Что такое перенос влаги
Испарение
Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).
Испарение: что это за процесс
Процесс перехода из жидкого состояния в газообразное называется парообразованием. У этого процесса есть две разновидности: испарение и кипение.
Например, мы заварили себе горячий чай. Над чашкой мы точно увидим пар, так как вода только что поучаствовала в процессе кипения.
Подождите-ка, мы ведь только что сказали, что кипение и испарение — разные вещи. Это действительно так, при этом эти два процесса могут происходить параллельно.
Испарение может происходить и без кипения, просто тогда оно не будет для нас заметно. Например, вода в озере испаряется, хотя мы этого и не замечаем. Кипение по сути своей — это интенсивное испарение, которое вызвали внешними условиями — доведя вещество до температуры кипения.
Если нет каких-то внешних воздействий, испарение жидкостей происходит крайне медленно. Молекулы покидают жидкость из-за явления диффузии.
Интересно то, что направление тепловых потоков при испарении может идти в разной последовательности и комбинациях:
Подытожим, чтобы не запутаться: в чем главная разница между испарением и кипением:
Испарение | Кипение |
При любой температуре, с поверхности жидкости | При определенной температуре, во всем объеме жидкости |
Испарение на уровне молекул
Давайте вспомним об особенностях разных агрегатных состояний вещества.
Агрегатные состояния
Свойства
Расположение молекул
Расстояние между молекулами
Движение молекулы
сохраняет форму и объем
в кристаллической решетке
соотносится с размером молекул
колеблется около своего положения в кристаллической решетке
близко друг к другу
малоподвижны, при нагревании скорость движения молекул увеличивается
занимают предоставленный объем
больше размеров молекул
хаотичное и непрерывное
Из этой таблицы видно, что молекулы в жидкостях находятся близко друг другу, но хаотично, то есть не имеют кристаллической решетки, как в твердых телах. Эти молекулы движутся (причем, чем выше температура, тем быстрее движутся) и в ходе движения сталкиваются. Столкновения меняют направление и скорость движения — из-за этого молекулы иногда быстро устремляются к поверхности жидкости и вылетают из нее. Это и есть испарение.
В предыдущем абзаце мы не случайно заметили, что молекулы движутся быстрее при увеличении температуры — ведь из-за этого испарение идет интенсивнее. В этом случае происходит охлаждение: нагретую жидкость уже покинули все самые быстрые молекулы и температура самой жидкости понижается.
Интенсивность испарения
Интенсивностью испарения называют количество воды, которое испаряется с поверхности площадью 1 см2 за одну секунду.
Интенсивность испарения зависит от следующих факторов:
Скорость испарения — количество жидкости, которая испаряется со свободной поверхности в единицу времени.
Интенсивность испарения — количество жидкости, которая испаряется с единицы площади поверхности в единицу времени.
По сути, это два очень близких друг к другу понятия, поэтому разница будет лишь в величинах и единицах измерения, а суть процесса отражают обе формулировки.
Насыщенный пар
Процесс испарения напрямую связан с круговоротом воды в природе. Вода, испаряясь, превращается в водяной пар и поднимается вверх, где происходит конденсация пара, образуются облака, и вода возвращается на землю в виде осадков.
Вследствие конденсации водяного пара, который живет в воздухе, образуются облака и туман. По этой же причине холодное стекло запотевает, соприкасаясь с теплым воздухом.
На рисунке — процессы испарения и конденсации в плотно закрытом сосуде, когда жидкость и пар находятся в динамическом равновесии. Это значит, что одновременно конденсируется и испаряется одинаковое количество вещества.
Влажность воздуха говорит нам о том, сколько в воздухе содержится водяного пара. Но бесконечное количество пара в воздух не запихнешь. Поэтому, во-первых, его там очень мало, а во-вторых, при избыточном количестве водяного пара происходит конденсация — это когда образуется роса.
Но если мы тот же воздух поместим в помещение с температурой +20 градусов, то в него может испариться уже до 17 миллиграмм пара. Значит его влажность будет равна 1/17 = 6%. Человеку комфортнее всего находиться при значении влажности 40-50%.
Попробуйте курсы подготовки к ЕГЭ по физике с опытным преподавателем в онлайн-школе Skysmart!
Испарение в жизни
И действительно: чего в этой жизни только не испаряется — мы встречаемся с этим каждый день. Давайте узнаем, зачем этот процесс вообще нужен, и как люди научились извлекать из него пользу.
Испарение в организме человека и животных
Выше мы разбирали вопрос, почему если облиться теплой водой, нам все равно станет холодно. По этому же принципу работает ощущение холода после того, как мы вспотели — в какой-то момент нам становится холодно.
Само потоотделение — важный процесс терморегуляции организма. Если мы достигаем высокой температуры (из-за внешних воздействий или же из-за болезни), то организм стремится себя охладить, чтобы не умереть из-за превращения белков в нашем организме в яичницу.
Пот выделяется через поры кожи, а затем испаряется — все это позволяет нашему организму быстро избавиться от лишней энергии, охладить тело и нормализовать температуру.
При высокой влажности холод и тепло воспринимаются более чувствительно. Это связано с потливостью человека при высокой температуре. Такой механизм помогает нам бороться с жарой и «скинуть» избыточное тепло, но при высокой влажности пот не может испариться.
При низкой влажности происходит нечто похожее. Как ни странно, в мороз мы тоже потеем (намного меньше, но все-таки это происходит). Если влажность на улице низкая, то пот испарится из-под куртки и нам будет комфортно. А при высокой влажности — он там задержится и будет проводить тепло наружу, забирая у нас драгоценные Джоули тепла. Поэтому зимой в Петербурге холоднее, чем в Москве.
У животных этот механизм работает схожим образом. Но, например, собакам испарения с кожи недостаточно, поэтому они часто открывают пасть, высовывают язык и дышат порой ну очень смешно 🐶
Именно гортань и язык собаки идеально подходят для испарения влаги и охлаждения тела животного.
Испарение у растений
Удивительно, но у растений механизм испарения тоже работает схожим образом. Растения очень любят воду, поэтому домашние растения мы поливаем, а в пустынях их просто нет.
Ту воду, которую цветы поглотили, они могут испарять, чтобы не перегреться под жарким солнцем. Да, вода нужна, чтобы растения питались, но в жаркие дни еще и для температурной саморегуляции. Поэтому не забывайте поливать цветы, а в очень жаркие дни делайте это еще интенсивнее.
Испарение в природе и окружающей среде
Процесс испарения напрямую связан с круговоротом воды в природе. Именно круговоротом воды в природе обеспечивается жизнь на Земле — так как влага разносится по всему миру, растения в дикой природе способны жить без наших попыток полить большую пальму из леечки.
Испарение воды с поверхности рек, озер, морей и океанов создает дождевые тучи, которые затем, проливаясь дождем, поливают растения и деревья. Многие дождь не любят, мол, он мокрый, мерзкий и затекает в ботинки, но он очень нужен засушливым регионам — Северной Африке или Центральной Индии, которые часто страдают от засухи.
Испарение в промышленности и быту
С бытом совсем все просто: мы сушим вещи, готовим еду, покупаем увлажнители воздуха или размазываем разлитую лужу по полу.
В случае с промышленностью для нас все не так очевидно. Промышленная техника, работающая на основе испарения, разрабатывается по схожей схеме: в ней всегда максимально увеличена площадь поверхности жидкости, чтобы испарение шло интенсивно.
Например, испаритель, изображенный на схеме, состоит из совокупности соединенных между собой испарителей. В основе его действия — пар, полученный в одной ступени, который используют в качестве источника тепла для следующей ступени. По мере того, как температура уменьшается от одной ступени к другой, вакуум увеличивается, так что температура кипения становится ниже и испарение поддерживается. Он предназначен для того, чтобы очистить воду от отходов.
Взаимоотношение вод атмосферы, суши и Мирового океана
ГЛАВА 3. КРУГОВОРОТ ВОДЫ В ПРИРОДЕ
§ 7. Взаимоотношение вод атмосферы, суши и Мирового океана
Воды земного шара находятся в постоянном взаимодействии и в процессе круговорота связаны воедино. Под влиянием солнечной радиации с поверхности океанов, морей, рек, озер, ледников, снежного покрова и льда, почвы и растительности ежегодно испаряется 525 тыс. км 3 воды. Испарение с поверхности океанов и морей — основной источник поступления влаги в атмосферу. Большая часть этой влаги выпадает в виде атмосферных осадков непосредственно на поверхность океанов и морей, совершая так называемый малый круговорот. Меньшая ее доля участвует в большом круговороте, вступая в сложные взаимодействия с земной поверхностью. Большой круговорот включает в себя ряд местных, внутренних влагооборотов и представляет собой многообразный процесс перемещения, расходования и возобновления влаги на земной поверхности, в недрах земли и в атмосфере. Атмосферные осадки, орошая поверхность материков, частично просачиваются в почву, частично стекают по склонам и образуют ручьи, реки, озера, болота. Поглощенная почвой вода частью испаряется непосредственно или транспирируется растениями, частью просачивается вглубь и формирует подземные воды. Последние участвуют в питании рек, озер или достигают моря подземными путями.
Круговорот воды в природе
Влага, поступившая в атмосферу в результате испарения с поверхности суши и ее водоемов, дополняет то количество ее, которое поступает с океана. Воздушными течениями она переносится в глубь материка и, выпадая в виде дождя и снега, орошает территории, более или менее удаленные от океана. Выпавшие осадки вновь испаряются, просачиваются, стекают по земной поверхности. Сток, воды рек, впадающих в океан, завершает большой круговорот воды на земном шаре. Рассмотренный процесс круговорота — лишь упрощенная схема. Для наглядности она представлена на рис. 2.
Рис. 2. Схема круговорота воды.
1 — осадки, 2 — водопроницаемые породы, 3 — слабопроницаемые породы, 4 — не проницаемые породы, 5 — источник, 6 — направление движения воды и водяных паров.
В действительности явление круговорота значительно сложнее, и не случайно до последнего времени ему уделяется большое внимание. В. работах О. А. Дроздова, М. И. Львовича, А. М. Алпатьева, Г. П. Калинина раскрываются новые его черты и особенности.
Круговорот воды состоит из нескольких звеньев, главные из которых атмосферное, океаническое, материковое.
М. И. Львович ввел понятие «активность водообмена», характеризующее продолжительность смены всего объема воды данной части гидросферы в процессе круговорота воды.
Круговорот воды в атмосфере
Круговорот воды в океане
Для океанического звена круговорота характерно непрерывное восстановление запасов влаги в атмосфере путем испарения. С поверхности океанов в атмосферу поступает 86,0% общего количества испарившейся влаги на земном шаре. По отношению к объему воды в океане это количество невелико; общая продолжительность смены воды океана в процессе круговорота, по-видимому, около 3000 лет.
Круговорот воды на материке и в почве
Материковое звено по активности участия его вод в круговороте отличается большим разнообразием. В этом звене М. И. Львович в свою очередь выделяет почвенное, литогенное, речное, озерное, ледниковое и биологическое звенья.
Почва осуществляет обмен влагой как с атмосферой, реками и озерами, так и с недрами земли — литогенным звеном. Обмен этот происходит путем просачивания, стекания по поверхности, испарения и транспирации сравнительно быстро, в пределах одного года.
Степень подвижности воды в литогенном звене неодинакова. Наиболее активно участвуют в общем круговороте воды подземные воды, залегающие вблизи земной поверхности до уровня дренирования их речной сетью и питающие реки. Продолжительность их обмена — от месяца до нескольких лет. С удалением от земной поверхности, на больших глубинах, подземные воды становятся все менее подвижны и период их водообмена, по Г. П. Калинину, достигает нескольких миллионов лет, что свидетельствует о крайне замедленном водообмене, практически об его отсутствии. Это в основном относится к рассолам.
Реки возвращают в океан воды, которые поступили в процессе круговорота на сушу. Обмен воды, содержащейся в руслах рек, происходит весьма быстро: в среднем, по данным разных авторов, за 12—25 суток. Но если к объему русловых вод прибавить объем проточных озер, то активность водообмена значительно уменьшится и его продолжительность возрастет до трех лет.
В ледниках как бы законсервированы большие массы воды в виде льда. Движение льда медленное, поэтому продолжительность обмена воды (льда) в ледниках колеблется, по разным данным, от 8300 до 15 000 лет.
Анализ активности водообмена раскрывает весьма интересную и важную черту ресурсов пресных вод — их относительно быстрое возобновление. Сравнительная оценка активности дается следующими данными (нижний предел по М. И. Львовичу, верхний — по Г. П. Калинину):
Полное возобновление запасов (число лет)
Мировой океан — 3000
Подземные воды — 5000
Ледник — 8300-15000
Почвенная влага — 1
Реки и озера — 3
Реки — 0,033-0,069
Пары атмосферы — 0,027
Вся гидросфеpa — 2700
Таким образом, круговорот воды в природе, совершающийся под влиянием солнечного тепла и силы тяжести, объединяет несколько геофизических процессов, происходящих в его звеньях,— это испарение, перенос влаги в атмосфере, ее конденсация и выпадение осадков, просачивание их в почву и горные породы, сток поверхностных и подземных вод.
Биологические процессы в круговороте воды
Особую роль в круговороте воды занимают биологические процессы— транспирация и фотосинтез. В среднем расход воды на транспирацию приблизительно равен 30 000 км 3 в год (по Львовичу). Эта величина превышает 40% суммарного испарения со всей суши и составляет 7% испарения с поверхности земного шара, включая океан.
В процессе фотосинтеза растения поглощают вместе с углеродом воздуха водород, входящий в состав воды, разлагая таким образом ее на составные части. По А. А. Ничипоровичу, этот процесс можно схематизировать в следующем виде:
Области внутреннего стока
Большая область внутреннего стока — Арало-Ксспийская, К ней принадлежат бассейны рек Волги, Урала, Куры, Сырдарьи, Амударьи и др. К бессточным же областям относятся пустыни Сахара, Аравийская и Центрально-Австралийская.
Источник: Общая гидрология, Гидрометеоиздат, Ленинград, 1973
Круговорот воды в природе
Что такое круговорот воды?
Круговорот воды на Земле – природный процесс, представляющий собой беспрерывный водный обмен между атмосферой, литосферой и Мировым океаном. В процессе этого обмена водная масса меняет агрегатное состояние: из жидкой или твердой превращается в газообразную, и обратно. Она в ходе своего перемещения забирает и переносит огромное количество органических соединений и минеральных элементов, необходимых для поддержания жизни на планете.
Наибольший объем водной массы сосредоточен в океанах (97,5%), поэтому большая часть природной жидкости имеет в составе соли. Остальные 2,5% – пресные источники, из них:
Вода пребывает в беспрерывном движении, причем ее объем на планете – величина постоянная. Однако нахождение ее в различных агрегатных состояниях меняется в течение истории Земли. Много веков назад водных источников на планете было гораздо меньше, поскольку основная водная масса была сосредоточена в ледниках. Еще 20 тысячелетий назад по ледниковому покрову, разделявшему Берингов пролив, из Аляски можно было свободно перебраться в Азию.
Как происходит круговорот воды?
Процесс сложный, состоит из нескольких этапов. Движущий фактор – солнечное излучение.
В теплый сезон нагретая Солнцем вода принимает газообразное состояние – становится паром. Из испаряющейся водной массы отфильтровываются соли. То есть накапливающийся в атмосфере пар является пресным. По мере поднятия в атмосферные слои пар сталкивается с холодными воздушными потоками, в результате формируются облака. Выпадающие из них осадки наполняют океан.
То есть этапы круговорота воды, если говорить упрощенно, следующие:
Такой процесс наблюдается обычно над океанической поверхностью. Но он сложнее, если облака скапливаются над сушей, и осадки проливаются не в океан, а на земную поверхность. Сточные воды, наполняющие поверхностные и подземные источники, проходят длительный путь к океану. В процессе движения происходит процесс, обратный опреснению пара в атмосфере: реки и подземные водотоки забирают с грунта минеральные частицы, выносят их в моря и океаны. Там вода испаряется, а соли остаются. Так реки поддерживают соленость Мирового океана.
Планетарная циркуляция воды включает несколько процессов, являющихся ее звеньями. Следует подробнее рассмотреть схему мирового круговорота воды:
Основными элементами круговорота воды являются:
Жидкость, постоянно меняясь, выделяет и поглощает энергию. Живые организмы, в том числе люди, тоже участвуют в круговороте воды, употребляя и выделяя ее, используя для своих нужд. Влияние человека на процесс усиливается, причем имеет преимущественно негативный характер. Круговорот нарушается промышленным использованием воды, сооружением водохранилищ и плотин, осушением болот, введением оросительных систем.
В верхних грунтовых слоях корневая система растений всасывает часть воды, необходимой для метаболизма. Незначительное количество накопившейся в растительных тканях жидкости переходит в организм растительноядных животных и человека. Но большая часть жидкости участвует в процессе транспирации: поступает из почвы в корни, перемещается по каналам в тканях растения, испаряется через листья.
Часть воды, не поглощенная растениями, поступает дальше в почвенные слои, становится частью системы грунтовых вод, протекающих сквозь песок, гравий и прочие слагающие породы. На грунтовые источники приходится значимая часть запасов пресных вод на планете. Грунтовый источник рано или поздно соединяется с реками, озерами, другими поверхностными водными объектами. Незначительная часть грунтовых вод опускается в глубоко лежащие минеральные породы, где замуровывается на тысячи лет.
Движется природная вода с неодинаковой скоростью. Поверхностные водные массы перемещаются быстро, а подземные, находящиеся в зоне вечной мерзлоты и в глубинных океанических слоях – медленно. Период полной смены воды в разных природных объектах следующий:
Виды круговорота воды
Различают следующие типы процесса:
Значение круговорота воды в природе
Круговорот воды – один из самых значимых природных процессов, он связывает все планетарные оболочки, позволяет им полноценно функционировать. Без распределения воды по земному шару невозможно было бы существование жизни. Благодаря круговороту воды в биосфере переносятся важные для живых организмов минеральные элементы и органические вещества, формируются оптимальные климатические условия.
Роль циркуляции воды на планете заключается в:
Научные исследования показывают, что скорость круговорота с каждым годом увеличивается. Это ускорение отрицательно влияет на климатические условия на всей планете. Территории, находящиеся в жарком и сухом климате, становятся еще более засушливыми, а в регионах с влажным климатом растет количество осадков.
Большая Энциклопедия Нефти и Газа
Перенос влаги в промерзающих пористых телах ( почвы, грунты, строительные материалы) осуществляется посредством трех механизмов: диффузией пара, течением незамерзающих пленок воды по поверхности частиц, течением незамерзающих прослоек между льдом и твердой поверхностью. [1]
Перенос влаги в ограждающих конструкциях происходит аналогично теплопередаче. [2]
Перенос влаги происходит под действием перепада влагосодержа-ния ( изотермическая диффузия), перепада температуры VT ( термодиффузия), перепада общего давления V. Эти перепады создают термодинамические силы, обусловливающие потоки вещества. [3]
Перенос влаги происходит под действием перепада влагосодержа-ния ( изотермическая диффузия), перепада температуры VT ( термодиффузия), перепада общего давления VP ( фильтрация пара), перепада напряженности электрического поля V. Эти перепады создают термодинамические силы, обусловливающие потоки вещества. [4]
Перенос влаги (6.7) имеет свое собственное характерное время. [5]
Перенос влаги в капиллярно-пористом коллоидном теле происходит в направлении от высшего потенциала к низшему. [10]
Перенос влаги при изотермических условиях в однородном теле происходит в направлении от большего влагосодержания к меньшему. Однако при соприкосновении разнородных тел перенос может осуществляться в противоположном направлении. [11]
Перенос влаги происходит через соприкасающиеся слои материалов, часто со значительно различающимися влагосодержаниями, одновременно в условиях положительных и отрицательных температур. Показатели переноса тепла и особенно влаги в материалах при этом значительно изменяются. [12]
Перенос влаги (6.7) имеет свое собственное характерное время. [13]
Перенос влаги в промерзающих пористых телах ( почвы, грунты, строительные материалы) осуществляется посредством трех механизмов: диффузией пара, течением незамерзающих пленок воды по поверхности частиц, течением незамерзающих прослоек между льдом и твердой поверхностью. [14]
Перенос влаги внутри капиллярно-пористых материалов оказывается весьма сложным. [15]
перенос влаги
Смотреть что такое «перенос влаги» в других словарях:
СУШКА — удаление жидкости (чаще всего влаги воды, реже иных жидкостей, напр. летучих орг. р рителей) из в в и материалов тепловыми способами. Осуществляется путем испарения жидкости и отвода образовавшихся паров при подводе к высушиваемому материалу… … Химическая энциклопедия
Динамическая метеорология — теоретическая метеорология, раздел метеорологии, занимающийся теоретическим изучением атмосферных процессов в тропосфере и нижней стратосфере с использованием уравнений гидромеханики, термодинамики и теории излучения. За пределами Д. м.… … Большая советская энциклопедия
Зоны физико-географические — природные зоны суши, крупные подразделения географической (ландшафтной) оболочки Земли, закономерно и в определенном порядке сменяющие друг друга в зависимости от климатических факторов, главным образом от соотношения тепла и влаги. В… … Большая советская энциклопедия
Строительная теплотехника — строительная теплофизика, научная дисциплина, рассматривающая процессы передачи тепла, переноса влаги и проникновения воздуха в здания и их конструкции и разрабатывающая инженерные методы расчёта этих процессов; раздел строительной физики … Большая советская энциклопедия
Обезлесение — в Гватемале, пляж Чамперико … Википедия
Нанотехнология — (Nanotechnology) Содержание Содержание 1. Определения и терминология 2. : история возникновения и развития 3. Фундаментальные положения Сканирующая зондовая микроскопия Наноматериалы Наночастицы Самоорганизация наночастиц Проблема образования… … Энциклопедия инвестора
Климат — [от греч. klima (klimatos) наклон (земной поверхности к солнечным лучам)], один из определяющих экофакторов, многолетний режим погоды, присущий данной местности. Представление о климате складывается путем статистической обработки… … Экологический словарь
Сечура — Пустыня Сечура Пустыня Сечура (Перуанская пустыня) пустыня, расположенная на западном побережье Перу, в северо западной части Южной Америки. Занимает прибрежную полосу между Андами и Тихим океаном, протяженностью с севера на юг до… … Википедия
Пустыня Сечура — (Перуанская пустыня) пустыня, расположенная на западном побережье Перу, в северо западной части Южной Америки. Занимает прибрежную полосу между Андами и Тихим океаном, простираясь вглубь материка на 20 100 км. Площадь 188 735 км², почвы песчаные… … Википедия
Наньшань — Схема хребтов Наньшаня Горная система в Центральной Азии на территории Китая, состоящая из ряда высоких параллельных хребтов и разделяющих их межгорных впадин. Эти хребты простираются в основном с запада северо запада на восток юго восток.… … Энциклопедия туриста
Климат — (Climate) Основные типы климата, изменение климата, благоприятный климат, климат в странах мира Показатели климата, климат в Великобритании, климат в Италии, климат в Канаде, климат в Польше, климат в Украине Содержание Содержание Раздел 1.… … Энциклопедия инвестора