Что такое перевод чисел

Перевод чисел из одной системы счисления в другую онлайн

С помощю этого онлайн калькулятора можно перевести целые и дробные числа из одной системы счисления в другую. Дается подробное решение с пояснениями. Для перевода введите исходное число, задайте основание сисемы счисления исходного числа, задайте основание системы счисления, в которую нужно перевести число и нажмите на кнопку «Перевести». Теоретическую часть и численные примеры смотрите ниже.

Предупреждение

Перевод целых и дробных чисел из одной системы счисления в любую другую − теория, примеры и решения

Существуют позиционные и не позиционные системы счисления. Арабская система счисления, которым мы пользуемся в повседневной жизни, является позиционной, а римская − нет. В позиционных системах счисления позиция числа однозначно определяет величину числа. Рассмотрим это на примере числа 6372 в десятичном системе счисления. Пронумеруем это число справа налево начиная с нуля:

число6372
позиция3210

Тогда число 6372 можно представить в следующем виде:

Число 10 определяет систему счисления (в данном случае это 10). В качестве степеней взяты значения позиции данного числа.

Рассмотрим вещественное десятичное число 1287.923. Пронумеруем его начиная с нуля позиции числа от десятичной точки влево и вправо:

число1287.923
позиция3210-1-2-3

Тогда число 1287.923 можно представить в виде:

В общем случае формулу можно представить в следующем виде:

В таблице Таб.1 представлены числа в разных системах счисления.

Таблица 1
Система счисления
102816
0000
1111
21022
31133
410044
510155
611066
711177
81000108
91001119
10101012A
11101113B
12110014C
13110115D
14111016E
15111117F

Перевод чисел из одной системы счисления в другую

Для перевода чисел с одной системы счисления в другую, проще всего сначала перевести число в десятичную систему счисления, а затем, из десятичной системы счисления перевести в требуемую систему счисления.

Перевод чисел из любой системы счисления в десятичную систему счисления

С помощью формулы (1) можно перевести числа из любой системы счисления в десятичную систему счисления.

Пример 1. Переводить число 1011101.001 из двоичной системы счисления (СС) в десятичную СС. Решение:

Пример 2. Переводить число 1011101.001 из восьмеричной системы счисления (СС) в десятичную СС. Решение:

Что такое перевод чисел. Смотреть фото Что такое перевод чисел. Смотреть картинку Что такое перевод чисел. Картинка про Что такое перевод чисел. Фото Что такое перевод чиселЧто такое перевод чисел. Смотреть фото Что такое перевод чисел. Смотреть картинку Что такое перевод чисел. Картинка про Что такое перевод чисел. Фото Что такое перевод чиселЧто такое перевод чисел. Смотреть фото Что такое перевод чисел. Смотреть картинку Что такое перевод чисел. Картинка про Что такое перевод чисел. Фото Что такое перевод чиселЧто такое перевод чисел. Смотреть фото Что такое перевод чисел. Смотреть картинку Что такое перевод чисел. Картинка про Что такое перевод чисел. Фото Что такое перевод чисел

Пример 3. Переводить число AB572.CDF из шестнадцатеричной системы счисления в десятичную СС. Решение:

Что такое перевод чисел. Смотреть фото Что такое перевод чисел. Смотреть картинку Что такое перевод чисел. Картинка про Что такое перевод чисел. Фото Что такое перевод чиселЧто такое перевод чисел. Смотреть фото Что такое перевод чисел. Смотреть картинку Что такое перевод чисел. Картинка про Что такое перевод чисел. Фото Что такое перевод чиселЧто такое перевод чисел. Смотреть фото Что такое перевод чисел. Смотреть картинку Что такое перевод чисел. Картинка про Что такое перевод чисел. Фото Что такое перевод чиселЧто такое перевод чисел. Смотреть фото Что такое перевод чисел. Смотреть картинку Что такое перевод чисел. Картинка про Что такое перевод чисел. Фото Что такое перевод чиселЧто такое перевод чисел. Смотреть фото Что такое перевод чисел. Смотреть картинку Что такое перевод чисел. Картинка про Что такое перевод чисел. Фото Что такое перевод чисел

Перевод чисел из десятичной системы счисления в другую систему счисления

Для перевода чисел из десятичной системы счисления в другую систему счисления нужно переводить отдельно целую часть числа и дробную часть числа.

Пример 4. Переведем число 159 из десятичной СС в двоичную СС:

1592
158792
178392
138192
11892
1842
1422
021
0

Как видно из Рис. 1, число 159 при делении на 2 дает частное 79 и остаток 1. Далее число 79 при делении на 2 дает частное 39 и остаток 1 и т.д. В результате построив число из остатков деления (справа налево) получим число в двоичной СС: 10011111. Следовательно можно записать:

Пример 5. Переведем число 615 из десятичной СС в восьмеричную СС.

6158
608768
77298
481
1

При приведении числа из десятичной СС в восьмеричную СС, нужно последовательно делить число на 8, пока не получится целый остаток меньшее, чем 8. В результате построив число из остатков деления (справа налево) получим число в восьмеричной СС: 1147(см. Рис. 2). Следовательно можно записать:

Пример 6. Переведем число 19673 из десятичной системы счисления в шестнадцатеричную СС.

1967316
19664122916
912167616
13644
12

Далее рассмотрим перевод правильных десятичных дробей в двоичную СС, в восьмеричную СС, в шестнадцатеричную СС и т.д.

Для перевода правильных десятичных дробей (вещественное число с нулевой целой частью) в систему счисления с основанием s необходимо данное число последовательно умножить на s до тех пор, пока в дробной части не получится чистый нуль, или же не получим требуемое количество разрядов. Если при умножении получится число с целой частью, отличное от нуля, то эту целую часть не учитывать (они последовательно зачисливаются в результат).

Рассмотрим вышеизложенное на примерах.

Пример 7. Переведем число 0.214 из десятичной системы счисления в двоичную СС.

0.214
x2
00.428
x2
00.856
x2
10.712
x2
10.424
x2
00.848
x2
10.696
x2
10.392

Как видно из Рис.4, число 0.214 последовательно умножается на 2. Если в результате умножения получится число с целой частью, отличное от нуля, то целая часть записывается отдельно (слева от числа), а число записывается с нулевой целой частью. Если же при умножении получиться число с нулевой целой частью, то слева от нее записывается нуль. Процесс умножения продолжается до тех пор, пока в дробной части не получится чистый нуль или же не получим требуемое количество разрядов. Записывая жирные числа (Рис.4) сверху вниз получим требуемое число в двоичной системе счисления: 0. 0011011.

Следовательно можно записать:

Пример 8. Переведем число 0.125 из десятичной системы счисления в двоичную СС.

0.125
x2
00.25
x2
00.5
x2
10.0

Для приведения числа 0.125 из десятичной СС в двоичную, данное число последовательно умножается на 2. В третьем этапе получилось 0. Следовательно, получился следующий результат:

Пример 9. Переведем число 0.214 из десятичной системы счисления в шестнадцатеричную СС.

0.214
x16
30.424
x16
60.784
x16
120.544
x16
80.704
x16
110.264
x16
40.224

Следуя примерам 4 и 5 получаем числа 3, 6, 12, 8, 11, 4. Но в шестнадцатеричной СС числам 12 и 11 соответствуют числа C и B. Следовательно имеем:

Пример 10. Переведем число 0.512 из десятичной системы счисления в восьмеричную СС.

0.512
x8
40.096
x8
00.768
x8
60.144
x8
10.152
x8
10.216
x8
10.728

Пример 11. Переведем число 159.125 из десятичной системы счисления в двоичную СС. Для этого переведем отдельно целую часть числа (Пример 4) и дробную часть числа (Пример 8). Далее объединяя эти результаты получим:

Пример 12. Переведем число 19673.214 из десятичной системы счисления в шестнадцатеричную СС. Для этого переведем отдельно целую часть числа (Пример 6) и дробную часть числа (Пример 9). Далее объединяя эти результаты получим:

Источник

Перевод из любой системы счисления в любую

Для перевода чисел из одной системы счисления в любую другую, воспользуемся соответствующим алгоритмом. Важно заметить, что алгоритм перевода целых и дробных чисел будет отличаться.

Алгоритм перевода из произвольных чисел в любую систему счисления

Подробно о переводе в десятичную систему смотрите на этой странице, о переводе из десятичной в q-ричную- здесь. Для целостного понимания, разберем несколько примеров, но для начала вспомним алфавиты в популярных системах счисления:

ОснованиеНазваниеАлфавит
2Двоичная0, 1
8Восьмеричная0, 1, 2, 3, 4, 5, 6, 7
10Десятичная0, 1, 2, 3, 4, 5, 6, 7, 8, 9
16Шестнадцатеричная0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F

Перевод целого q-ичного числа в систему счисления с новым основанием

Пример 1: перевести число 1101100 из двоичной в троичную систему.

Как было сказано выше, необходимо сначала перевести число в десятичное, а полученный ответ в троиную. Решение будет выглядеть следующим образом:

Для перевода шестнадцатеричного числа 1a316 в десятичную систему, воспользуемся формулой:

11011002=1 ∙ 2 6 + 1 ∙ 2 5 + 0 ∙ 2 4 + 1 ∙ 2 3 + 1 ∙ 2 2 + 0 ∙ 2 1 + 0 ∙ 2 0 = 1 ∙ 64 + 1 ∙ 32 + 0 ∙ 16 + 1 ∙ 8 + 1 ∙ 4 + 0 ∙ 2 + 0 ∙ 1 = 64 + 32 + 0 + 8 + 4 + 0 + 0 = 10810

Полученное число 108 переведем из десятичной системы счисления в троичную. Для этого, осуществим последовательное деление на 3, до тех пор пока остаток не будет меньше чем 3.

Что такое перевод чисел. Смотреть фото Что такое перевод чисел. Смотреть картинку Что такое перевод чисел. Картинка про Что такое перевод чисел. Фото Что такое перевод чисел

Полученные остатки записываем в обратном порядке, таким образом:

Пример 2: перевести число 345 из шестеричной в восьмеричную систему.

Аналогично предыдущему примеру произведем вычисления:

3456=3 ∙ 6 2 + 4 ∙ 6 1 + 5 ∙ 6 0 = 3 ∙ 36 + 4 ∙ 6 + 5 ∙ 1 = 108 + 24 + 5 = 13710

Полученное число 137 переведем из десятичной системы счисления в восьмеричную. Для этого, осуществим последовательное деление на 8, до тех пор пока остаток не будет меньше чем 8.

Что такое перевод чисел. Смотреть фото Что такое перевод чисел. Смотреть картинку Что такое перевод чисел. Картинка про Что такое перевод чисел. Фото Что такое перевод чисел

Полученные остатки записываем в обратном порядке, таким образом:

Перевод любого дробного числа из одной системы в другую

Пример 3: перевести 231.20 из четверичной в семеричную систему счисления.

Общий смысл алгоритма перевода дробного числа, аналогичен алгоритму перевода целого, т.е. вначале переводим в десятичную, а затем в семеричную:

1. Для перевода числа 231.20 в десятичную систему воспользуемся формулой:

Обратите внимание! Формула перевода дробного числа в десятичную систему, очень похожа на формулу перевода целого, однако немного отличается.

2. Полученное число 45.5 переведем из десятичной системы счисления в семеричную. Т.к. полученное число содержит дробную часть, нам потребуется перевести вначале целую часть, а затем дробную. Таким образом необходимо:

2.1 Для того, чтобы перевести число 45 из десятичной системы счисления в 7-ую, необходимо осуществить последовательное деление на 7, до тех пор пока остаток не будет меньше чем 7.

Что такое перевод чисел. Смотреть фото Что такое перевод чисел. Смотреть картинку Что такое перевод чисел. Картинка про Что такое перевод чисел. Фото Что такое перевод чисел

Полученные остатки записываем в обратном порядке, таким образом:

2.2 Для перевода десятичной дроби 0.5 в 7-ую систему, необходимо выполнить последовательное умножение дроби на 7, до тех пор, пока дробная часть не станет равной 0 или пока не будет достигнута заданная точность вычисления. Получаем:

0.5 ∙ 7 = 3.5 (3)
0.5 ∙ 7 = 3.5 (3)
0.5 ∙ 7 = 3.5 (3)
0.5 ∙ 7 = 3.5 (3)
0.5 ∙ 7 = 3.5 (3)
0.5 ∙ 7 = 3.5 (3)
0.5 ∙ 7 = 3.5 (3)
0.5 ∙ 7 = 3.5 (3)
0.5 ∙ 7 = 3.5 (3)
0.5 ∙ 7 = 3.5 (3)
0.5 ∙ 7 = 3.5 (3)

Ответом станет прямая последовательность целых частей произведения. Т.е.

2.3. Осталось соединить переведенные части, таким образом:

Источник

Алгебраическая конкатенация и её возможности по переводу чисел между системами счисления

Что такое перевод чисел. Смотреть фото Что такое перевод чисел. Смотреть картинку Что такое перевод чисел. Картинка про Что такое перевод чисел. Фото Что такое перевод чисел

Алгебраическая конкатенация

Для начала, еще раз, распишем, что такое «Алгебраическая конкатенация».

Для примера возьмем число 10958 и представим его с операцией конкатенации, а именно: 1‖0‖9‖5‖8 = (((1 * 10 + 0) * 10 + 9) * 10 + 5) * 10 + 8.

Т.е операция «конкатенации» это: a ‖ b = (a * 10) + b; Но 10 — это «хитрое» число… Это число следующие за максимальным в системе счисления, ну т.е. это просто основание системы счисления т.е. общий вид такой:

a ‖ b = (a * m) + b, где m – основание системы счисления представленное в обозначении самой системы.

Но такое определение мне не очень нравится, ибо m больше чем возможные числа внутри системы. Давайте сделаем чуть хитрее.

Что такое перевод чисел. Смотреть фото Что такое перевод чисел. Смотреть картинку Что такое перевод чисел. Картинка про Что такое перевод чисел. Фото Что такое перевод чисел

, где m_1 — это целое число означающее 1 в системе счисления, а m^k — основание системы счисления. Вот теперь получилось красиво с точки зрения определения, но
a ‖ b = (a * 10) + b – легче для восприятия.

Давайте, на всякий случай, проверим, что действительно это работает и пересчитаем описанные выше операции на 10958.

Двоичная: 10 1010 1100 1110 = 1‖0‖1‖0‖1‖0‖1‖1‖0‖0‖1‖1‖1‖0 = ((((((((((((1 * 10 + 0) * 10 + 1) * 10 + 0) * 10 + 1) * 10 + 0) * 10 + 1) * 10 + 1) * 10 + 0) * 10 + 0) * 10 + 1) * 10 + 1) * 10 + 1) * 10 + 0

Что такое перевод чисел. Смотреть фото Что такое перевод чисел. Смотреть картинку Что такое перевод чисел. Картинка про Что такое перевод чисел. Фото Что такое перевод чисел

Восьмеричная: 25316 = 2‖5‖3‖1‖6 = (((2 * 10 + 5) * 10 + 3) * 10 + 1) * 10 + 6

Что такое перевод чисел. Смотреть фото Что такое перевод чисел. Смотреть картинку Что такое перевод чисел. Картинка про Что такое перевод чисел. Фото Что такое перевод чисел

Шестнадцатеричная 2ACE = 2‖A‖C‖E = ((2 * 10 + A) * 10 + C) * 10 + E

Что такое перевод чисел. Смотреть фото Что такое перевод чисел. Смотреть картинку Что такое перевод чисел. Картинка про Что такое перевод чисел. Фото Что такое перевод чисел

И тут кроется собственно фокус быстрого перевода чисел из одно системы счисления в другую.
Причем на ней сохраняются свойства обычной конкатенации:

1) Операция конкатенации неассоциативна.

То есть, если нужно выполнить конкатенацию трёх цифр, то от расстановки скобок результат изменится: ( 1 ‖ 2) ‖ 3 = 123, и в то же время 1 ‖ ( 2 ‖ 3 ) = 33.

2) Операция конкатенации некоммутативна.

В самом деле, wiki ‖ media = wikimedia, но media ‖ wiki = mediawiki ≠ wikimedia. От перестановки операндов меняется результат операции, что и означает её некоммутативность.

3) Пустое слово — ε, — является нейтральным элементом (единицей) операции конкатенации.
То есть, если ε— пустое слово, то для любого слова α выполнено равенство: ε ‖ a = a ‖ ε = a

4) Длина (количество букв) конкатенации слов равна сумме длин операндов:
|α ‖ β| = |α| + |β|.

Классический способ смены системы счисления

Но для начала рассмотрим классический способ перевода чисел из десятичной системы в восьмеричную. Для это используется операция деления и взятие остатка от деления.

Для примера возьмем 672 и переведем его восьмеричную систему счисления.

Что такое перевод чисел. Смотреть фото Что такое перевод чисел. Смотреть картинку Что такое перевод чисел. Картинка про Что такое перевод чисел. Фото Что такое перевод чисел

А перевод числа 934 в шестнадцатеричную систему счисления выглядит так.

Что такое перевод чисел. Смотреть фото Что такое перевод чисел. Смотреть картинку Что такое перевод чисел. Картинка про Что такое перевод чисел. Фото Что такое перевод чисел

Количество тактов по расчету чисел здесь довольно больше.

Более того перевод целого числа в систему счисления с новым основанием всегда делается через десятичную систему счисления. Т.е. число из исходной системы счисления загоняем в десятичное, а потом это число из десятичное систему счисления переводим в финальную систему счисления.
Как-то очень муторно…

Есть конечно таблицы триад и тетрад. Которые позволяют переводить числа из двоичной системы счисления в восьмеричную и шестнадцатеричную. Но это всё.

Смена системы счисления через алгебраическую конкатенацию

Вчера удалось понять, что операция «алгебраической конкатенации» позволяет нам упростить перевод до базового умножения. И переводить из любой системы счислению в любую другую без промежуточного звена, но нам потребуется пара таблиц-представлений.

Таблица 1 – представление цифр в разных системах счисления:

Что такое перевод чисел. Смотреть фото Что такое перевод чисел. Смотреть картинку Что такое перевод чисел. Картинка про Что такое перевод чисел. Фото Что такое перевод чисел

По горизонтали мы видим здесь представление числа в разных система счисления, а по вертикали указана основание системы счисления.

Далее распишем как выглядят основания одной системы счисления в другой системе счисления. Т.е. размерность системы в представлении другой системы. Например, основание десятичной системы счисления в шестнадцатеричной выглядит так:

Что такое перевод чисел. Смотреть фото Что такое перевод чисел. Смотреть картинку Что такое перевод чисел. Картинка про Что такое перевод чисел. Фото Что такое перевод чисел

Таблица 2 – множители основания системы в разных система счисления.

Что такое перевод чисел. Смотреть фото Что такое перевод чисел. Смотреть картинку Что такое перевод чисел. Картинка про Что такое перевод чисел. Фото Что такое перевод чисел

По горизонтали здесь исходная система счисления, а по вертикали – та, в которую хотим перевести.

Получается, чтобы перевести число 934 из десятичной системы счисления в шестнадцатеричную мы просто берем числа из таблицы.
9‖3‖4
= (9 * 10 + 3) * 10 + 4 — запись в десятичной системе
= (9 * A + 3) * A + 4 — здесь и далее уже шестнадцатеричная система
= (5A + 3) * A + 4
= 5D * A + 4
= 3A2 + 4
= 3A6

Возьмем еще одно число, на этот раз в двоичной системе счисления 1101011, и попробуем получить восьмеричную, потом десятичную и обратно в двоичную
1101011
= 1‖1‖0‖1‖0‖1‖1 — запись в двоичной системе
= (((((1 * 10 + 1) * 10 + 0) * 10 + 1) * 10 + 0) * 10 + 1) * 10 + 1 — запись в двоичной системе
= (((((1 * 2 + 1) * 2 + 0) * 2 + 1) * 2 + 0) * 2 + 1) * 2 + 1 — восьмеричная система
= 153 — восьмеричная система
= 1‖5‖3
= (1 * 10 + 5) * 10 + 3 — восьмеричная система
= (1 * 8 + 5) * 8 + 3 – в десятичной системе
= 107 – в десятичной системе
= 1‖0‖7 – в десятичной системе
= (1 * 10 + 0) * 10 + 7 – в десятичной системе
= (1 * 1010 + 0) * 1010 + 111- запись в двоичной системе
= 1101011 — запись в двоичной системе.

Собственно, этим можно заниматься весь день.

Тут нужно понимать, что операции, которые мы выполним над это строкой уже делаются в указанной системе счисления, поэтому и результат будет отличаться.

Вывод

По сути мы получили универсальную систему перевода целых чисел. В которой не нужно ни деление и взятие остатков. И даже перевода во вспомогательную систему счисления.
Но нужно будет подумать над дробной частью, что-то сходу она мне не поддалась…

Я поискал в сети способы перевода одной системы в другую, но что-то везде всё упирается во взятие остатков, а прямого перевода через умножение я так и не нашел. Может плохо искал?
Ведь по факту, с точки зрения визуального представление, — это просто смещение числа по разрядам и всё… Странно как-то, что нет описания такого просто решения… Ибо больше напоминает математический фокус, чем что-то новое и необычное. В чем я не прав? Жду ваших замечаний.

Источник

Перевод чисел из одной системы счисления в другую

Данный конвертер переводит числа между наиболее популярными системами счисления: десятичной, двоичной, восьмеричной, шестнадцатеричной.

Существуют и другие системы счисления, но мы не стали включать их в конвертер из-за низкой популярности.

Для указания системы счисления при записи числа используется нижний индекс, который ставится после числа:
20010 = 110010002 = 3108 = C816

Кратко об основных системах счисления

Десятичная система счисления. Используется в повседневной жизни и является самой распространенной. Все числа, которые нас окружают представлены в этой системе. В каждом разряде такого числа может использоваться только одна цифра от 0 до 9.

Двоичная система счисления. Используется в вычислительной технике. Для записи числа используются цифры 0 и 1.

Восьмеричная система счисления. Также иногда применяется в цифровой технике. Для записи числа используются цифры от 0 до 7.

Перевод в десятичную систему счисления

Перевод из десятичной системы счисления в другие

Делим десятичное число на основание системы, в которую хотим перевести и записываем остатки от деления. Запишем полученные остатки в обратном порядке и получим искомое число.

Переведем число 37510 в восьмеричную систему:

Перевод из двоичной системы в восьмеричную

Так же как и в первом способе разбиваем число на группы. Но вместо преобразований в скобках просто заменим полученные группы (триады) на соответствующие цифры восьмеричной системы, используя таблицу триад:

Перевод из двоичной системы в шестнадцатеричную

Также как и в первом способе разбиваем число на группы по 4 цифры. Заменим полученные группы (тетрады) на соответствующие цифры шестнадцатеричной системы, используя таблицу тетрад:

Тетрада0000000100100011010001010110011110001001101010111100110111101111
Цифра0123456789ABCDEF

Перевод из восьмеричной системы в двоичную

Каждый разряд восьмеричного числа будем делить на 2 и записывать остатки в обратном порядке, формируя группы по 3 разряда двоичного числа. Если в группе получилось меньше 3 разрядов, тогда дополняем нулями. Записываем все группы по порядку, отбрасываем ведущие нули, если имеются, и получаем двоичное число.

Используем таблицу триад:

Каждую цифру исходного восьмеричного числа заменяется на соответствующие триады. Ведущие нули самой первой триады отбрасываются.

Перевод из шестнадцатеричной системы в двоичную

Аналогично переводу из восьмеричной в двоичную, только группы по 4 разряда.

Используем таблицу тетрад:

Цифра0123456789ABCDEF
Тетрада0000000100100011010001010110011110001001101010111100110111101111

Каждую цифру исходного числа заменяется на соответствующие тетрады. Ведущие нули самой первой тетрады отбрасываются.

Перевод из восьмеричной системы в шестнадцатеричную и наоборот

Такую конвертацию можно осуществить через промежуточное десятичное или двоичное число. То есть исходное число сначала перевести в десятичное (или двоичное), и затем полученный результат перевести в конечную систему счисления.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *