллярное давление
где n — число менисков; Ri — эффективные радиусы кривизны менисков; «+» означает противоположное направление давления выпуклых и вогнутых менисков по отношению к потоку.
В неподвижном состоянии противоположно направленные давления менисков компенсируются. В вытесняющем потоке под действием перепада внешнего давления мениски деформируются по закону упругости так, что возникает составляющая капиллярного давления, направленная противоположно потоку, наблюдается эффект Жамена:
Основной механизм в процессах добычи нефти с применением ПАВ заключается в снижении поверхностного натяжения на границе раздела вытесняющей и вытесняемой жидкостей до очень низких значений, при которых капиллярно-удерживаемая нефть становится подвижной.
Для вытеснения нефти из гидрофобного коллектора требуется достижение либо большего перепада давления, чем для гидрофильного, либо большего снижения поверхностного натяжения. В зависимости от природы нефтенасыщенного по-рового пространства требуется достижение различных значений межфазного натяжения. Так, для гидрофобного карбонатного коллектора межфазное натяжение равно 0,002 мН/м, для гидрофильного — 0,974 мН/м, а для терригенного гидрофильного коллектора — 0,0825 мН/м.
Итак, достижение заметного увеличения коэффициента вытеснения нефти за счет снижения межфазного натяжения с применением доступных промышленных ПАВ возможно в гидрофильных карбонатных коллекторах.
Смачивающую способность ПАВ общепринято оценивать значением краевого угла избирательного смачивания. Однако более строгим критерием смачивающей способности ПАВ является энергия взаимодействия нефти с поверхностью породы, определяемая как работа адгезии нефти
где — межфазное натяжение на границе раздела нефть — водная фаза;
— краевой угол избирательного смачивания.
Чем меньше краевой угол избирательной смачиваемости, тем выше работа адгезии нефти и, следовательно, лучше смачивающая способность ПАВ.
Изменение смачиваемости зависит от химического состава породы, первоначального состояния поверхности и от массового соотношения гидрофильно-липофильного баланса. По характеристике смачиваемости карбонатные породы более гидрофобны, чем терригенные, что связано с ионным типом связей в кристаллической решетке, способствующих активному взаимодействию полярных компонентов нефти с породой и ее гидрофобизации. При этом углы смачивания данных пород достигают 140—150°. Изменение смачиваемости твердой поверхности с гидрофобной на гидрофильную для карбонатных пород способствует улучшению отрыва пленок и капель нефти, увеличению их подвижности, активизации капиллярного впитывания.
При вытеснении нефти растворами ПАВ последние могут диффундировать в значительных количествах в нефть. ПАВ адсорбируются асфальтенами нефти. Дисперсность асфальтенов меняется, в результате изменяются реологические свойства нефти. Контактируя в пористой среде с нефтью, ПАВ способны переходить в нефть и существенно изменять ее свойства.
Хорошо известно, что в состав нефти входят углеводороды — парафины и различные комплексные соединения, такие как смолы, асфальтены, оказывающие сильное влияние на вязкость нефти. Более того, нефть, содержащая значительное количество асфальтенов, имеет непостоянную вязкость. При большом количестве парафинов в нефти ее вязкость тоже оказывается переменной, зависящей от скорости сдвига. Эти особенности реологических свойств нефти обусловлены коллоидным состоянием диспергированных в ней парафинов или асфальтенов. Течение таких жидкостей не подчиняется закону Ньютона и их принято называть аномальными.Установлено, что аномалии вязкости нефти уменьшают нефтеотдачу пластов, способствуют образованию застойных зон и зон малоподвижной нефти, где фактические градиенты пластового давления оказываются меньшими или сравнимыми с градиентами динамического давления сдвига.
Особенности процессов вытеснения нефти водными растворами ПАВ ОП-10 : после контакта исследовавшихся нефтей с водными растворами ПАВ происходит существенное улучшение реологических и фильтрационных характеристик нефти, в определенных условиях вплоть до полного исчезновения аномалий вязкости. Разрушение структуры нефти облегчает продвижение капель нефти через поры пласта, что способствует возрастанию нефтеотдачи. Таким образом, ПАВ, используемые для улучшения нефтевытесняющей способности воды, должны обладать способностью ослаблять структурно-механические свойства нефтей.
В табл.6 приведены результаты исследований по вытеснению нефти с выраженными аномалиями вязкости водой и водными растворами НПАВ.
Коэффициенты вытеснения нефтей, которые предварительно были продолжительное время в контакте с растворами НПАВ, оказались выше на 7—11%, чем у нефти, не содержащей ПАВ (см. табл.6).
Таблица 6. Влияние ПАВ на вытеснение аномальных нефтей из образцов естественных песчаников (время контакта нефти с раствором ПАВ 20 сут)
Вязкость нефти, мПа с
Проницаемость модели пласта, мкм2
Прирость коэффициента вытеснения
Нефть после контакта с 0,05% раст вором
Нефть после контакта с 0,1% раст вором Неоола 2В1317-12
Нефть после контакта с 0,05% раст вором АФ9-12
Раствор Неонола 0,05%
Из рассмотренного следует, что при вытеснении нефти водными растворами НПАВ часть активного вещества переходит в нефть. В результате этого происходит подавление аномалий вязкости нефти, приводящее к увеличению коэффициента вытеснения нефти из пористой среды.
Возможность эффективного применения ПАВ для повышения нефтеотдачи пластов связывают в настоящее время, как в стране, так и за рубежом, с созданием на их основе композиций с необходимым комплексом свойств, подбираемым к конкретным геолого-физическим условиям месторождений.
Ограничимся перечислением направлений поиска сегодняшнего дня:
— сочетание водорастворимых ПАВ в составах с щелочами, щелочными буферными компонентами типа ИХП, кислотами, осадкообразованиями и т. д.;
— подбор к условиям конкретных месторождений составов из двух или нескольких ПАВ с целью достижения оптимального гидрофильно-липофильного баланса (ГЛБ), обеспечивающего значительное понижение поверхностных и капиллярных сил в системе нефть — вода — порода и образование подвижного водо-нефтяного вала.
Олигомерические ПАВ повышают степень солюбилизации нефти и воды, более устойчивы к солям и дивалентным ионам, снижают межфазное натяжение и адсорбцию ПАВ на породе, повышают вязкость растворов.
Правильный подбор ПАВ для условий конкретного месторождения требует проведения трудоемких лабораторных исследований. Наряду с обычным испытанием совместимости ПАВ с пластовыми и закачиваемыми водами, температуры помутнения, адсорбции, важное значение приобретают исследования поверхностной активности ПАВ, точнее, определение условий, при которых обеспечивается достижение той или иной композиционной системой сверхнизкого межфазного натяжения.
В результате исследований с гомологическими рядами ПАВ было установлено, что область сверхнизких натяжений существует в весьма узком диапазоне минерализации воды, состава углеводородной фазы (нефти), эквивалентного веса — для анионных ПАВ и длины оксиэтиленовой цепи — для неионо-генных ПАВ или их производных при некоторой фиксированной длине алкильного радикала [120].
В США с целью правильного выбора ПАВ разработана концепция эквивалентных алкановых углеводородных чисел (ЭАУЧ). Согласно этой концепции, разработанной, как указывается, на основании более 100 тыс. измерений, каждой нефти должно быть приписано свое ЭАУЧ, т. е. ее поведение при измерении межфазного натяжения может быть точно смоделировано чистым нормальным углеводородом, длина углеводородной цепи которого и есть ЭАУЧ для данной нефти. ЭАУЧ нефти в свою очередь рассчитывается по результатам измерения межфазного натяжения смесей данной нефти с чистыми углеводородами, для которых ЭАУЧ известно, на границе с раствором хорошо изученного ПАВ, взятого в качестве стандарта при строго заданных условиях. Таким образом, если ЭАУЧ данной нефти известно, то при подборе ПАВ можно ограничиться результатами измерений межфазного натяжения их растворов на границе с углеводородом, моделирующим нефть.
Другой методикой, представляющейся наиболее простой и не требующей предварительного определения ЭАУЧ нефтей, является методика определения минимума межфазного натяжения для данной системы нефть — пластовая вода, разработанная в Германии. Эта методика основана на использовании усовершенствованного Спиннинг Дроп Тензиометра, позволяющего быстро определить зависимость межфазного натяжения от температуры и установить температуру, при которой достигается минимальное натяжение.
Обе методики исходят из того, что при подборе ПАВ располагают гомологическим рядом образцов ПАВ, внутри которого имеется продукт, наиболее подходящий для данной системы нефть — вода.
Исследования, проведенные в институте глубокого бурения и добычи нефти Германии по вытеснению третичной нефти карбоксиметилированными оксиэтилированными спиртами, показали, что даже в условиях низкого межфазного натяжения хорошее вытеснение остаточной нефти достигается лишь при температуре выше определенного порогового значения. Эта температура была несколько ниже температуры, при которой в системе наблюдается ярко выраженный минимум межфазного натяжения. Температура, при которой наступает инверсия эмульсий, получила название «Температуры инверсии фаз» (ТИФ). Дальнейшими исследованиями, проведенными в Германии на системах сырая нефть — пластовая вода — ПАВ, показана достаточно четкая корреляция между ТИФ искусственно приготовленных эмульсий сырая нефть — пластовая вода и нефтевытесняющей способностью исследованных ПАВ. ТИФ этих эмульсий определялась по их электропроводности.
Было установлено, что необходимой предпосылкой для хороших результатов по вытеснению третичной (остаточной) нефти является условие, когда ТИФ системы на несколько градусов ниже пластовой температуры. В этом случае для получения дополнительной нефти требуется небольшой объем прокачки раствора ПАВ, и почти вся остаточная нефть вытесняется к моменту «прорыва ПАВ», т. е., когда в выходящей из пористой среды водной фазе появляется уверенно определяемая концентрация ПАВ. Вытесняемая нефть имеет характер эмульсии «вода в нефти», обладает повышенной вязкостью, с момента «прорыва НПАВ» остатки нефти вытесняются лишь в виде эмульсии типа «масло в воде», имеющей вязкость, мало отличающуюся от вязкости пластовой воды. Предполагается, что в процессе вытеснения, в пористой среде происходит растворение ПАВ в нефти, сопровождающееся инверсией фаз, в момент которой имеет место экстремально низкое межфазное натяжение, способствующее переводу остаточной нефти в подвижное состояние. Кроме того, создаются условия для выравнивания вязкости фаз, как при полимерном заводнении.
В последнее десятилетие за рубежом преобладающей является технология применения НПАВ в виде микроэмульсий, которая предусматривает получение «среднефазных» систем, способных существовать в виде самостоятельной фазы при контакте с нефтью и водой, имея в то же время достаточно низкое межфазное натяжение на границе с этими фазами. Тип эмульсии определяется видом ПАВ, с преобладанием гидрофильной части приводит к образованию эмульсий «нефть в воде», а с преобладанием гидрофобной части— «вода в нефти». Если ПАВ отличается своим значением ГЛБ, содетергент — своим гидрофобно-гидрофильным характером, то с уменьшением гидрофильности содетергента равновесие перемещается настолько, что система типа 1 (по Винзору) превращается в систему типа II (по Винзору). При образовании среднефазной микроэмульсии (типа III по Винзору) используют ПАВ и содетергент, значения ГЛБ и гидрофильности которых лежат между теми же значениями для типов 1 и III. Если это тип 1, то либо ПАВ имеет слишком высокое значение ГЛБ, либо содетергент слишком гидрофилен. Необходимо указать на то, что реальная система имеет только три переменных параметра влияния: 1 — вид ПАВ, 2 — вид содетергента, 3 — соотношение в смеси ПАВ — содетергент.
Определение стабильности эмульсий, получающихся вблизи границ средней фазы, показало, что при ГЛБ, незначительно выходящих за пределы области существования среднефазных систем, образуются стойкие микроэмульсии типа «нефть в воде», при ГЛБ выше значений, соответствующих верхней границе области существования третьей фазы,— эмульсии типа «вода в нефти».
Получив оптимальное значение ГЛБ, можно рассчитывать требуемую степень оксиэтилирования, а также скорректировать состав водной фазы (содержание электролитов и спирта) для компенсации отклонения ГЛБ ПАВ от требуемого значения. Например, добавление изопентанола смещает ГЛБ в сторону большей гидрофобности, что позволяет достичь оптимального ГЛБ при более высоких, чем это необходимо, степенях оксиэтилирования. Низкомолекулярные спирты (изопро-пиловый и вторичный бутиловый) действуют противоположным образом, однако смещение ГЛБ в этом случае на порядок ниже и может играть существенную роль только при больших концентрациях. Электролиты действуют аналогично высокомолекулярным спиртам, смещая равновесие в сторону большей гидрофобности и вызывая таким образом необходимость использования ПАВ с более высокой степенью оксиэтилирования для достижения оптимального значения ГЛБ.
Более сложным является влияние на ГЛБ концентрации ПАВ. Было установлено, что в противоположность АПАВ, повышение концентрации НПАВ приводит к гидрофобизации системы и соответственно к необходимости повышения степени оксиэтилирования для достижения оптимального ГЛБ. Зависимость смещения ГЛБ от концентрации ПАВ нелинейна, наибольшее влияние изменение концентрации оказывает при небольших абсолютных значениях (менее 3%), а с повышением концентрации влияние ее на ГЛБ уменьшается.
Таким образом, для обеспечения сильного снижения межфазного натяжения и высоких параметров солюбилизации требуется исключительно точный подбор состава композиции ПАВ для условий каждого конкретного объекта.
Добыча нефти и газа
Изучаем тонкости нефтегазового дела ВМЕСТЕ!
Применение ПАВ и композиций на их основе для увеличения нефтеотдачи пластов. Механизм вытеснения нефти из пористой среды с применением ПАВ
Первые результаты экспериментальных и промысловых исследований по применению поверхностно-активных веществ (ПАВ) как добавок при заводнении нефтяных пластов опубликованы в США в 40-х, 50-х годах. В нашей стране эта проблема изучается более 30 лет.
За это время разработаны в основном физико-химические и технологические основы метода, обоснованы приближенные критерии применимости ПАВ, произведены испытания метода в различных геолого-промысловых условиях.
Однако до настоящего времени многие аспекты этой проблемы до конца не изучены, требуют уточнения и дальнейшего исследования. Механизм нефтеотдачи при воздействии водных растворов ПАВ на остаточную нефть в коллекторах различных типов сложен и многогранен, что предопределяет необходимость дальнейших экспериментальных и промысловых исследований на современной научной основе.
Под ПАВ понимают химические соединения, способные вследствие положительной адсорбции изменять фазовые и энергетические взаимодействия на различных поверхностях раздела жидкость — воздух, жидкость — твердое тело, нефть — вода. Поверхностная активность, которую в определенных условиях могут проявлять многие органические соединения, обусловлена как химическим строением, в частности, дифильностью (полярностью и поляризуемостью) их молекул, так и внешними условиями: характером среды и контактирующих фаз, концентрацией ПАВ, температурой.
Обычно ПАВ представляют собой органические вещества, содержащие в молекуле углеводородный радикал и одну или несколько полярных групп.
По ионной характеристике все ПАВ обычно разделяют на две большие группы: неионогенные соединения, которые при растворении в воде не диссоциируют на ионы, и ионогенные соединения. В зависимости от того, какие ионы обусловливают поверхностную активность ионогенных веществ, их принято подразделять: на анионоактивные (АПАВ), катионо-активные (КПАВ) и амфолитные. Анионные ПАВ более активны в щелочных растворах, катионные в кислых, амфолитные — в тех и других.
По растворимости в воде и маслах ПАВ подразделяют на три группы: водо-, водомасло- и маслорастворимые.
Водорастворимые ПАВ состоят из гидрофобных углеводородных радикалов и гидрофильных полярных групп, обеспечивающих растворимость всего соединения в воде. Характерная особенность этих ПАВ — их поверхностная активность на границе раздела вода — воздух.
Водомаслорастворимые ПАВ применяют в основном в системах нефть — вода. Гидрофильные группы в молекулах таких веществ обеспечивают их растворимость в воде, а достаточно длинные углеводородные радикалы — растворимость в углеводородах.
Маслорастворимые ПАВ не растворяются и не диссоциируют (или слабо диссоциируют) в водных растворах. Помимо разветвленной углеводородной части значительной молекулярной массы, обеспечивающей растворимость в углеводородах, маслорастворимые ПАВ часто содержат гидрофобные активные группы. Как правило, эти ПАВ слабо поверхностноактивны на границе раздела жидкость — воздух.
Наиболее широкое применение в технологии повышения нефтеотдачи нашли неионогенные поверхностно-активные вещества (НПАВ).
Этот вид ПАВ насчитывает более 50 веществ различных групп. Среди них наибольшее распространение получили оксиэтилированные изононилфенолы типов ОП-10, АФ9-4, АФ9-6, АФ9-10, АФ9-12, в основном из-за больших объемов их промышленного производства.
Преимущество НПАВ заключается в их совместимости с водами высокой минерализации и значительно меньшей адсорбции по сравнению с ионогенными ПАВ. Однако многолетний опыт применения индивидуальных ПАВ типа ОП-10 для увеличения нефтеотдачи не дал однозначных результатов. Об эффективности применения НПАВ, как метода увеличения нефтеотдачи, существуют различные мнения, как положительные, так и отрицательные.
Многочисленные экспериментальные исследования, выполненные в ТатНИПИнефти, показали, что применение концентрированных растворов ПАВ в условиях первичного вытеснения нефти из моделей терригенных пород существенно улучшает процесс вытеснения нефти. Максимальный прирост коэффициента вытеснения по сравнению с водой составил 2,2—2,7%. Несколько большее значение прироста коэффициента вытеснения, равное 3,5—4%, было получено при использовании моделей малопроницаемых пористых сред.
В процессе вытеснения нефти поверхностно-активные вещества оказывают влияние на следующие взаимосвязанные факторы: межфазное натяжение на границе нефть — вода и поверхностное натяжение на границах вода — порода и нефть — порода, обусловленное их адсорбцией на этих поверхностях раздела фаз. Кроме того, действие поверхностно-активных веществ проявляется в изменении избирательного смачивания поверхности породы водой и нефтью, разрыве и отмывании с поверхности пород пленки нефти, стабилизации дисперсии нефти в воде, приросте коэффициентов вытеснения нефти водной фазой при принудительном вытеснении и при капиллярной пропитке, в повышении относительных фазовых проницаемостей пористых сред.
,
где — свободная поверхностная энергия границ раздела фаз нефть — вода, вода — порода и нефть — порода соответственно.
Добавка к воде поверхностно-активных веществ приводит к изменению соотношения значений свободной поверхностной энергии благодаря адсорбционным процессам ПАВ на межфазных границах раздела. При этом межфазное натяжение, как правило, уменьшается.
Адсорбция ПАВ на гидрофобных участках поверхности пор, которые могут существовать в результате хемосорбции некоторых компонентов нефти, приводит к снижению и увеличению
в соответствии с правилом ориентации дифильных молекул. Данные обстоятельства и способствуют отделению нефти от поверхности.
На гидрофильных участках поверхности пор адсорбция ПАВ наоборот приводит к увеличению и снижению
т. е. к непроизводительным потерям ПАВ, и способствует прилипанию капель нефти к этим участкам.
Таким образом, для гидрофобных поверхностей ПАВ должны проявлять высокую поверхностную активность на границе раздела сред нефть — вода и вода — порода и ограничивать адсорбцию на гидрофильных участках поверхности пород.
Капиллярно-удерживаемая нефть в обводненных пластах заполняет пространство в виде капель или участков, разделенных пространством, заполненным водой.
На границах раздела существуют мениски, создающие капиллярное давление
где n — число менисков; Ri — эффективные радиусы кривизны менисков; «+» означает противоположное направление давления выпуклых и вогнутых менисков по отношению к потоку.
В неподвижном состоянии противоположно направленные давления менисков компенсируются. В вытесняющем потоке под действием перепада внешнего давления мениски деформируются по закону упругости так, что возникает составляющая капиллярного давления, направленная противоположно потоку, наблюдается эффект Жамена:
Основной механизм в процессах добычи нефти с применением ПАВ заключается в снижении поверхностного натяжения на границе раздела вытесняющей и вытесняемой жидкостей до очень низких значений, при которых капиллярно-удерживаемая нефть становится подвижной.
Для вытеснения нефти из гидрофобного коллектора требуется достижение либо большего перепада давления, чем для гидрофильного, либо большего снижения поверхностного натяжения. В зависимости от природы нефтенасыщенного по-рового пространства требуется достижение различных значений межфазного натяжения. Так, для гидрофобного карбонатного коллектора межфазное натяжение равно 0,002 мН/м, для гидрофильного — 0,974 мН/м, а для терригенного гидрофильного коллектора — 0,0825 мН/м.
Итак, достижение заметного увеличения коэффициента вытеснения нефти за счет снижения межфазного натяжения с применением доступных промышленных ПАВ возможно в гидрофильных карбонатных коллекторах.
Смачивающую способность ПАВ общепринято оценивать значением краевого угла избирательного смачивания. Однако более строгим критерием смачивающей способности ПАВ является энергия взаимодействия нефти с поверхностью породы, определяемая как работа адгезии нефти
где — межфазное натяжение на границе раздела нефть — водная фаза;
— краевой угол избирательного смачивания.
Чем меньше краевой угол избирательной смачиваемости, тем выше работа адгезии нефти и, следовательно, лучше смачивающая способность ПАВ.
Изменение смачиваемости зависит от химического состава породы, первоначального состояния поверхности и от массового соотношения гидрофильно-липофильного баланса. По характеристике смачиваемости карбонатные породы более гидрофобны, чем терригенные, что связано с ионным типом связей в кристаллической решетке, способствующих активному взаимодействию полярных компонентов нефти с породой и ее гидрофобизации. При этом углы смачивания данных пород достигают 140—150°. Изменение смачиваемости твердой поверхности с гидрофобной на гидрофильную для карбонатных пород способствует улучшению отрыва пленок и капель нефти, увеличению их подвижности, активизации капиллярного впитывания.
При вытеснении нефти растворами ПАВ последние могут диффундировать в значительных количествах в нефть. ПАВ адсорбируются асфальтенами нефти. Дисперсность асфальтенов меняется, в результате изменяются реологические свойства нефти. Контактируя в пористой среде с нефтью, ПАВ способны переходить в нефть и существенно изменять ее свойства.
Хорошо известно, что в состав нефти входят углеводороды — парафины и различные комплексные соединения, такие как смолы, асфальтены, оказывающие сильное влияние на вязкость нефти. Более того, нефть, содержащая значительное количество асфальтенов, имеет непостоянную вязкость. При большом количестве парафинов в нефти ее вязкость тоже оказывается переменной, зависящей от скорости сдвига. Эти особенности реологических свойств нефти обусловлены коллоидным состоянием диспергированных в ней парафинов или асфальтенов. Течение таких жидкостей не подчиняется закону Ньютона и их принято называть аномальными.Установлено, что аномалии вязкости нефти уменьшают нефтеотдачу пластов, способствуют образованию застойных зон и зон малоподвижной нефти, где фактические градиенты пластового давления оказываются меньшими или сравнимыми с градиентами динамического давления сдвига.
Особенности процессов вытеснения нефти водными растворами ПАВ ОП-10 : после контакта исследовавшихся нефтей с водными растворами ПАВ происходит существенное улучшение реологических и фильтрационных характеристик нефти, в определенных условиях вплоть до полного исчезновения аномалий вязкости. Разрушение структуры нефти облегчает продвижение капель нефти через поры пласта, что способствует возрастанию нефтеотдачи. Таким образом, ПАВ, используемые для улучшения нефтевытесняющей способности воды, должны обладать способностью ослаблять структурно-механические свойства нефтей.
В табл.6 приведены результаты исследований по вытеснению нефти с выраженными аномалиями вязкости водой и водными растворами НПАВ.
Коэффициенты вытеснения нефтей, которые предварительно были продолжительное время в контакте с растворами НПАВ, оказались выше на 7—11%, чем у нефти, не содержащей ПАВ (см. табл.6).
Таблица 6. Влияние ПАВ на вытеснение аномальных нефтей из образцов естественных песчаников (время контакта нефти с раствором ПАВ 20 сут)
Вязкость нефти, мПа с
Проницаемость модели пласта, мкм2
Прирость коэффициента вытеснения
Нефть после контакта с 0,05% раст вором
Нефть после контакта с 0,1% раст вором Неоола 2В1317-12
Нефть после контакта с 0,05% раст вором АФ9-12
Раствор Неонола 0,05%
Из рассмотренного следует, что при вытеснении нефти водными растворами НПАВ часть активного вещества переходит в нефть. В результате этого происходит подавление аномалий вязкости нефти, приводящее к увеличению коэффициента вытеснения нефти из пористой среды.
Возможность эффективного применения ПАВ для повышения нефтеотдачи пластов связывают в настоящее время, как в стране, так и за рубежом, с созданием на их основе композиций с необходимым комплексом свойств, подбираемым к конкретным геолого-физическим условиям месторождений.
Ограничимся перечислением направлений поиска сегодняшнего дня:
— сочетание водорастворимых ПАВ в составах с щелочами, щелочными буферными компонентами типа ИХП, кислотами, осадкообразованиями и т. д.;
— подбор к условиям конкретных месторождений составов из двух или нескольких ПАВ с целью достижения оптимального гидрофильно-липофильного баланса (ГЛБ), обеспечивающего значительное понижение поверхностных и капиллярных сил в системе нефть — вода — порода и образование подвижного водо-нефтяного вала.
Олигомерические ПАВ повышают степень солюбилизации нефти и воды, более устойчивы к солям и дивалентным ионам, снижают межфазное натяжение и адсорбцию ПАВ на породе, повышают вязкость растворов.
Правильный подбор ПАВ для условий конкретного месторождения требует проведения трудоемких лабораторных исследований. Наряду с обычным испытанием совместимости ПАВ с пластовыми и закачиваемыми водами, температуры помутнения, адсорбции, важное значение приобретают исследования поверхностной активности ПАВ, точнее, определение условий, при которых обеспечивается достижение той или иной композиционной системой сверхнизкого межфазного натяжения.
В результате исследований с гомологическими рядами ПАВ было установлено, что область сверхнизких натяжений существует в весьма узком диапазоне минерализации воды, состава углеводородной фазы (нефти), эквивалентного веса — для анионных ПАВ и длины оксиэтиленовой цепи — для неионо-генных ПАВ или их производных при некоторой фиксированной длине алкильного радикала [120].
В США с целью правильного выбора ПАВ разработана концепция эквивалентных алкановых углеводородных чисел (ЭАУЧ). Согласно этой концепции, разработанной, как указывается, на основании более 100 тыс. измерений, каждой нефти должно быть приписано свое ЭАУЧ, т. е. ее поведение при измерении межфазного натяжения может быть точно смоделировано чистым нормальным углеводородом, длина углеводородной цепи которого и есть ЭАУЧ для данной нефти. ЭАУЧ нефти в свою очередь рассчитывается по результатам измерения межфазного натяжения смесей данной нефти с чистыми углеводородами, для которых ЭАУЧ известно, на границе с раствором хорошо изученного ПАВ, взятого в качестве стандарта при строго заданных условиях. Таким образом, если ЭАУЧ данной нефти известно, то при подборе ПАВ можно ограничиться результатами измерений межфазного натяжения их растворов на границе с углеводородом, моделирующим нефть.
Другой методикой, представляющейся наиболее простой и не требующей предварительного определения ЭАУЧ нефтей, является методика определения минимума межфазного натяжения для данной системы нефть — пластовая вода, разработанная в Германии. Эта методика основана на использовании усовершенствованного Спиннинг Дроп Тензиометра, позволяющего быстро определить зависимость межфазного натяжения от температуры и установить температуру, при которой достигается минимальное натяжение.
Обе методики исходят из того, что при подборе ПАВ располагают гомологическим рядом образцов ПАВ, внутри которого имеется продукт, наиболее подходящий для данной системы нефть — вода.
Исследования, проведенные в институте глубокого бурения и добычи нефти Германии по вытеснению третичной нефти карбоксиметилированными оксиэтилированными спиртами, показали, что даже в условиях низкого межфазного натяжения хорошее вытеснение остаточной нефти достигается лишь при температуре выше определенного порогового значения. Эта температура была несколько ниже температуры, при которой в системе наблюдается ярко выраженный минимум межфазного натяжения. Температура, при которой наступает инверсия эмульсий, получила название «Температуры инверсии фаз» (ТИФ). Дальнейшими исследованиями, проведенными в Германии на системах сырая нефть — пластовая вода — ПАВ, показана достаточно четкая корреляция между ТИФ искусственно приготовленных эмульсий сырая нефть — пластовая вода и нефтевытесняющей способностью исследованных ПАВ. ТИФ этих эмульсий определялась по их электропроводности.
Было установлено, что необходимой предпосылкой для хороших результатов по вытеснению третичной (остаточной) нефти является условие, когда ТИФ системы на несколько градусов ниже пластовой температуры. В этом случае для получения дополнительной нефти требуется небольшой объем прокачки раствора ПАВ, и почти вся остаточная нефть вытесняется к моменту «прорыва ПАВ», т. е., когда в выходящей из пористой среды водной фазе появляется уверенно определяемая концентрация ПАВ. Вытесняемая нефть имеет характер эмульсии «вода в нефти», обладает повышенной вязкостью, с момента «прорыва НПАВ» остатки нефти вытесняются лишь в виде эмульсии типа «масло в воде», имеющей вязкость, мало отличающуюся от вязкости пластовой воды. Предполагается, что в процессе вытеснения, в пористой среде происходит растворение ПАВ в нефти, сопровождающееся инверсией фаз, в момент которой имеет место экстремально низкое межфазное натяжение, способствующее переводу остаточной нефти в подвижное состояние. Кроме того, создаются условия для выравнивания вязкости фаз, как при полимерном заводнении.
В последнее десятилетие за рубежом преобладающей является технология применения НПАВ в виде микроэмульсий, которая предусматривает получение «среднефазных» систем, способных существовать в виде самостоятельной фазы при контакте с нефтью и водой, имея в то же время достаточно низкое межфазное натяжение на границе с этими фазами. Тип эмульсии определяется видом ПАВ, с преобладанием гидрофильной части приводит к образованию эмульсий «нефть в воде», а с преобладанием гидрофобной части— «вода в нефти». Если ПАВ отличается своим значением ГЛБ, содетергент — своим гидрофобно-гидрофильным характером, то с уменьшением гидрофильности содетергента равновесие перемещается настолько, что система типа 1 (по Винзору) превращается в систему типа II (по Винзору). При образовании среднефазной микроэмульсии (типа III по Винзору) используют ПАВ и содетергент, значения ГЛБ и гидрофильности которых лежат между теми же значениями для типов 1 и III. Если это тип 1, то либо ПАВ имеет слишком высокое значение ГЛБ, либо содетергент слишком гидрофилен. Необходимо указать на то, что реальная система имеет только три переменных параметра влияния: 1 — вид ПАВ, 2 — вид содетергента, 3 — соотношение в смеси ПАВ — содетергент.
Определение стабильности эмульсий, получающихся вблизи границ средней фазы, показало, что при ГЛБ, незначительно выходящих за пределы области существования среднефазных систем, образуются стойкие микроэмульсии типа «нефть в воде», при ГЛБ выше значений, соответствующих верхней границе области существования третьей фазы,— эмульсии типа «вода в нефти».
Получив оптимальное значение ГЛБ, можно рассчитывать требуемую степень оксиэтилирования, а также скорректировать состав водной фазы (содержание электролитов и спирта) для компенсации отклонения ГЛБ ПАВ от требуемого значения. Например, добавление изопентанола смещает ГЛБ в сторону большей гидрофобности, что позволяет достичь оптимального ГЛБ при более высоких, чем это необходимо, степенях оксиэтилирования. Низкомолекулярные спирты (изопро-пиловый и вторичный бутиловый) действуют противоположным образом, однако смещение ГЛБ в этом случае на порядок ниже и может играть существенную роль только при больших концентрациях. Электролиты действуют аналогично высокомолекулярным спиртам, смещая равновесие в сторону большей гидрофобности и вызывая таким образом необходимость использования ПАВ с более высокой степенью оксиэтилирования для достижения оптимального значения ГЛБ.
Более сложным является влияние на ГЛБ концентрации ПАВ. Было установлено, что в противоположность АПАВ, повышение концентрации НПАВ приводит к гидрофобизации системы и соответственно к необходимости повышения степени оксиэтилирования для достижения оптимального ГЛБ. Зависимость смещения ГЛБ от концентрации ПАВ нелинейна, наибольшее влияние изменение концентрации оказывает при небольших абсолютных значениях (менее 3%), а с повышением концентрации влияние ее на ГЛБ уменьшается.
Таким образом, для обеспечения сильного снижения межфазного натяжения и высоких параметров солюбилизации требуется исключительно точный подбор состава композиции ПАВ для условий каждого конкретного объекта.