Что такое перечня в химии
Алфавитный список химических элементов
Алфавитный список химических элементов.
Азот | N |
Актиний | Ac |
Алюминий | Al |
Америций | Am |
Аргон | Ar |
Астат | At |
Барий | Ba |
Бериллий | Be |
Берклий | Bk |
Бор | B |
Бром | Br |
Ванадий | V |
Висмут | Bi |
Водород | H |
Вольфрам | W |
Гадолиний | Gd |
Галлий | Ga |
Ганий | Hn |
Гафний | Hf |
Гелий | He |
Германий | Ge |
Гольмий | Ho |
Дармштадтий | Ds |
Диспрозий | Dy |
Дубний | Db |
Европий | Eu |
Железо | Fe |
Жолиотий | Jo |
Золото | Au |
Индий | In |
Иридий | Ir |
Иттербий | Yb |
Иттрий | Y |
Иод | I |
Кадмий | Cd |
Калий | K |
Калифорний | Cf |
Кальций | Ca |
Кислород | O |
Кобальт | Co |
Кремний | Si |
Криптон | Kr |
Ксенон | Xe |
Кюрий | Cm |
Лантан | La |
Литий | Li |
Лоуренсий | Lr |
Лютеций | Lu |
Магний | Mg |
Мейтнерий | Mt |
Марганец | Mn |
Менделевий | Md |
Мышьяк | As |
Медь | Cu |
Молибден | Mo |
Натрий | Na |
Неодим | Nd |
Неон | Ne |
Нептуний | Np |
Никель | Ni |
Ниобий | Nb |
Нобелий | No |
Олово | Sn |
Осмий | Os |
Палладий | Pd |
Платина | Pt |
Плутоний | Pu |
Полоний | Po |
Празеодим | Pr |
Прометий | Pm |
Протактиний | Pa |
Радий | Ra |
Радон | Rn |
Резерфордий | Rf |
Рений | Re |
Рентгений | Re |
Родий | Rh |
Ртуть | Hg |
Рубидий | Rb |
Рутений | Ru |
Самарий | Sm |
Свинец | Pb |
Селен | Se |
Сиборгий | Sg |
Сера | S |
Серебро | Ag |
Скандий | Sc |
Стронций | Sr |
Сурьма | Sb |
Таллий | Tl |
Тантал | Ta |
Теллур | Te |
Тербий | Tb |
Технеций | Tc |
Титан | Ti |
Торий | Th |
Тулий | Tm |
Углерод | C |
Унунбий | Uub |
Унунгексий | Uuh |
Унунквадий | Uuq |
Унуноктий | Uuo |
Унунпентий | Uup |
Унунсептий | Uus |
Унунтрий | Uut |
Уран | U |
Фермий | Fm |
Фосфор | P |
Франций | Fr |
Фтор | F |
Хассий | Hs |
Хлор | Cl |
Хром | Cr |
Цезий | Cs |
Церий | Ce |
Цинк | Zn |
Цирконий | Zr |
Эйнштейний | Es |
Эрбий | Er |
Полезное
Смотреть что такое «Алфавитный список химических элементов» в других словарях:
Список химических элементов по символам — См. также: Список химических элементов по атомным номерам и Алфавитный список химических элементов Содержание 1 Символы, используемые в данный момент … Википедия
Список химических элементов по атомным номерам — См. также: Список химических элементов по символам и Алфавитный список химических элементов Это список химических элементов, упорядоченный в порядке возрастания атомных номеров. В таблице приводятся название элемента, символ, группа и период в… … Википедия
ISO 4217 — (ИСО 4217) Коды для представления валют и фондов Codes for the representation of currencies and funds (англ.) Codes pour la représentation des monnaies et types de fonds (фр.) … Википедия
ЭЛЕМЕНТЫ ХИМИЧЕСКИЕ — простейшая форма материи, которая может быть идентифицирована химическими методами. Это составные части простых и сложных веществ, представляющие собой совокупность атомов с одинаковым зарядом ядра. Заряд ядра атома определяется числом протонов в … Энциклопедия Кольера
Хронология изобретений — Содержание 1 Эпоха палеолита 2 10 е тысячелетие до н. э. 3 9 е тысячелетие до н. э … Википедия
Изобретения человека — Содержание 1 Эпоха палеолита 2 10 е тысячелетие до н. э. 3 9 е тысячелетие до н. э … Википедия
Изобретения — Содержание 1 Эпоха палеолита 2 10 е тысячелетие до н. э. 3 9 е тысячелетие до н. э … Википедия
Русские — У этого термина существуют и другие значения, см. Русские (значения). Русские … Википедия
1: — Терминология 1: : dw Номер дня недели. «1» соответствует понедельнику Определения термина из разных документов: dw DUT Разность между московским и всемирным координированным временем, выраженная целым количеством часов Определения термина из… … Словарь-справочник терминов нормативно-технической документации
Химические элементы. Периодическая Система химических элементов Д.И. Менделеева.
Что такое химический элемент?
В химических реакциях происходят превращения одних веществ в другие. Чтобы понять, как это происходит, нужно вспомнить из курса природоведения и физики, что вещества состоят из атомов. Существует ограниченное число видов атомов. Атомы могут различным образом соединяться друг с другом. Как при складывании букв алфавита образуются сотни тысяч разных слов, так из одних и тех же атомов образуются молекулы или кристаллы разных веществ.
Атомы могут образовать молекулы – мельчайшие частицы вещества, которые сохраняют его свойства. Известно, например, несколько веществ, образованных всего из двух видов атомов – атомов кислорода и атомов водорода, но разными видами молекул. К числу таких веществ относятся вода, водород и кислород. Молекула воды состоит из трех частиц, связанных друг с другом. Это и есть атомы.
К атому кислорода (атомы кислорода обозначаются в химии буквой О) присоединены два атома водорода (они обозначаются буквой Н).
Молекула кислорода состоит из двух атомов кислорода; молекула водорода – из двух атомов водорода. Молекулы могут образовываться в ходе химических превращений, а могут и распадаться. Так, каждая молекула воды распадается на два атома водорода и один атом кислорода. Две молекулы воды образуют вдвое больше атомов водорода и кислорода.
Одинаковые атомы связываются попарно в молекулы новых веществ – водород и кислород. Молекулы, таким образом, разрушаются, а атомы сохраняются. Отсюда и произошло слово «атом», что значит в переводе с древнегреческого «неделимый».
Атомы – это мельчайшие химически неделимые частицы вещества
В химических превращениях образуются другие вещества из тех же атомов, из которых состояли исходные вещества. Как микробы стали доступны наблюдению с изобретением микроскопа, так атомы и молекулы – с изобретением приборов, дающих еще большее увеличение и даже позволяющих атомы и молекулы фотографировать. На таких фотографиях атомы выглядят в виде расплывчатых пятен, а молекулы – в виде сочетания таких пятен. Однако существуют и такие явления, при которых атомы делятся, атомы одного вида превращаются в атомы других видов. При этом получены искусственно и такие атомы, которые в природе не найдены. Но эти явления изучаются не химией, а другой наукой – ядерной физикой. Как уже говорилось, существуют и другие вещества, в состав которых входят атомы водорода и кислорода. Но, независимо от того, входят эти атомы в состав молекул воды, или в состав других веществ – это атомы одного и того же химического элемента.
Химический элемент – определенный вид атомов Сколько всего существует видов атомов? На сегодняшний день человеку достоверно известно о существовании 118 видов атомов, то есть 118 химических элементов. Из них в природе встречаются 90 видов атомов, остальные получены искусственно в лабораториях.
Символы химических элементов
В химии для обозначения химических элементов используют химическую символику. Это язык химии. Для понимания речи на любом языке необходимо знать буквы, в химии точно так же. Чтобы понимать и описывать свойства веществ, и изменения, происходящие с ними, прежде всего, необходимо знать символы химических элементов. В эпоху алхимии химических элементов было известно намного меньше, чем сейчас. Алхимики отождествляли их с планетами, различными животными, античными божествами. В настоящее время во всем мире пользуются системой обозначений, введенной шведским химиком Йёнсом Якобом Берцелиусом. В его системе химические элементы обозначают начальной или одной из последующих букв латинского названия данного элемента. Например, элемент серебро обозначается символом – Ag (лат. Argentum). Ниже приведены символы, произношения символов, и названия наиболее распространенных химических элементов. Их нужно заучить на память!
Периодическая Система химических элементов Д.И. Менделеева
Русский химик Дмитрий Иванович Менделеев первым упорядочил разнообразие химических элементов, и на основании открытого им Периодического Закона составил Периодическую Систему химических элементов. Как устроена Периодическая Система химических элементов? На рисунке 58 изображен короткопериодный вариант Периодической Системы. Периодическая Система состоит из вертикальных столбцов и горизонтальных строк. Горизонтальные строки называются периодами. На сегодняшний день все известные элементы размещаются в семи периодах.
Периоды обозначают арабскими цифрами от 1 до 7. Периоды 1–3 состоят из одного ряда элементов – их называют малыми.
Периоды 4–7 состоят из двух рядов элементов, их называют большими. Вертикальные столбцы Периодической Системы называют группами элементов.
Всего групп восемь, и для их обозначения используют римские цифры от I до VIII.
Выделяют главные и побочные подгруппы. Периодическая Система – универсальный справочник химика, с ее помощью можно получить информацию о химических элементах. Существует еще один вид Периодической Системы – длиннопериодный. В длиннопериодной форме Периодической Системы элементы сгруппированы иначе, и распределены на 18 групп.
Распространенность химических элементов в природе
Атомы элементов, встречающихся в природе, распределенные в ней очень неравномерно. В космосе самым распространенным элементом является водород – первый элемент Периодической Системы. На его долю приходится около 93% всех атомов Вселенной. Около 6,9% составляют атомы гелия – второго элемента Периодической Системы.
Остальные 0,1% приходится на все остальные элементы.
Распространенность химических элементов в земной коре значительно отличается от их распространенности во Вселенной. В земной коре больше всего атомов кислорода и кремния. Вместе с алюминием и железом они формируют основные соединения земной коры. А железо и никель – основные элементы, из которых состоит ядро нашей планеты.
Живые организмы также состоят из атомов различных химических элементов. В организме человека больше всего содержится атомов углерода, водорода, кислорода и азота.
Учим химию. Глава 1. Вещество
Какие же существуют определения понятия «вещество»?
В физике это качественное проявление материи; то, из чего состоит физическое тело.
Вещество в биологии — материя, образующая ткани организмов, входящая в состав органелл клеток.
Нашел еще одно интересное определение:
«Вещества — собирательное название препаратов, изменяющих, расширяющих, сужающих или каким-либо иным способом извращающих состояние сознания человека». http://lurkmore.
Читаем, как объясняется это понятие в толковых словарях.
Вещество по словарю Ушакова:
ВЕЩЕСТВО вещества, ср. (книжн.). То, из чего состоит физическое тело; материя.
Что общего в этих определениях: то, что вещество это вид материи, к этому добавляется – обладает массой покоя, соединение, обладающее определенными свойствами.
Охватывают эти определения полностью те объекты, которые изучаются химией? Нет, только в словаре Ефремовой говорится о соединениях, обладающих определенными свойствами.
Посмотрим, как подается это понятие в школьных учебниках по химии.
А) А. В. Мануйлов, В. И. Родионов Основы химии. Интернет-учебник..
« То, из чего состоят физические тела, то есть окружающие нас предметы, называется веществом.», т.е. определение по словарю Ушакова.
Б) Габриелян О.С. Химия. 8 класс (16-е издание, 2010)
Повторение определения по Ушакову.
Д) Химия, 7 класс, Попель П.П., Крикля Л.С., 2008
Вообще не дается определения понятия вещества, но ставится такой контрольный вопрос:
«Назовите несколько веществ, которые не существуют в природе, а получены человеком и используются в повседневной жизни».
Ж) Химия, 8 класс, Жилин Д.М., 2012
В учебнике приводится следующее определение:
«Вещество – все то, из чего состоят окружающие нас предметы». Правда он указывает, что не дает точного определения, т.к. ученые еще горячо спорят о толковании этого понятии.
Этот анализ показывает, что точного определения понятия вещества в химии нет, и заставляет задать вопрос – понимают ли школьники, что такое химия и что она изучает?
Как в сказке «Иди туда, не зная куда, ищи то, не зная что».
Давайте попробуем дать определение понятия «химическое вещество» из определения химии как науки.
Поставим во главу угла слово превращение, и пойдем от него.
Если что-то превращается во что-то, то первое что-то должно существовать в виде материального тела, которое имеет определенный состав. Состав этого что-то определяется элементами, из которых он состоит.
Отсюда первая строчка определения понятия «химическое вещество»:
«Химическое вещество – реальное материальное тело, состоящее из атомов одного или нескольких элементов…».
Если это так, и если это индивидуальное вещество, то оно должно обладать определенными свойствами, как физическими, так и химическими, характерными только для этого вещества, которые отличают его от других веществ. Продолжаем определение:
«Химическое вещество – реальное материальное тело, состоящее из атомов одного или нескольких элементов, обладающее суммой характерных только для него физических и химических свойств …».
Для изучения состава и свойств этого вещества требуется время, в течение которого проводятся эти определения, следовательно:
«Химическое вещество – реальное материальное тело, состоящее из атомов одного или нескольких элементов, обладающее суммой характерных только для него физических и химических свойств, существующее во времени, не менее требуемого для определения его состава и свойств …».
Определение состава и свойств проводится, как правило, в комфортных для исследователя внешних условиях – температуре окружающей среды, давлении. Закончим определение:
«Химическое вещество – реальное материальное тело, состоящее из атомов одного или нескольких элементов, обладающее суммой характерных только для него физических и химических свойств, существующее во времени, не менее требуемого для определения его состава и свойств, при внешних условиях, позволяющих проводить эти определения».
На мой взгляд, такое определение позволяет далее без труда переходить к развитию этого понятия.
Простыми называются вещества, состоящие из атомов только одного элемента, например. Как правило, элемент и простое вещество, образованное им, имеют одно и то же название: водород, кислород, железо, золото. Их называют также «Немолекулярное вещество» – вещество, состоящее не из молекул.
Сложными называются вещества, образованные атомами разных элементов. Их еще называют — «химические соединения», или «Молекулярное вещество» – вещество, состоящее из молекул.
Основные понятия химии
Атом — мельчайшая, химически неделимая, электронейтральная частица вещества. Состоит из ядра и электронной оболочки.
Вещество — вид материи с определёнными химическими и физическими свойствами. Совокупность атомов, атомных частиц или молекул, находящаяся в определённом агрегатном состоянии. Из веществ состоят физические тела (медь — вещество, а медная монета — физическое тело).
Валентность — количество химических связей, которое образует один атом.
Молекула — наименьшая частица вещества, сохраняющая его химические свойства. Состоит из атомов.
Свойства — совокупность признаков по которым одни вещества отличаются от других, они бывают химическими и физическими.
Физические свойства — признаки вещества, при характеристике которых вещество не изменяет свой химический состав (плотность, агрегатное состояние, температуры плавления и кипения и т. п.)
Химические свойства — способность веществ взаимодействовать с другими веществами или изменяться под действием определённых условий. Результатом является превращение одного вещества или веществ в другие вещества.
Агрегатные состояния а веществ— состояние вещества, характеризующееся определенными свойствами (способность сохранять форму, объем). Выделяют три основных агрегатных состояния: твёрдое тело, жидкость и газ. Иногда не совсем корректно к агрегатным состояниям причисляют плазмуw. Существуют и другие агрегатные состояния, например, жидкие кристаллыw или конденсат Бозе — Эйнштейнаw.
Моль — мера количества вещества, содержащая Число Авогадроw (NA ≈ 6,02 × 1023) любых структурных частиц. (NA — количество атомов в 12 граммах углерода 12Cw.)
Периодический закон — фундаментальный закон природы, открытый Д. И. Менделеевым в 1869 году при сопоставлении свойств известных в то время химических элементов и величин их атомных масс. В настоящее время Периодический закон Д. И. Менделеева имеет следующую формулировку: «свойства химических элементов, а также формы и свойства образуемых ими простых веществ и соединений находятся в периодической зависимости от величины зарядов ядер их атомов». Особенность Периодического закона среди других фундаментальных законов заключается в том, что он не имеет выражения в виде математического уравнения. Графическим (табличным) выражением закона является Периодическая система химических элементовw, первоначальный вариант которой был разработан Д. И. Менделеевым в 1869—1871 годах.
Простое вещество — вещество, состоящее из атомов одного химического элемента: водород, кислород и т. д.
Сложное вещество — вещество, состоящее из атомов разных химических элементов: кислоты, вода и др.
Относительная атомная масса — масса (а. е. м.) 6,02 × 1023 молекул простого вещества, где а. е. м. — атомная единица массыw.
Относительная молекулярная масса — масса (а. е. м.) 6,02 × 1023 молекул сложного вещества. Численно равна молярной массе, но отличается размерностью.
Химическая связь — это взаимодействие атомов, обуславливающее устойчивость молекулы или кристаллаw как целого. Химическая связь определяется взаимодействием между заряженными частицамиw (ядрамиw и электронамиw).
Полимеры — высокомолекулярные соединения, молекулы которых состоят из повторяющихся фрагментов (структурных звеньев).
Степень полимеризации — число структурных звеньев, входящих в состав макромолекулы.
Гомополимеры — полимеры, образованные из одинаковых по составу и строению мономеровw.
Мономер — низкомолекулярное вещество, образующее полимер в реакции полимеризацииw.
Сополимеры — полимеры, образованные из двух и более мономеров.
Сополимеризация — реакция полимеризации с участием двух или более различных мономеров.
Электрохимия — раздел химической науки, в котором рассматриваются системы и межфазные границы при протекании через них электрического тока, исследуются процессы в проводниках, на электродах (из металлов или полупроводников, включая графит) и в ионных проводниках (электролитах). Электрохимия исследует процессы окисления и восстановления, протекающие на пространственно-разделённых электродах, перенос ионов и электронов.
Электродный потенциал — разность электрических потенциалов между электродом и находящимся с ним в контакте электролитом.
Электролитическая диссоциация — процесс распада электролита на ионы при его растворении или плавлении.
Электролит — вещество, которое проводит электрический ток вследствие диссоциации на ионы, что происходит в растворах и расплавах, или движения ионов в кристаллических решётках твёрдых электролитов.
Электролиз — физико-химический процесс, состоящий в выделении на электродах составных частей растворённых веществ или других веществ, являющихся результатом вторичных реакций на электродах, который возникает при прохождении электрического тока через раствор, либо расплав электролита.
Гомологический ряд — ряд химических соединений одного структурного типа (например, алканы или алифатические спирты — спирты жирного ряда), отличающихся друг от друга по составу на определенное число повторяющихся структурных единиц — так называемую «гомологическую разность».
Изомерия — явление, заключающееся в существовании химических соединений (изомеров), одинаковых по составу и молекулярной массе, но различающихся по строению или расположению атомов в пространстве и, вследствие этого, по свойствам.
Изомеры — соединения, обладающие одинаковым элементарным составом, но различным химическим строением.
Химическое равновесие — это такое состояние системы, когда скорость прямой реакции равна скорости обратной реакции.
Тепловой эффект реакции — это теплота, которая выделяется или поглощается системой при течении в ней химической реакции. В зависимости от того, происходит реакция с выделением теплоты или сопровождается поглощением теплоты, различают экзо-и эндотермические реакции. К первым, как правило, относятся все реакции соединения, а ко вторым — реакции разложения.[1]
Катализатор — это вещество, которое изменяет скорость химической реакции, но количественно при этом не расходуется и в состав продуктов не входит.
Скорость химической реакции — изменение количества одного из реагирующих веществ за единицу времени в единице реакционного пространства.
Термохимия — раздел химической термодинамики, в задачу которой входит определение и изучение тепловых эффектов реакций, а также установление их взаимосвязей с различными физико-химическими параметрами. Ещё одной из задач термохимии является измерение теплоёмкостей веществ и установление их теплот фазовых переходов.
Теплота — количественная мера хаотичного движения частиц данной системы, при этом не происходит переноса вещества от одной системы к другой.
Тепловой эффект — выделение или поглощение тепловой энергии системой при протекании в ней химической реакции, при условии, что система не совершает никакой другой работы кроме работы расширения.
Внутренняя энергия системы — суммарная энергия внутренней системы, включающая энергию взаимодействия и движения молекул, атомов, ядер, электронов в атомах, внутриядерную и другие виды энергии, кроме кинетической и потенциальной энергии системы, как целого.
Энтальпия — это энергия расширенной системы (термодинамическая функция, характеризующая систему, находящуюся при постоянном давлении).
Стандартная энтальпия (теплота) образования сложного вещества — тепловой эффект реакции образования 1 моля этого вещества из простых веществ, находящихся в устойчивом агрегатном состоянии при стандартных условиях (= 298 К и давлении 101 кПа).
Гомогенная система — однородная система, химический состав и физические свойства которой во всех частях одинаковы или меняются непрерывно, без скачков (между частями системы нет поверхностей раздела). В гомогенной системе из двух и более химических компонентов каждый компонент распределен в массе другого в виде молекул, атомов, ионов. Составные части гомогенной системы нельзя отделить друг от друга механическим путем.
Гетерогенная система — неоднородная система, состоящая из однородных частей (фаз), разделённых поверхностью раздела. Однородные части (фазы) могут отличаться друг от друга по составу и свойствам.
Скорость гомогенной реакции — количество вещества, вступающего в реакцию или образующегося при реакции за единицу времени в единице объема системы.
Скорость гетерогенной реакции — количество вещества, вступающего в реакцию или образующегося при реакции за единицу времени на единице площади поверхности фазы.[
Термодинамика — раздел науки, изучающий соотношения и превращения теплоты и других форм энергии. Термодинамика — это феноменологическая наука, опирающаяся на обобщения опытных фактов. Она изучает макроскопические системы, состоящие из огромного числа частиц — термодинамические системы.
Термодинамическая система — некая физическая система, состоящая из большого количества частиц, способная обмениваться с окружающей средой энергией и веществом. Также обычно полагается, что такая система подчиняется статистическим закономерностям.
Первый закон термодинамики — для изолированной системы (для которой исключен любой материальный или энергетический обмен с окружающей средой) внутренняя энергия постоянна.
Химический элемент — это вид атомов, характеризующийся определенными зарядами ядер и строением электронных оболочек. В настоящее время известно 110 элементов: 89 из них найдены в природе (на Земле), остальные получены искусственным путем. Атомы существуют в свободном состоянии, в соединениях с атомами того же или других элементов, образуя молекулы. Способность атомов вступать во взаимодействие с другими атомами и образовывать химические соединения определяется его строением. Атомы состоят из положительно заряженного ядра и отрицательно заряженных электронов, движущихся вокруг него, образуя электронейтральную систему, которая подчиняется законам, характерным для микросистем
Химическим эквивалентом вещества называется такое его количество, которое соединяется с 1 молем атомов водорода или замещает то же количество атомов водорода в химических реакциях. Масса 1 эквивалента вещества называется эквивалентной массой (mэкв).
Эквивалентную массу соединения можно определить по его химической формуле, например,
m экв(оксида) = М (оксида)/(число атомов кислорода*2);
m экв(основания) = М (основания)/число гидроксильных групп;
m экв(кислоты) = М кислоты/число протонов;
m экв(соли) = М соли /(число атомов металла*валентность металла).
Аналогично можно дать определение понятию эквивалентный объем.
Эквивалентный объем – это тот объем, который при данных условиях занимает 1 эквивалент вещества. Так как эквивалент водорода равен 1 моль, а в 22,4 л Н2 содержатся 2 эквивалента водорода; тогда эквивалентный объем водорода равен 22,4/2=11,2 л/моль, для О2 эквивалентный объем равен 5,6 л/моль.
Определить эквивалент вещества можно также по его соединению с другим веществом, эквивалент которого известен.
Определить молярную массу эквивалента (эквивалентную массу) можно исходя из закона эквивалентов, который гласит, что химические элементы соединяются между собой или замещают друг друга в количествах, пропорциональных их молярным массам эквивалентов:
m1/m2=Мэкв1/ Мэкв2, где
где m1 и m2 — массы реагирующих или образующихся веществ, m экв1 и m экв2 — эквивалентные массы этих веществ.
Основные законы химии
Закон сохранения массы веществ
Закон сохранения массы теоретически был описан в 1748 году, а экспериментально подтверждён в 1756 году русским ученым М.В. Ломоносовым. Ломоносов определил, что если сосуд с металлом взвесить до и после нагревания, не вскрывая его, то масса останется неизменной.
В 1789 году французский учёный Антуан Лавуазье подтвердил выводы Ломоносова.
Закон сохранения массы веществ формулируется так:
Масса веществ, вступивших в реакцию, равна массе продуктов реакции.
Атомно-молекулярное учение объясняет этот закон так: при химической реакции общее количество участвующих атомов не изменяется, а происходит лишь их перегруппировка. Так как число атомов до и после реакции не изменяется, то их общая масса тоже не изменяется.
Модель химической реакции
На основе закона сохранения массы веществ проводят количественный химический анализ.
Приведём пример. Составим химическое уравнение реакции разложения воды:
Число атомов кислорода слева от стрелки, т.е. до реакции, меньше в два раза, чем справа, т.е. после реакции. Для уравнивания количества веществ до и после реакции, нужно поставить коэффициент 2 перед формулой воды в левой части уравнения:
Закон постоянства состава
Закон постоянства состава впервые сформулировал в 1808г. французский учёный-химик Жозеф Луи Пруст.
Закон постоянства состава формулируется так:
Вещество, независимо от способа его получения, всегда имеет постоянный качественный и количественный состав.
Вещества с постоянным составом названы дальтонидами в честь английского химика Джона Дальтона.
Состав дальтонидов описывается химическими формулами с целыми стехиометрическими коэффициентами, например Н2О, НCl, СН4, СO2, С2Н5ОН.
Из закона постоянства состава следует, что при образовании сложного вещества элементы простых веществ соединяются друг с другом в строго определенных массовых долях.
Массовая доля элемента ωЭ показывает, какую часть составляет масса данного элемента от массы всего вещества, где
n – число атомов;
ArЭ – относительная атомная масса элемента;
Mr – относительная молекулярная масса вещества.
Развитие химии показало, что наряду с веществами, имеющими постоянный состав, существуют вещества с переменным составом, который зависит от способа получения. Такие вещества назвали в честь французского химика Клода Бертолле – бертоллидами.
Бертоллиды не подчиняются законам стехиометрии. Примеры бертоллидов есть в классах оксидов, сульфидов, карбидов, гидридов и пр.
Исходя из вышеизложенного, уточним формулировку закона постоянства состава:
Состав соединений с молекулярной структурой является постоянным независимо от способа получения. Состав же соединений с немолекулярной структурой (с атомной, ионной и металлической решеткой) не является постоянным и зависит от условий получения.
Периодический закон
Периодический закон сформулирован Д. И. Менделеевым в году. К этому времени было известно химических элемента. В качестве основного свойства элементов Менделеев выбрал относительную атомную массу. Учитывал также состав, физические и химические свойства образованных элементом простых и сложных веществ.
Расположив все известные химические элементы в порядке возрастания атомных масс, Менделеев обнаружил, что свойства повторяются через определённое число элементов.
Повторим действия Менделеева с учётом того факта, что благородные газы в его время ещё не были известны. Расположим элементы по возрастанию атомной массы (вторая строчка таблицы), укажем металлические и неметаллические свойства, формулы и свойства высших оксидов и гидроксидов, а также формулы газообразных водородных соединений.
Если внимательно проанализировать полученные последовательности, то можно увидеть повторяемость металлических и неметаллических свойств, состава и свойств соединений. Через семь элементов от щелочного металла лития в ряду располагается щелочной металл натрий, а через семь элементов от галогена фтора — галоген хлор. Через семь элементов появляются одинаковые формулы оксидов и водородных соединений, так как повторяются значения валентностей в соединениях с кислородом и водородом. Можем составить их общие формулы.
Таким образом Менделеев установил периодичность изменения свойств с возрастанием атомной массы. В статье «Периодическая закономерность химических элементов» Д. И. Менделеев дал следующую формулировку периодического закона:
«Свойства элементов, а потому и свойства образуемых ими простых и сложных тел, стоят в периодической зависимости от атомного веса».
В переводе на современный научный язык это звучит так:
«Свойства химических элементов и их соединений находятся в периодической зависимости от зарядов атомных ядер».
Для правильного написания химических формул надо знать валентность элементов или степень окисления. Валентностью называется способность атомов данного элемента присоединять или замещать определенное число других атомов. max вал. = 8.
Закон сохранения массы
Закон сохранения энергии можно представить в виде:
Если между телами действуют силы трения, то закон сохранения энергии видоизменяется. Изменение полной механической энергии равно работе сил трения.
Полные механические энергии равны между собой
А куда потом исчезает кинетическая энергия? Исчезает бесследно? Опыт показывает, что механическое движение никогда не исчезает бесследно и никогда оно не возникает само собой. Во время торможения тела произошло нагревание поверхностей. В результате действия сил трения кинетическая энергия не исчезла, а превратилась во внутреннюю энергию теплового движения молекул.
При любых физических взаимодействиях энергия не возникает и не исчезает, а только превращается из одной формы в другую.
Общая форма закона сохранения и превращения энергии имеет вид:
Изучая тепловые процессы, мы будем рассматривать формулу
При исследовании тепловых процессов не рассматривается изменение механической энергии, то есть
В механике процессы теплопередачи не принимают во внимание, то есть
Закон эквивалентов
Эквивалент (Э) – реальная или условная частица вещества, которая может присоединить, заместить в кислотно-основных реакциях один ион водорода (или другого одновалентного элемента), а в окислительно-восстановительных реакциях – присоединить или высвободить один электрон.
Под условной частицей вещества подразумевается реально существующие частицы (молекулы, ионы, электроны и т.д.), доли этих частиц (например, 1 /2 иона) или их группы.
Фактор эквивалентности fэ (х) – число, обозначающее, какая доля реальной частицы вещества X эквивалентна одному иону водорода в кислотно-основной реакции или одному электрону в реакции окисления-восстановления.
Фактор эквивалентности – величина безразмерная. Принимает значения 1 или меньше единицы.
Для простых веществ и элементов в соединении fэ(х) = 1/В, где В – валентность элемента.
Например, для водорода или натрия fэ= 1/1 = 1. Для магния или кислорода fэ = 1/2.
Молярная масса эквивалента вещества Мэ(х) – масса одного моля эквивалента этого вещества, равная произведению фактора эквивалентности fэ(х) на молярную массу вещества Мх.
Например, молярные массы эквивалентов простых веществ:
Мэ(Na) = 1· 23 = 23 г/моль;
Мэ(Mg) = ½ · 24 = 12 г/моль;
Если одно из реагирующих веществ – газ, то для него вводится понятие объема эквивалента вещества – Vэ(х), который рассчитывается на основании следствия из закона Авогадро:
1 моль газа массой М занимает объем 22,4 л, при нормальных условиях (н.у.):
Р o = 1 атм.; Т о = 273 К
1 эквивалент газа массой Мэ занимает объем Vэ при н.у.
Например, при нормальных условиях 1 моль эквивалентов водорода занимает объем, равный:
Для кислорода эта величина составляет
Закон эквивалентов: массы (или объемы) реагирующих веществ пропорциональны молярным массам эквивалентов (или эквивалентным объемам) этих веществ.
Если одно из этих веществ представляет собой газ, то закон эквивалентов записывается в виде
Закон кратных отношений
Относительные атомные и молекулярные массы являются мерой масс атомов и молекул, поэтому они позволяют сделать вывод о соотношении масс атомов различных элементов в молекуле сложного вещества.
Пример: Относительная атомная масса водорода и кислорода соответственно равна 1,00794 и 15,9994, откуда следует, что соотношение масс атомов водорода и кислорода составляет 1 : 16. В молекуле воды H2O содержится два атома водорода и один атом кислорода, следовательно, массовое отношение водорода и кислорода в воде равно 2 : 16 или 1 : 8.
Соотношение атомных масс элементов в соединениях устанавливает закон постоянства состава, вывел его в начале XIX в. французский химик Жозеф Луи Пруст (1754-1826) на основании анализа химических соединений.
Его современная формулировка такова:
Каким бы способом ни было получено вещество, его химический состав остается постоянным
Отсюда следует, что если два или несколько простых веществ соединяются с образованием некоторого сложного вещества, то и массовое отношение реагирующих веществ постоянно для данного продукта. Так, при взаимодействии водорода и кислорода могут быть получены вода H2O и пероксид водорода H2O2; очевидно, что не только в самих продуктах массовое отношение водорода и кислорода равно соответственно 1 : 8 и 1 : 16, но и массовые отношения реагентов будут такими же.
На основании закона постоянства состава и закона кратных отношений английский исследователь Джон Дальтон (John Dalton, 1766-1844) в 1807 г. высказал атомную гипотезу (основу атомно-молекулярного учения о строении вещества):
Из атомной гипотезы вытекает, что закон постоянства состава отражает именно атомный состав вещества: в молекулу вещества объединяется определенное число именно атомов одного или различных элементов.
Закон кратных отношений, открытый Дальтоном, гласит:
Если два элемента образуют между собой несколько соединений, то массы атомов одного элемента, приходящиеся на одну и ту же массу атомов другого элемента, соотносятся между собой как небольшие целые числа.
Закон кратных отношений является фактическим объединением закона сохранения массы и закона постоянства состава на базе атомной гипотезы строения вещества.
Закон объемных отношений (закон Гей-Люссака)
Закон объёмных отношений впервые сформулировал в 1802 г французский учёный-химик Жозеф Луи Гей-Люссак.
Закон объёмных отношений формулируется так:
Объёмы вступающих в реакцию газов относятся друг к другу и к объёмам образующихся продуктов реакции как небольшие целые числа.
При этом подразумевается, что давление и температура неизменны.
Другими словами, стехиометрические коэффициенты в уравнениях химических реакций для молекул газообразных веществ показывают, в каких объёмных отношениях реагируют и получаются газообразные вещества.
При взаимодействии 2 объёмов водорода и 1 объёма кислорода образуются 2 объёма водяного пара.
Закон Авогадро
Изучение свойств газов позволило итальянскому физику А. Авогадро в 1811г. высказать гипотезу, которая впоследствии была подтверждена опытными данными, и стала называться законом Авогадро:
В равных объемах различных газов при одинаковых условиях (температуре и давлении) содержится одинаковое число молекул.
Из закона Авогадро вытекает важное следствие: моль любого газа при нормальных условиях (0
Из закона Авогадро также следует, что массы равных объемов различных газов при одинаковых температуре и давлении относятся друг к другу как молярные массы этих газов:
М1 и М2 – молекулярные массы первого и второго газов.
Поскольку масса вещества определяется по формуле
где ρ – плотность г аза,
то плотности различных газов при одинаковых условиях пропорциональны их молярным массам. На этом следствии из закона Авогадро основан простейший метод определения молярной массы веществ, находящихся в газообразном состоянии.
Закон Авогадро позволяет рассчитать плотность газа при нормальных условиях, на основании отношения молярной массы М к объему моля:
Из этого уравнения можно определить молярную массу газа:
Следствия из закона Авогадро
Из закона Авогадро вытекают два важных следствия.
Следствие 1 из закона Авогадро. Один моль любого газа при одинаковых условиях занимает одинаковый объем.
В частности при нормальных условиях объем одного моля идеального газа равен 22,4 л. Этот объем называют молярным объемом
Следствие 2 из закона Авогадро. Отношение масс одинаковых объемов двух газов есть величина постоянная для данных газов. Эта величина называется относительной плотностью
Объединенный газовый закон
Реальные газы обычно хорошо подчиняются законам идеальных газов при давлениях, менее или несущественно превышающих атмосферное, и при температурах близких к температуре окружающей среды или более высоких. Поэтому законы идеальных газов находят широкое применение в природопользовании, в частности при расчетах количества, состава газов, выделяющихся при горении, и в других технологических процессах, сопровождаемых их образованием.
Объединенный газовый закон можно также записать в другой форме:
Точное значение постоянной в правой части этого уравнения зависит от количества газа. Если количество газа равно одному молю (см. гл. 4), то соответствующая постоянная обозначается буквой R и называется молярная газовая постоянная, или просто газовая постоянная. Если давление выражено в атмосферах, постоянная R имеет значение
Объединенный газовый закон для одного моля газа приобретает вид:
где Vm- объем одного моля газа. Для п молей газа получается уравнение:
В такой форме объединенный газовый закон называется уравнением состояния идеального газа. Уравнение состояния это уравнение, связывающее между собой параметры состояния газа-давление, объем и температуру.
Газ, который полностью подчиняется уравнению состояния идеального газа, называется идеальный газ. Такой газ не существует в действительности. Реальные газы хорошо подчиняются уравнению состояния идеального газа при низких давлениях и высоких температурах. Отклонения в поведении реальных газов от предписываемш уравнением состояния идеального газа подробно обсуждаются ниже.
Вычисление относительной молекулярной массы с помощью уравнения состояние идеального газа. Уравнение состояния идеального газа позволяет проводить прямые вычисления относительной молекулярной массы газа M1. Введем понятие относительной молекулярной массы, основываясь на уже знакомом нам (из гл. 1) определении относительной атомной массы A1. Для газа, состоящего из простых молекул, относительная молекулярная масса представляет собой сумму относительных атомных масс всех атомов, входящих в молекулу. Например, для диоксида углерода.
где n-количество вещества в молях (т.е. число молей данного вещества), т-масса вещества в граммах, a M-его молярная масса.
Подстановка полученного выражения для п в уравнение состояния идеального газа (4) дает:
Это уравнение позволяет, зная массу и объем газа при определенных температуре и давлении, вычислить его молярную массу М. А поскольку
M = M (г/моль), то полученный результат непосредственно дает относительную молекулярную массу М.
Уравнение Клайперона—Менделеева (для идеального газа)
n – число молей газа;
P – давление газа, Па;
T – абсолютная температура газа, К;
R – универсальная газовая постоянная 8,314 Дж/моль×K.
Если объём газа выражен в литрах, то уравнение Клапейрона-Менделеева записывается в виде:
Из уравнения Клапейрона-Менделеева следует три закона: