Что такое перегрузка двигателя
Перегрузка электродвигателя причины и способы защиты
Подписка на рассылку
Одной из главных причин выхода электродвигателей из строя является разрушение изоляции, приводящее к короткому замыканию. Лаковое покрытие трескается вследствие высокой температуры. Каждый двигатель просчитывается по теплоотдаче, имея определенный запас прочности, но возникающая перегрузка электродвигателя приводит к перегреву обмотки. Она может быть технологического происхождения или быть следствием аварии. Перегрев изоляции на 10 градусов свыше предельно допустимого значения сократит срок эксплуатации в два раза. По этой причине обязательно должна работать схема защиты электродвигателя от перегрузок, способная обеспечить бесперебойную эксплуатацию оборудования. Не обязательно это должно быть реле, установленное непосредственно на перегретом двигателе. Чаще всего защита устанавливается на оборудовании, используемом в промышленности. Отключат она те узлы и агрегаты, которые стали причиной перегрузки двигателя. Например, на мельницах стоит защита, отключающая подачу сырья, избыток которого может стать причиной завала рабочего органа.
Основные причины перегрузки электродвигателя
Технологическая перегрузка электродвигателя является следствием увеличения момента на валу, который возникает периодически. Происходит это по причине кратковременного увеличения сопротивления. Такие перегрузки у двигателей с большой тепловой инерцией редко вызывают выход из строя обмотки, но если они возникают регулярно и продолжительность их увеличивается, то перегрев двигателя может нести опасность. В этой ситуации обязательно должна срабатывать защита электродвигателя от перегрузок. У некоторых машин возникает часто противоположная ситуация: небольшие нагрузки постоянны и длительны по времени. Они разогревают обмотку до значений, близких к предельным. Так как электродвигатель имеет запас прочности, то подобные режимы могут быть безопасными и защита должна быть настроена соответствующим образом. Аварийная перегрузка электродвигателя может возникнуть по следующим причинам:
Часто перегрузка становится следствием нарушения технологического процесса, например, песок, перемещаемый транспортером, имеет гораздо более высокую влажность и, соответственно, большой вес. В результате имеет место длительное увеличение нагрузки на рабочий орган, которое может привести к перегрузке двигателя. Перегрузочная характеристика двигателяПревышение предельной температуры, которую способна выдерживать обмотка, на 50% снижает срок эксплуатации двигателя в десятки раз. Именно поэтому у каждого агрегата есть своя схема защиты, учитывающая не только его технологические особенности. Одной из важных характеристик, на которой она базируется, является перегрузочная характеристика двигателя, которая определяется длительностью и величиной такого параметра, как допустимая перегрузка электродвигателя. Особенно важна точность ее расчета для силовых агрегатов, используемых в промышленности и испытывающих значительную по продолжительности нагрузку. Зависит допустимая перегрузка от класса изоляции обмотки двигателя. Традиционно используется изоляция класса А, максимальной рабочей температурой которой является 95ºС. Применение проводов с изоляцией класса В может повысить эту величину до 130ºС.
Токовые перегрузки и их влияние на работу и срок службы электродвигателей
Анализ повреждений асинхронных двигателей показывает, что основной причиной их выхода из строя является разрушение изоляции из-за перегрева.
С точки зрения нагрева изоляции большое значение имеют величина и длительность протекания токов, превышающих номинальное значение. Эти параметры зависят прежде всего от характера технологического процесса.
Перегрузки электродвигателя технологического происхождения
Перегрузки электродвигателя, вызванные периодическим увеличением момента на валу рабочей машины. В таких станках и установках мощность электродвигателя все время изменяется. Трудно заметить сколько-нибудь длительный промежуток времени, в течение которого ток оставался бы неизменным по величине. На валу двигателя периодически возникают кратковременные большие моменты сопротивления, создающие броски тока.
Такие перегрузки обычно не вызывают перегрева обмоток электродвигателя, имеющих сравнительно большую тепловую инерцию. Однако при достаточно большой длительности и неоднократной повторности создается опасный нагрев электродвигателя. Защита должна «различать» эти режимы. Она не должна реагировать на кратковременные толчки нагрузки.
В других машинах могут возникать сравнительно небольшие, но длительные перегрузки. Обмотки электродвигателя постепенно нагреваются до температуры, близкой к предельно допустимому значению. Обычно электродвигатель имеет некоторый запас по нагреву, и небольшие превышения тока, несмотря на продолжительность действия, не могут создать опасной ситуации. В этом случае отключение не обязательно. Таким образом, и здесь защита электродвигателя должна «различать» опасную перегрузку от неопасной.
Аварийные перегрузки электродвигателя
Перегрузки при длительном режиме работы с постоянной нагрузкой
Обычно электродвигатели выбирают с некоторым запасом по мощности. Кроме того, большую часть времени машины работают с недогрузкой. В результате ток двигателя часто значительно ниже номинального значения. Перегрузки возникают, как правило, при нарушениях технологии, поломках, заедании и заклинивании в рабочей машине.
Такие машины, как вентиляторы, центробежные насосы, ленточные и шнековые транспортеры, имеют спокойную постоянную или слабо изменяющуюся нагрузку. Кратковременные изменения подачи материала практически не влияют на нагрев электродвигателя. Их можно не принимать во внимание. Иное дело, если нарушения нормальных условий работы остаются на длительное время.
Большинство электроприводов имеет определенный запас мощности. Механические перегрузки прежде всего вызывают поломки деталей машины. Однако, принимая во внимание случайный характер их возникновения, нельзя быть уверенным, что при определенных обстоятельствах окажется перегруженным и электродвигатель. Например, это может случиться с двигателями шнековых транспортеров. Изменение физико-механических свойств транспортируемого материала (влажность, крупность частиц и т. д.) немедленно отражается на мощности, требуемой на его перемещение. Защита должна отключать электродвигатель при возникновении перегрузок, вызывающих опасный перегрев обмоток.
С точки зрения влияния длительных превышений тока на изоляцию следует различать два вида перегрузок по величине: сравнительно небольшие (до 50%) и большие (более 50%).
Действие первых проявляется не сразу, а постепенно, в то время как последствия вторых проявляются через короткое время. Если превышение температуры над допустимым значением невелико, то старение изоляции происходит медленно. Небольшие изменения в структуре изолирующего материала накапливаются постепенно. По мере возрастания температуры процесс старения значительно ускоряется.
При больших перегрузках (более 50%) изоляция быстро разрушается под действием высокой температуры.
Для анализа процесса нагрева воспользуемся упрощенной моделью двигателя. Повышение тока вызывает увеличение переменных потерь. Обмотка начинает нагреваться. Температура изоляции изменяется в соответствии с графиком на рисунке. Величина установившегося превышения температуры зависит от величины тока.
Перегрузочная характеристика электродвигателя (сплошная линия) и желаемая характеристика защиты (пунктирная линия)
Из приведенной характеристики можно сформулировать одно из основных требований к защите перегрузок, действующей в зависимости от тока. Она должна срабатывать в зависимости от величины перегрузки. Э дает возможность исключить ложные срабатывания при неопасных бросках тока, возникающие, например, при пуске двигателя. Защита должна срабатывать только при попадании в область недопустимых значений тока и длительности его протекания. Ее желаемая характеристика, показанная на рисунке пунктирной линией, должна всегда располагаться под перегрузочной характеристикой двигателя.
На работу защиты влияет ряд факторов (неточность настройки, разброс параметров и др.), в результате действия которых наблюдаются отклонения от средних значений времени срабатывания. Поэтому пунктирную кривую на графике следует рассматривать как некую среднюю характеристику. Для того чтобы в результате действия случайных факторов характеристики не пересеклись, что вызовет неправильное отключение двигателя, необходимо обеспечить определенный запас. Фактически приходится иметь дело не с отдельной характеристикой, а с защитной зоной, учитывающей разброс времени срабатывания защиты.
С точки зрения точного действия защиты электродвигателя желательно, чтобы обе характеристики были по возможности близки одна к другой. Это позволит избежать ненужное отключение при перегрузках, близких к допустимым. Однако при наличии большого разброса обеих характеристик достигнуть этого невозможно. Для того чтобы не попасть в зону недопустимых значений тока при случайных отклонениях от расчетных параметров, необходимо обеспечить определенный запас.
Характеристика защиты должна располагаться на некотором расстоянии от перегрузочной характеристики двигателя, чтобы исключить их взаимное пересечение. Но при этом получается проигрыш в точности действия защиты электродвигателя.
В области токов, близких к номинальному значению, появляется зона неопределенности. При попадании в эту зону нельзя точно сказать, сработает защита или нет.
Однако не следует преувеличивать недостаток токовой защиты. Дело в том, что двигатели имеют определенный запас по току. Номинальный ток электродвигателя всегда ниже того тока, при котором температура обмоток достигает допустимого значения. Его устанавливают, руководствуясь экономическими расчетами. Поэтому при номинальной нагрузке температура обмоток двигателя ниже допустимого значения. За счет этого и создается тепловой резерв двигателя, который в определенной степени компенсирует недостаток тепловых реле.
Многие факторы, от которых зависит тепловое состояние изоляции, имеют случайные отклонения. В связи с этим уточнения характеристик не всегда дают желаемый результат.
Перегрузки при переменном длительном режиме работы
Некоторые рабочие органы и механизмы создают нагрузку, изменяющуюся в больших пределах, как, например, в машинах для дробления, измельчения и других аналогичных операций. Здесь периодические перегрузки сопровождаются недогрузками вплоть до работы на холостом ходу. Каждое увеличение тока, взятое в отдельности, не приводит к опасному росту температуры. Однако, если их много и они повторяются достаточно часто, действие повышенной температуры на изоляцию быстро накапливается.
Процесс нагрева электродвигателя при переменной нагрузке отличается от процесса нагрева при постоянной или слабо выраженной переменной нагрузке. Различие проявляется как в ходе изменения температуры, так и в характере нагрева отдельных частей машины.
Вслед за изменениями нагрузки изменяется и температура обмоток. Из-за тепловой инерции двигателя колебания температуры имеют меньший размах. При достаточно высокой частоте нагрузки температуру обмоток можно считать практически неизменяющейся. Такой режим работы будет эквивалентен длительному режиму с постоянной нагрузкой. При низкой частоте (порядка сотых долей герца и ниже) колебания температуры становятся ощутимыми. Периодические перегревы обмотки могут сократить срок службы изоляции.
При больших колебаниях нагрузки с низкой частотой электродвигатель постоянно находится в переходном процессе. Температура его обмотки изменяется вслед за колебаниями нагрузки. Так как отдельные части машины имеют разные теплофизические параметры, то каждая из них нагревается посвоему.
Повторно-кратковременный режим работы можно отнести к наиболее неблагоприятному с точки зрения действия защиты. Периодическое включение в работу предполагает возможность кратковременной перегрузки двигателя. При этом величина перегрузки должна быть ограничена по условию нагрева обмоток не выше допустимого значения.
Защита, «следящая» за состоянием нагрева обмотки, должна получать соответствующий сигнал. Так как в переходных режимах ток и температура могут не соответствовать друг другу, то защита, действие которой основано на измерении тока, не может выполнять свою роль должным образом.
Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!
Подписывайтесь на наш канал в Telegram!
Просто пройдите по ссылке и подключитесь к каналу.
Не пропустите обновления, подпишитесь на наши соцсети:
13 распространенных причин неисправности электродвигателей
Что искать и как повысить время безотказной работы оборудования.
В промышленности электродвигатели используются повсеместно, они становятся технически все сложнее, что часто может осложнять поддержание их работы на пике эффективности. Важно помнить, что причины неисправностей электродвигателей и приводов не ограничиваются одной областью специализации: они могут быть как механического, так и электрического характера. И только нужные знания разделяют дорогостоящий простой и продление срока службы.
Наиболее частые неисправности электродвигателей — повреждения изоляции обмоток и износ подшипников, возникающие по множеству разных причин. Эта статья посвящена заблаговременному обнаружению 13 наиболее распространенных причин повреждений изоляции и выхода из строя подшипников.
Качество электроэнергии
1. Переходное напряжение
Переходные напряжения могут происходить из множества источников как на самом предприятии, так и за его пределами. Включение и выключение нагрузки поблизости, батареи конденсаторов коррекции коэффициента мощности или даже погодные явления — все это может создавать переходные напряжения в распределительных сетях. Эти процессы с произвольной амплитудой и частотой могут разрушать или повреждать изоляцию обмоток электродвигателей. Обнаружение источника переходных процессов может оказаться сложной задачей, поскольку они происходят нерегулярно, а их последствия могут проявляться по-разному. Например, переходные процессы могут проявиться в контрольных кабелях и необязательно нанесут вред непосредственно оборудованию, но они могут нарушить его работу.
Воздействие: повреждение изоляции обмотки электродвигателя приводит к раннему возникновению неисправностей и незапланированному простою.
Прибор для измерения и диагностики: трехфазный анализатор качества электроэнергии Fluke 435-II.
Критичность: высокая.
2. Асимметрия напряжений
Трехфазные распределительные сети часто питают однофазные нагрузки. Асимметрия сопротивления или нагрузки может быть причиной асимметрии напряжений на всех трех фазах. Возможные неисправности могут находиться в проводке электродвигателя, на клеммах электродвигателя, а также в самих обмотках. Эта асимметрия может вызывать перегрузки в каждой фазной цепи трехфазной сети. Одним словом, напряжение на всех трех фазах всегда должно быть одинаковым.
Воздействие: асимметрия является причиной сверхтоков в одной или нескольких фазах, которые вызывают перегрев и повреждение изоляции.
Инструмент для измерения и диагностики: трехфазный анализатор качества электроэнергии Fluke 435-II.
Критичность: средняя.
3. Гармонические искажения
Проще говоря, гармоники — это любые нежелательные дополнительные высокочастотные колебания напряжения или тока, поступающие на обмотки электродвигателя. Эта дополнительная энергия не используется для вращения вала электродвигателя, а циркулирует в обмотках и в конечном итоге приводит к потере внутренней энергии. Эти потери рассеиваются в виде тепла, которое со временем ухудшает изолирующие свойства обмоток. Некоторые гармонические искажения формы тока являются нормой для систем, питающих электронную нагрузку. Гармонические искажения можно измерить с помощью анализатора качества электроэнергии, проконтролировав величины токов и температуры на трансформаторах и убедившись, что они не перегружены. Для каждой гармоники утвержден приемлемый уровень искажений, который регламентируется стандартом IEEE 519-1992.
Воздействие: снижение эффективности электродвигателя приводит к дополнительным расходам и увеличению рабочей температуры.
Инструмент для измерения и диагностики: трехфазный анализатор качества электроэнергии Fluke 435-II.
Критичность: средняя.
Частотно-регулируемые приводы
4. Отражения на выходных ШИМ-сигналах привода
Частотно-регулируемые приводы используют широтно-импульсную модуляцию (ШИМ) для управления выходным напряжением и частотой питания электродвигателя. Отражения возникают из-за несогласованности полных сопротивлений источника и нагрузки. Несогласованность полных сопротивлений может произойти в результате неправильной установки, неправильного выбора компонентов или ухудшения состояния оборудования со временем. Пик отражения в цепи электропривода может достигать уровня напряжения шины постоянного тока.
Воздействие: повреждение изоляции обмотки электродвигателя приводит к незапланированному простою.
Прибор для измерения и диагностики: Fluke 190-204 ScopeMeter®, 4-канальный портативный осциллограф с высокой частотой выборки.
Критичность: высокая.
5. Среднеквадратичное отклонение тока
По своей сути среднеквадратичное отклонение тока — это паразитные токи, циркулирующие в системе. Среднеквадратичное отклонение тока образуется как результат частоты сигнала, уровня напряжения, емкости и индуктивности в проводниках. Эти циркулирующие токи могут выйти через системы защитного заземления, вызывая ложное размыкание или, в некоторых случаях, нагревание обмотки. Среднеквадратичное отклонение тока можно обнаружить в проводке электродвигателя, это сумма тока с трех фаз в любой момент времени. В идеальной ситуации сумма этих трех токов должна равняться нулю. Иными словами, обратный ток от привода будет равняться току, поступающему на привод. Среднеквадратичное отклонение тока можно также представить в виде асимметричных сигналов в нескольких проводниках, имеющих емкостную связь с заземляющим проводником.
Воздействие: произвольное размыкание цепи из-за прохождения тока по защитному заземлению.
Прибор для измерения и диагностики: изолированный 4-канальный портативный осциллограф Fluke 190-204 ScopeMeter с широкополосными (10 кГц) токовыми клещами (Fluke i400S или аналогичные).
Критичность: низкая.
6. Рабочие перегрузки
Перегрузка электродвигателя возникает, когда он работает под повышенной нагрузкой. Основными признаками перегрузки электродвигателя являются чрезмерное потребление тока, недостаточный крутящий момент и перегрев. Избыточное тепловыделение электродвигателя является главной причиной его неисправности. При перегрузке электродвигателя его отдельные компоненты — включая подшипники, обмотки и другие части — могут работать нормально, но электродвигатель будет перегреваться. Поэтому начинать поиски неисправности следует с проверки именно перегруженности электродвигателя. Поскольку 30 % всех неисправностей электродвигателей происходят именно из-за их перегруженности, важно понимать, как измерять и определять перегрузку электродвигателя.
Воздействие: преждевременный износ электрических и механических компонентов электродвигателя, ведущий к необратимому выходу из строя.
Инструмент для измерения и диагностики: цифровой мультиметр Fluke 289.
Критичность: высокая.
Механические причины
7. Нарушение центрирования
Нарушение центрирования возникает при неправильном выравнивании вала привода относительно нагрузки или смещении передачи, которая их соединяет. Многие специалисты считают, что гибкое соединение устраняет и компенсирует смещение, тем не менее, гибкое соединение защищает от смещения только саму передачу. Даже с гибким соединением неотцентрированный вал будет передавать повреждающие циклические усилия по своей длине на электродвигатель, вызывая повышенный износ электродвигателя и увеличивая фактическую механическую нагрузку. Кроме того, нарушение центрирования может быть причиной вибрации валов как нагрузки, так и электропривода. Существует несколько типов нарушения центрирования:
Влияние: преждевременный износ механических компонентов привода, вызывающий преждевременные неисправности
Влияние: преждевременный износ механических компонентов привода, вызывающий преждевременные неисправности
Прибор для измерения и диагностики: лазерный инструмент для центрирования вала Fluke 830
Критичность: высокая
8. Дисбаланс вала
Дисбаланс — это состояние вращающейся детали, когда центр масс расположен не на оси вращения. Иными словами, когда центр тяжести находится где-то на роторе. Хотя устранить дисбаланс двигателя полностью невозможно, можно определить, не выходит ли он за рамки приемлемых значений, и предпринять меры для исправления ситуации. Дисбаланс может быть вызван различными причинами:
Тестер или анализатор вибрации поможет определить, сбалансирован вращающийся механизм или нет.
Влияние: преждевременный износ механических компонентов привода, вызывающий преждевременные неисправности.
Прибор для измерения и диагностики: измеритель вибрации Fluke 810.
Критичность: высокая.
9. Расшатанность вала
Расшатанность возникает из-за чрезмерного зазора между деталями. Расшатанность может возникать в нескольких местах:
Как и в случаях со всеми другими источниками вибрации, важно уметь определить расшатанность и устранить проблему, избежав убытков. Определить наличие расшатанности во вращающейся машине можно с помощью тестера или анализатора вибрации.
Bлияние: ускоренный износ вращающихся компонентов, вызывающий механические неисправности
Прибор для измерения и диагностики: измеритель вибрации Fluke 810
Критичность: высокая
10. Износ подшипника
Неисправный подшипник имеет повышенное трение, сильнее нагревается и имеет пониженную эффективность из-за механических проблем, проблем со смазкой или износа. Неисправность подшипника может быть следствием различных факторов:
Когда неисправности подшипников начинают проявляться, это также вызывает каскадный эффект, ускоряющий выход двигателя из строя. 13 % неисправностей двигателя вызваны неисправностями подшипников, и более 60 % механических неисправностей на предприятии вызваны износом подшипников, поэтому важно знать, как устранять эти потенциальные проблемы.
Влияние: ускоренный износ вращающихся компонентов приводит к выходу подшипников из строя
Прибор для измерения и диагностики: измеритель вибрации Fluke 810
Критичность: высокая
Факторы, связанные с неправильной установкой
11. Неплотно прилегающее основание
Неплотное прилегание основания Угловое неплотное прилегание основания Причина в основании Неплотное прилегание вызывается неровным монтажным основанием двигателя или приводимого в движение компонента или неровной монтажной поверхностью, на которой располагается монтажное основание. Данное состояние может создать неприятную ситуацию, при которой затяжка монтажных болтов на самом деле привносит новые нагрузки и нарушение центрирования. Неплотное прилегание опоры часто возникает между двумя диагонально расположенными крепежными болтами, как, например, в случае с неровным стулом или столом, которые раскачиваются по диагонали. Существуют два типа неплотного прилегания основания:
В обоих случаях неплотное прилегание основания может быть вызвано неровностями в монтажной опоре механизма или в монтажном основании, на котором находится опора. В любом случае найти и устранить неплотное прилегание необходимо до центрирования вала. Качественный лазерный инструмент для центрирования может определить неплотное прилегание основания данной вращающейся машины.
Влияние: нарушение центрирования компонентов механического привода
Прибор для измерения и диагностики: лазерный инструмент для центрирования вала Fluke 830
Критичность: средняя
12. Напряжение трубной обвязки
Натяжением трубной обвязки называется состояние, при котором новые нагрузки, натяжения и силы, действующие на остальное оборудование и инфраструктуру, передаются назад на двигатель и привод, приводя к нарушению центрирования. Наиболее часто встречающимся примером этого являются простые схемы с электродвигателем/насосом, когда что-то оказывает воздействие на трубопроводы, например:
Эти силы могут оказывать угловое или смещающее воздействие, что в свою очередь приводит к смещению вала двигателя/насоса. По этой причине важно проверять центрирование машины не только во время установки — точное центрирование является временным состоянием и может изменяться с течением времени.
Влияние: нарушение центрирования вала и последующие нагрузки на вращающиеся компоненты, приводящие к преждевременным неисправностям.
Прибор для измерения и диагностики: лазерный инструмент для центрирования вала Fluke 830
Критичность: низкая
13. Напряжение на валу
Когда напряжение на валу электродвигателя превышает изолирующие характеристики смазки подшипника, происходит пробой на внешний подшипник, что вызывает точечную коррозию и образование канавок на дорожке качения подшипника. Первыми признаками проблемы являются шум и перегрев, возникающие по мере того, как подшипники теряют первоначальную форму, а также появление металлической крошки в смазке и увеличение трения подшипника. Это может привести к разрушению подшипника уже через несколько месяцев работы электродвигателя.
Неисправность подшипника — это дорогостоящая проблема как с точки зрения восстановления электродвигателя, так и с точки зрения простоя оборудования, поэтому предотвращение этого посредством измерения напряжения на валу и тока в подшипниках является важной частью диагностики. Напряжение на валу присутствует только тогда, когда на двигатель подается питание, и он вращается. Угольная щетка, устанавливаемая на щуп, позволяет измерять напряжение на валу при вращении электродвигателя.
Влияние: дуговые разряды на поверхности подшипника вызывают точечную коррозию и образование канавок, что в свою очередь приводит к чрезмерной вибрации и последующей неисправности подшипника.
Прибор для измерения и диагностики: изолированный 4-канальный портативный осциллограф Fluke-190-204 ScopeMeter, щуп AEGIS с угольными щетками для измерения напряжения на валу.
Критичность: высокая.
Четыре стратегии для достижения успеха
Системы управления электродвигателями используются в важных процессах на заводах. Поломка оборудования может привести к большим финансовым потерям, связанным как с потенциальной заменой электродвигателя и его деталей, так и с простоем систем, зависящих от данного электродвигателя. Обеспечивая обслуживающих инженеров и техников необходимыми знаниями, определяя приоритеты работ и проводя профилактическое обслуживание для контроля оборудования и устранения трудно обнаруживаемых проблем, зачастую можно избежать неисправностей, вызванных рабочими нагрузками, и сократить потери от простоя.
Существуют четыре ключевые стратегии для устранения или предотвращения преждевременных поломок электродвигателя и вращающихся деталей: