Что такое период колебаний амплитуда колебаний

Механические колебания

теория по физике 🧲 колебания и волны

Колебательное движение очень распространено. Заставить колебаться можно любое тело, если приложить к нему силу — однократно или постоянно. К примеру, если подтолкнуть качели, они начнут качаться вперед-назад, и такое движение будет приблизительно повторяться до тех пор, пока качели полностью не остановятся.

Что такое период колебаний амплитуда колебаний. Смотреть фото Что такое период колебаний амплитуда колебаний. Смотреть картинку Что такое период колебаний амплитуда колебаний. Картинка про Что такое период колебаний амплитуда колебаний. Фото Что такое период колебаний амплитуда колебаний

Другой пример колебательного движения — тело, подвешенное к пружине. Если его потянуть вниз и отпустить, то за счет сил упругости оно сначала поднимется вверх, а затем снова опустится вниз, затем движения вверх-вниз будут повторяться. Со временем они прекратятся под действием силы сопротивления воздуха.

Что такое период колебаний амплитуда колебаний. Смотреть фото Что такое период колебаний амплитуда колебаний. Смотреть картинку Что такое период колебаний амплитуда колебаний. Картинка про Что такое период колебаний амплитуда колебаний. Фото Что такое период колебаний амплитуда колебаний

Колебаниями можно назвать даже движение гири, которую поднимается тяжелоатлет вверх, а затем опускает в низ. При этом он будет прикладывать к гире силу постоянно. Гиря будет колебаться до тех пор, пока к нему будет прикладываться эта сила.

Что такое период колебаний амплитуда колебаний. Смотреть фото Что такое период колебаний амплитуда колебаний. Смотреть картинку Что такое период колебаний амплитуда колебаний. Картинка про Что такое период колебаний амплитуда колебаний. Фото Что такое период колебаний амплитуда колебаний

Колебания — это движения, которые точно или приблизительно повторяются через определенные интервалы времени.

Механические колебания — это колебательные движения, совершаемые физическим телом в механической системе.

Механическая система — совокупность материальных точек (тел), движения которых взаимосвязаны между собой.

Какими бывают колебания?

Напомним, что в механической системе выделяют два вида сил:

Свободные колебания

Свободные колебания — колебания, происходящие в системе под действием внутренних сил после того, как эта система выведена из положения равновесия.

Колебательная система — механическая система, в которой возможно совершение свободных колебаний.

Свободные колебания в колебательной системе могут возникнуть только при наличии двух условий:

Примеры свободных колебаний:

Что такое период колебаний амплитуда колебаний. Смотреть фото Что такое период колебаний амплитуда колебаний. Смотреть картинку Что такое период колебаний амплитуда колебаний. Картинка про Что такое период колебаний амплитуда колебаний. Фото Что такое период колебаний амплитуда колебаний

Примером колебательной системы также служит математический маятник — материальная точка, подвешенная на невесомой нерастяжимой нити. В действительности такого маятника не существует. Это идеализированная модель реального маятника, примером которого служит тяжелый шарик, подвешенный на длинной нити. В этом случае размером шарика и растяжением нити можно пренебречь.

В колебательную систему математического маятника входят:

Что такое период колебаний амплитуда колебаний. Смотреть фото Что такое период колебаний амплитуда колебаний. Смотреть картинку Что такое период колебаний амплитуда колебаний. Картинка про Что такое период колебаний амплитуда колебаний. Фото Что такое период колебаний амплитуда колебаний

В положении равновесия (точка О) шарик висит на нити и покоится. Если его отклонить от положения равновесия до точки А и отпустить, под действием силы тяжести шарик приблизится к положению равновесия. Так как к этому моменту шарик обретет скорость, он не сможет остановиться и приблизится к точке В. Затем он снова вернется в точку А через положение равновесия в точке О. Шарик будет колебаться, пока не затухнут под действием возникающей силы сопротивления воздуха.

Вынужденные колебания

Вынужденные колебания — колебания тел под действием внешних периодически изменяющихся сил.

Примерами вынужденных колебаний служат:

Что такое период колебаний амплитуда колебаний. Смотреть фото Что такое период колебаний амплитуда колебаний. Смотреть картинку Что такое период колебаний амплитуда колебаний. Картинка про Что такое период колебаний амплитуда колебаний. Фото Что такое период колебаний амплитуда колебаний

Затухающие и незатухающие колебания

Затухающие колебания — колебания, которые со временем затухают. При этом максимальное отклонение тела от положения равновесия с течением времени уменьшается.

Колебания затухают под действием сил, препятствующих колебательному движению. Так, шарик в сферической чаше перестает колебаться под действием силы трения. Математический маятник и качели перестают совершать колебательные движения за счет силы сопротивления воздуха.

Все свободные колебания являются затухающими, так как всегда присутствует трение или сопротивление среды.

Незатухающими колебаниями могут быть только те, которые совершаются под действием периодической внешней силы (вынужденные колебания). Так, ветка будет раскачиваться до тех пор, пока дует ветер. Когда он перестанет дуть, колебания ветки со временем затухнут. Иголка швейной машинки будет совершать колебательные движения до тех пор, пока швея вращает ручку привода. Когда она перестанет это делать, иголка сразу остановится.

Динамика колебательного движения

Для того чтобы описать количественно колебания тела пол действием силы упругости пружины или колебания шарика, подвешенного на нити, воспользуемся законами механики Ньютона.

Уравнение движения тела, колеблющегося под действием сил упругости

Рассмотрим колебательное движение шарика, вызванное силой упругости, возникшей при растяжении горизонтальной пружины вдоль оси Ох.

Что такое период колебаний амплитуда колебаний. Смотреть фото Что такое период колебаний амплитуда колебаний. Смотреть картинку Что такое период колебаний амплитуда колебаний. Картинка про Что такое период колебаний амплитуда колебаний. Фото Что такое период колебаний амплитуда колебаний

Согласно II закону Ньютона произведение массы тела на ускорение равно равнодействующей всех сил приложенных к телу. Поскольку сила трения пренебрежимо мала, мы можем считать, что в этой механической системе действует единственная сила — сила упругости. Учтем, что шарик колеблется вдоль одной прямой, и выберем одномерную систему координат Ох. Тогда:

Согласно закону Гука, проекция сила упругости прямо пропорциональная смещению шарика из положения равновесия (точки О). Смещение равно координате x шарика, причем проекция силы и координаты имеют разные знаки. Это связано с тем, что сила упругости всегда направлена к точке равновесия, в то время как расстояние от этой точки во время движения увеличивается в обратную сторону. Отсюда делаем вывод, что сила упругости равна:

где k — жесткость пружины.

Тогда уравнение движения шарики принимает вид:

Пример №1. Груз массой 0,1 кг прикрепили к пружине школьного динамометра жесткостью 40 Н/м. В начальный момент времени пружина не деформирована. После того, как груз отпускают, возникают колебания. Чему равна максимальная скорость груза?

Максимальной скорости груз достигнет при максимальном его отклонении от положения равновесия — в нижней точке траектории. Учтем, что тело движется вниз под действием силы тяжести. Но в то же время на него действует сила упругости, которая возникает в пружине и нарастает до тех пор, пока не становится равной по модулю силе тяжести. Применив III закон Ньютона получим:

∣ ∣ ∣ → F т я ж ∣ ∣ ∣ = ∣ ∣ ∣ → F у п р ∣ ∣ ∣

где y m a x — максимальное отклонение груза от положения равновесия. В этой точке скорость тела будет максимальная. Для нахождения этой величины используем формулу из кинематики:

Начальная скорость равна нулю. Отсюда:

Максимальная скорость равна:

Уравнение движения математического маятника

Ниже на рисунке представлен математический маятник. Если мы выведем из положения равновесия шарик и отпустим, возникнет две силы:

При колебаниях шарика также будет возникать сила сопротивления воздуха. Но так как она очень мала, мы будем ею пренебрегать.

Что такое период колебаний амплитуда колебаний. Смотреть фото Что такое период колебаний амплитуда колебаний. Смотреть картинку Что такое период колебаний амплитуда колебаний. Картинка про Что такое период колебаний амплитуда колебаний. Фото Что такое период колебаний амплитуда колебаний

Чтобы описать динамику движения математического маятника, удобно силу тяжести разложить на две составляющие:

Причем компонента → F τ направлена перпендикулярно нити, а → F n — вдоль нее.

Компонента → F τ представляет собой проекцию силы тяжести в момент, когда нить маятника отклонена от положения равновесия (точки О) на угол α. Следовательно, она равна:

Знак «–» мы здесь поставили по той причине, что компоненты силы тяжести → F τ и α имеют противоположные знаки. Ведь если отклонить шарик на угол α>0, то составляющая → F τ будет направлена в противоположную сторону, так как она будет пытаться вернуть шарик в положение равновесия. И ее проекция будет отрицательной. Если же шарик отклонить на угол α → F τ будет направлена в обратную сторону. В этом случае ее проекция будет положительной.

Разделим обе части выражения на массу шарика m и получим:

Внимание! Чтобы перевести градусы в радианы, нужно умножить градусы на число π и поделить результат на 180. К примеру 2 о = 2∙3,14/180 рад., или 2 о = 0,035 рад.

При малом отклонении также дугу ОА мы можем принять за длину отрезка OA, который мы примем за s. Тогда угол α будет равен отношению противолежащего катета (отрезка s) к гипотенузе (длине нити l):

Это уравнение похоже на то уравнение, которое мы получили для описания колебательного движения шарика под действием силы упругости. И оно также позволяет сделать вывод, что ускорение прямо пропорционально координате.

При отклонениях на малый угол мы можем пользоваться следующей формулой:

Чтобы найти длину нити, нужно выразить угол α в радианах:

Тогда длина нити равна:

Основные характеристики колебательного движения

Амплитуда — максимальное отклонение тела от положения равновесия. Обозначается буквой A, иногда — xmax. Единиц измерения — метр (м).

Что такое период колебаний амплитуда колебаний. Смотреть фото Что такое период колебаний амплитуда колебаний. Смотреть картинку Что такое период колебаний амплитуда колебаний. Картинка про Что такое период колебаний амплитуда колебаний. Фото Что такое период колебаний амплитуда колебаний

Период — время совершения одного полного колебания. Обозначается буквой T. Единица измерения — секунда (с).

Период и частота колебаний связаны между собой следующей формулой:

Период колебаний также можно вычислить, зная количество совершенных колебаний N за время t:

Поскольку частота — это величина, обратная периоду колебаний, ее можно выразить в виде:

Пример №3. Определить частоту колебаний груза, если суммарный путь, который он прошел за 2 секунды под действием силы упругости, составил 1 м. Амплитуда колебаний равна 10 см.

Что такое период колебаний амплитуда колебаний. Смотреть фото Что такое период колебаний амплитуда колебаний. Смотреть картинку Что такое период колебаний амплитуда колебаний. Картинка про Что такое период колебаний амплитуда колебаний. Фото Что такое период колебаний амплитуда колебаний

Во время одного колебания груз проходит расстояние, равное 4 амплитудам. Посмотрите на рисунок. Положение равновесия соответствует состояние 2. Чтобы совершить одно полное колебание, сначала груз отводят в положение 1. Когда его отпускают, он проходит путь 1–2 и достигает положения равновесия. Этот путь равен амплитуде колебаний. Затем он продолжает движение до состояния 3. И в это время он проходит расстояние 2–3, равное еще одной амплитуде колебаний. Чтобы вернуться в исходное положение (состояние 1), нужно снова проделать путь в обратном направлении: сначала 3–2, затем 2–1.

Следовательно, количество колебаний равно отношению пройденного пути к амплитуде, помноженной на 4:

Так как мы знаем, что эти колебания совершались в течение 2 секунд, для вычисления частоты мы можем использовать формулу:

В таблице представлены данные о положении шарика, колеблющегося вдоль оси Ох, в различные моменты времени.

Что такое период колебаний амплитуда колебаний. Смотреть фото Что такое период колебаний амплитуда колебаний. Смотреть картинку Что такое период колебаний амплитуда колебаний. Картинка про Что такое период колебаний амплитуда колебаний. Фото Что такое период колебаний амплитуда колебаний

Каков период колебаний шарика?

Алгоритм решения

Решение

Из таблицы видно, что амплитуда колебаний равна 15 мм. Следовательно, максимальное отклонение в противоположную сторону составляет –15 мм. Расстояние между двумя максимальными отклонениями от положения равновесия шарика равно половине периода колебаний. Этим значения в таблице соответствует время 1 и 3 секунды соответственно. Следовательно, разница между ними — половина периода. Тогда период будет равен удвоенной разнице во времени:

T = 2 ( t 2 − t 1 ) = 2 ( 3 − 1 ) = 4 ( с )

pазбирался: Алиса Никитина | обсудить разбор | оценить

Массивный груз, подвешенный к потолку на пружине, совершает вертикальные свободные колебания. Пружина всё время остается растянутой. Как ведут себя потенциальная энергия пружины, кинетическая энергия груза, его потенциальная энергия в поле тяжести, когда груз движется вверх к положению равновесия?

Для каждой величины определите соответствующий характер изменения:

1)увеличивается
2)уменьшается
3)не изменяется

Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.

Что такое период колебаний амплитуда колебаний. Смотреть фото Что такое период колебаний амплитуда колебаний. Смотреть картинку Что такое период колебаний амплитуда колебаний. Картинка про Что такое период колебаний амплитуда колебаний. Фото Что такое период колебаний амплитуда колебаний

Алгоритм решения

Решение

Потенциальная энергия пружины определяется формулой:

где k — коэффициент жесткости пружины, а x — ее удлинение. Величина x была максимальной в нижней точке траектории. Когда пружина начинает сжиматься, она уменьшается. Так как потенциальная энергия зависит от квадрата x прямо пропорционально, то при уменьшении этой величины потенциальная энергия пружины тоже уменьшается.

Кинетическая энергия тела определяется формулой:

В нижней точке траектории скорость шарика была равна нулю. Но к этому времени потенциальная энергия пружины достигла максимума. Она начинает с ускорением поднимать шарик вверх, сжимаясь. Следовательно, скорость растет. Так как кинетическая энергия зависит от квадрата скорости тела прямо пропорционально, то при увеличении скорости этой величины кинетическая энергия шарика тоже увеличивается.

Потенциальная энергия тел в поле тяжести земли определяется формулой:

Масса и ускорение свободного падения шарика — постоянные величины. Следовательно, потенциальная энергия зависит только от расстояния до поверхности земли. Когда пружина поднимает шарик, расстояние между ним и землей увеличивается. Так как потенциальная энергия зависит от расстояния прямо пропорционально, то при его увеличении потенциальная энергия шарика тоже растет.

pазбирался: Алиса Никитина | обсудить разбор | оценить

В таблице представлены данные о положении шарика, прикреплённого к пружине и колеблющегося вдоль горизонтальной оси Ох, в различные моменты времени.

Что такое период колебаний амплитуда колебаний. Смотреть фото Что такое период колебаний амплитуда колебаний. Смотреть картинку Что такое период колебаний амплитуда колебаний. Картинка про Что такое период колебаний амплитуда колебаний. Фото Что такое период колебаний амплитуда колебаний

Из приведённого ниже списка выберите два правильных утверждения и укажите их номера.

А) Потенциальная энергия пружины в момент времени 1,0 с максимальна.

Б) Период колебаний шарика равен 4,0 с.

В) Кинетическая энергия шарика в момент времени 2,0 с минимальна.

Г) Амплитуда колебаний шарика равна 30 мм.

Д) Полная механическая энергия маятника, состоящего из шарика и пружины, в момент времени 3,0 с минимальна.

Алгоритм решения

Решение

Согласно утверждению «А», потенциальная энергия пружины в момент времени 1,0 с максимальна. Потенциальная энергия пружины максимальна, когда она отклоняется от положения равновесия на максимальную возможную величину. Из таблицы видно, что в данный момент времени ее отклонение составило 15 мм, что соответствует амплитуде колебаний (наибольшему отклонению от положения равновесия). Следовательно, утверждение «А» — верно.

Согласно утверждению «Б», период колебаний шарика равен 4,0 с. Один период колебаний включает в себя 4 фазы. В течение каждой фазы шарик на пружине проделывает путь, равный амплитуде. Следовательно, мы можем найти период колебаний, умножив время одной фазы на 4. В момент времени t = 0 с, шарик находился в положении равновесия. Первый раз он отклонился на максимальную величину (15 мм) в момент времени t = 1,0 с. Значит, период колебаний равен 1∙4 = 4 с. Следовательно, утверждение «Б» — верно.

Согласно утверждению «В», кинетическая энергия шарика в момент времени 2,0 с минимальна. В этот момент времени, согласно данным таблицы, шарик проходит положение равновесия. В этом положении скорость шарика всегда максимальна. Поэтому кинетическая энергия, которая зависит от квадрата скорости прямо пропорционально, минимальной быть не может. Следовательно, утверждение «В» — неверно.

Согласно утверждению «Г», амплитуда колебаний шарика равна 30 мм. Амплитуда колебаний — есть расстояние от положения равновесия до точки максимального отклонения шарика. В данном случае оно равно 15 мм. Следовательно, утверждение «Г» — неверно.

Согласно утверждению «Д», полная механическая энергия маятника, состоящего из шарика и пружины, в момент времени 3,0 с минимальна. Полная механическая энергия колебательной системы — это совокупность кинетической и потенциальной энергий. И при отсутствии сил трения она остается величиной постоянной. Она лишь превращается из одного вида энергии в другую. Следовательно, утверждение «Д» — неверно.

pазбирался: Алиса Никитина | обсудить разбор | оценить

Источник

Механические колебания.

Автор — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев

Темы кодификатора ЕГЭ : гармонические колебания; амплитуда, период, частота, фаза колебаний; свободные колебания, вынужденные колебания, резонанс.

Сразу после того, как отклонённый маятник отпустили, он начал двигаться, прошёл положение равновесия, достиг противоположного крайнего положения, на мгновение остановился в нём, двинулся в обратном направлении, снова прошёл положение равновесия и вернулся назад. Совершилось одно полное колебание. Дальше этот процесс будет периодически повторяться.

Гармонические колебания.

Выясним смысл входящих в эту формулу величин.

Измеряется циклическая частота в рад/с (радиан в секунду).

В соответствии с выражениями (2) и (3) получаем ещё две формы записи гармонического закона (1) :

Что такое период колебаний амплитуда колебаний. Смотреть фото Что такое период колебаний амплитуда колебаний. Смотреть картинку Что такое период колебаний амплитуда колебаний. Картинка про Что такое период колебаний амплитуда колебаний. Фото Что такое период колебаний амплитуда колебаний
Рис. 1. График гармонических колебаний

Гармонический закон вида (1) носит самый общий характер. Он отвечает, например, ситуации, когда с маятником совершили одновременно два начальных действия: отклонили на величину и придали ему некоторую начальную скорость. Имеются два важных частных случая, когда одно из этих действий не совершалось.

Что такое период колебаний амплитуда колебаний. Смотреть фото Что такое период колебаний амплитуда колебаний. Смотреть картинку Что такое период колебаний амплитуда колебаний. Картинка про Что такое период колебаний амплитуда колебаний. Фото Что такое период колебаний амплитуда колебаний
Рис. 2. Закон косинуса
Что такое период колебаний амплитуда колебаний. Смотреть фото Что такое период колебаний амплитуда колебаний. Смотреть картинку Что такое период колебаний амплитуда колебаний. Картинка про Что такое период колебаний амплитуда колебаний. Фото Что такое период колебаний амплитуда колебаний
Рис. 3. Закон синуса

Уравнение гармонических колебаний.

Теперь дифференцируем полученное равенство (4) :

Давайте сопоставим выражение (1) для координаты и выражение (5) для проекции ускорения. Мы видим, что проекция ускорения отличается от координаты лишь множителем :

Это соотношение называется уравнением гармонических колебаний. Его можно переписать и в таком виде:

C математической точки зрения уравнение (7) является дифференциальным уравнением. Решениями дифференциальных уравнений служат функции (а не числа, как в обычной алгебре).
Так вот, можно доказать, что:

-решением уравнения (7) является всякая функция вида (1) с произвольными ;

-никакая другая функция решением данного уравнения не является.

Пружинный маятник.

Найдём период малых горизонтальных колебаний пружинного маятника (рис. 4 ). Колебания будут малыми, если величина деформации пружины много меньше её размеров. При малых деформациях мы можем пользоваться законом Гука. Это приведёт к тому, что колебания окажутся гармоническими.

Координате отвечает положение равновесия, в котором пружина не деформирована. Следовательно, величина деформации пружины равна модулю координаты груза.

Что такое период колебаний амплитуда колебаний. Смотреть фото Что такое период колебаний амплитуда колебаний. Смотреть картинку Что такое период колебаний амплитуда колебаний. Картинка про Что такое период колебаний амплитуда колебаний. Фото Что такое период колебаний амплитуда колебаний
Рис. 4. Пружинный маятник

В горизонтальном направлении на груз действует только сила упругости со стороны пружины. Второй закон Ньютона для груза в проекции на ось имеет вид:

Тогда соотношение (8) принимает вид:

Циклическая частота колебаний пружинного маятника, таким образом, равна:

Отсюда и из соотношения находим период горизонтальных колебаний пружинного маятника:

Математический маятник.

Что такое период колебаний амплитуда колебаний. Смотреть фото Что такое период колебаний амплитуда колебаний. Смотреть картинку Что такое период колебаний амплитуда колебаний. Картинка про Что такое период колебаний амплитуда колебаний. Фото Что такое период колебаний амплитуда колебаний
Рис. 5. Математический маятник

Запишем для маятника второй закон Ньютона:

и спроектируем его на ось :

Если маятник занимает положение как на рисунке (т. е. 0′ alt=’x>0′ /> ), то:

Если же маятник находится по другую сторону от положения равновесия (т. е. ), то:

Итак, при любом положении маятника имеем:

Следовательно, циклическая частота колебаний математического маятника равна:

Отсюда период колебаний математического маятника:

Обратите внимание, что в формулу (13) не входит масса груза. В отличие от пружинного маятника, период колебаний математического маятника не зависит от его массы.

Свободные и вынужденные колебания.

Говорят, что система совершает свободные колебания, если она однократно выведена из положения равновесия и в дальнейшем предоставлена сама себе. Никаких периодических внешних
воздействий система при этом не испытывает, и никаких внутренних источников энергии, поддерживающих колебания, в системе нет.

Рассмотренные выше колебания пружинного и математического маятников являются примерами свободных колебаний.

Частота, с которой совершаются свободные колебания, называется собственной частотой колебательной системы. Так, формулы (9) и (12) дают собственные (циклические) частоты колебаний пружинного и математического маятников.

В идеализированной ситуации при отсутствии трения свободные колебания являются незатухающими, т. е. имеют постоянную амплитуду и длятся неограниченно долго. В реальных колебательных системах всегда присутствует трение, поэтому свободные колебания постепенно затухают (рис. 6 ).

Что такое период колебаний амплитуда колебаний. Смотреть фото Что такое период колебаний амплитуда колебаний. Смотреть картинку Что такое период колебаний амплитуда колебаний. Картинка про Что такое период колебаний амплитуда колебаний. Фото Что такое период колебаний амплитуда колебаний
Рис. 6. Затухающие колебания

В течение некоторого времени происходит установление вынужденных колебаний: система совершает сложное движение, которое является наложением выужденных и свободных колебаний. Свободные колебания постепенно затухают, и в установившемся режиме система совершает вынужденные колебания, которые также оказываются гармоническими. Частота установившихся вынужденных колебаний совпадает с частотой
вынуждающей силы (внешняя сила как бы навязывает системе свою частоту).

Что такое период колебаний амплитуда колебаний. Смотреть фото Что такое период колебаний амплитуда колебаний. Смотреть картинку Что такое период колебаний амплитуда колебаний. Картинка про Что такое период колебаний амплитуда колебаний. Фото Что такое период колебаний амплитуда колебаний
Рис. 7. Резонанс

Источник

Характеристики колебаний

Чтобы описать колебательные процессы и отличить одни колебания от других, используют 6 характеристик. Они называются так (рис. 1):

Что такое период колебаний амплитуда колебаний. Смотреть фото Что такое период колебаний амплитуда колебаний. Смотреть картинку Что такое период колебаний амплитуда колебаний. Картинка про Что такое период колебаний амплитуда колебаний. Фото Что такое период колебаний амплитуда колебаний

Такие величины, как амплитуду и период, можно определить по графику колебаний.

Начальную фазу, так же, определяют по графику, с помощью интервала времени \(\large \Delta t\), на который относительно нуля сдвигается начало ближайшего периода.

Частоту и циклическую частоту вычисляют из найденного по графику периода, по формулам. Они находятся ниже в тексте этой статьи.

А фазу определяют с помощью формулы, в которую входит интересующий нас момент времени t колебаний. Читайте далее.

Что такое амплитуда

Амплитуда – это наибольшее отклонение величины от равновесия, то есть, максимальное значение колеблющейся величины.

Измеряют в тех же единицах, в которых измерена колеблющаяся величина. К примеру, когда рассматривают механические колебания, в которых изменяется координата, амплитуду измеряют в метрах.

В случае электрических колебаний, в которых изменяется заряд, ее измеряют в Кулонах. Если колеблется ток – то в Амперах, а если – напряжение, то в Вольтах.

Часто обозначают ее, приписывая к букве, обозначающей амплитуду индекс «0» снизу.

К примеру, пусть колеблется величина \( \large x \). Тогда символом \( \large x_ <0>\) обозначают амплитуду колебаний этой величины.

Иногда для обозначения амплитуды используют большую латинскую букву A, так как это первая буква английского слова «amplitude».

С помощью графика амплитуду можно определить так (рис. 2):

Что такое период колебаний амплитуда колебаний. Смотреть фото Что такое период колебаний амплитуда колебаний. Смотреть картинку Что такое период колебаний амплитуда колебаний. Картинка про Что такое период колебаний амплитуда колебаний. Фото Что такое период колебаний амплитуда колебаний

Что такое период

Когда колебания повторяются точно, изменяющаяся величина принимает одни и те же значения через одинаковые кусочки времени. Такой кусочек времени называют периодом.

Обозначают его обычно большой латинской буквой «T» и измеряют в секундах.

\( \large T \left( c \right) \) – период колебаний.

Одна секунда – достаточно большой интервал времени. Поэтому, хотя период и измеряют в секундах, но для большинства колебаний он будет измеряться долями секунды.

Чтобы по графику колебаний определить период (рис. 3), нужно найти два одинаковых значения колеблющейся величины. После, провести от этих значений к оси времени пунктиры. Расстояние между пунктирами – это период колебаний.

Что такое период колебаний амплитуда колебаний. Смотреть фото Что такое период колебаний амплитуда колебаний. Смотреть картинку Что такое период колебаний амплитуда колебаний. Картинка про Что такое период колебаний амплитуда колебаний. Фото Что такое период колебаний амплитуда колебаний

Период – это время одного полного колебания.

На графике период найти удобнее одним из таких способов (рис. 4):

Что такое период колебаний амплитуда колебаний. Смотреть фото Что такое период колебаний амплитуда колебаний. Смотреть картинку Что такое период колебаний амплитуда колебаний. Картинка про Что такое период колебаний амплитуда колебаний. Фото Что такое период колебаний амплитуда колебаний

Что такое частота

Обозначают ее с помощью греческой буквы «ню» \( \large \nu \).

Частота отвечает на вопрос: «Сколько полных колебаний выполняется за одну секунду?» Или же: «Сколько периодов умещается в интервал времени, равный одной секунде?».

Поэтому, размерность частоты — это единицы колебаний в секунду:

\( \large \nu \left( \frac<1> \right) \).

Иногда в учебниках встречается такая запись \( \large \displaystyle \nu \left( c^ <-1>\right) \), потому, что по свойствам степени \( \large \displaystyle \frac<1> = c^ <-1>\).

Начиная с 1933 года частоту указывают в Герцах в честь Генриха Рудольфа Герца. Он совершил значимые открытия в физике, изучал колебания и доказал, что существуют электромагнитные волны.

Одно колебание в секунду соответствует частоте в 1 Герц.

Чтобы с помощью графика определить частоту, нужно на оси времени определить период. А затем посчитать частоту по такой формуле:

Существует еще один способ определить частоту с помощью графика колеблющейся величины. Нужно отмерить на графике интервал времени, равный одной секунде, и сосчитать количество периодов колебаний, уместившихся в этот интервал (рис. 5).

Что такое период колебаний амплитуда колебаний. Смотреть фото Что такое период колебаний амплитуда колебаний. Смотреть картинку Что такое период колебаний амплитуда колебаний. Картинка про Что такое период колебаний амплитуда колебаний. Фото Что такое период колебаний амплитуда колебаний

Что такое циклическая частота

Колебательное движение и движение по окружности имеют много общего – это повторяющиеся движения. Одному полному обороту соответствует угол \(\large 2\pi\) радиан. Поэтому, кроме интервала времени 1 секунда, физики используют интервал времени, равный \(\large 2\pi\) секунд.

Число полных колебаний для такого интервала времени, называется циклической частотой и обозначается греческой буквой «омега»:

\( \large \displaystyle \omega \left( \frac<\text<рад>> \right) \)

Примечание: Величину \( \large \omega \) так же называют круговой частотой, а еще — угловой скоростью (ссылка).

Циклическая частота отвечает на вопрос: «Сколько полных колебаний выполняется за \(\large 2\pi\) секунд?» Или же: «Сколько периодов умещается в интервал времени, равный \(\large 2\pi\) секунд?».

Обычная \( \large \nu \) и циклическая \( \large \omega \) частота колебаний связаны формулой:

Слева в формуле количество колебаний измеряется в радианах на секунду, а справа – в Герцах.

Чтобы с помощью графика колебаний определить величину \( \large \omega \), нужно сначала найти период T.

Затем, воспользоваться формулой \( \large \displaystyle \nu = \frac<1>\) и вычислить частоту \( \large \nu \).

И только после этого, с помощью формулы \( \large \omega = 2\pi \cdot \nu \) посчитать циклическую \( \large \omega \) частоту.

Для грубой устной оценки можно считать, что циклическая частота превышает обычную частоту примерно в 6 раз численно.

Определить величину \( \large \omega \) по графику колебаний можно еще одним способом. На оси времени отметить интервал, равный \(\large 2\pi\), а затем, сосчитать количество периодов колебаний в этом интервале (рис. 6).

Что такое период колебаний амплитуда колебаний. Смотреть фото Что такое период колебаний амплитуда колебаний. Смотреть картинку Что такое период колебаний амплитуда колебаний. Картинка про Что такое период колебаний амплитуда колебаний. Фото Что такое период колебаний амплитуда колебаний

Что такое начальная фаза и как определить ее по графику колебаний

Отклоним качели на некоторый угол от равновесия и будем удерживать их в таком положении. Когда мы отпустим их, качели начнут раскачиваться. А старт колебаний произойдет из угла, на который мы их отклонили.

Такой, начальный угол отклонения, называют начальной фазой колебаний. Обозначим этот угол (рис. 7) какой-нибудь греческой буквой, например, \(\large \varphi_ <0>\).

\(\large \varphi_ <0>\left(\text <рад>\right) \) — начальная фаза, измеряется в радианах (или градусах).

Начальная фаза колебаний – это угол, на который мы отклонили качели, перед тем, как их отпустить. Из этого угла начнется колебательный процесс.

Что такое период колебаний амплитуда колебаний. Смотреть фото Что такое период колебаний амплитуда колебаний. Смотреть картинку Что такое период колебаний амплитуда колебаний. Картинка про Что такое период колебаний амплитуда колебаний. Фото Что такое период колебаний амплитуда колебаний

Рассмотрим теперь, как величина \(\large \varphi_ <0>\) влияет на график колебаний (рис. 8). Для удобства будем считать, что мы рассматриваем колебания, которые происходят по закону синуса.

Кривая, обозначенная черным на рисунке, начинает период колебаний из точки t = 0. Эта кривая является «чистым», не сдвинутым синусом. Для нее величину начальной фазы \(\large \varphi_ <0>\) принимаем равной нулю.

Что такое период колебаний амплитуда колебаний. Смотреть фото Что такое период колебаний амплитуда колебаний. Смотреть картинку Что такое период колебаний амплитуда колебаний. Картинка про Что такое период колебаний амплитуда колебаний. Фото Что такое период колебаний амплитуда колебаний

Вторая кривая на рисунке обозначена красным цветом. Начало ее периода сдвинуто вправо относительно точки t = 0. Поэтому, для красной кривой, начавшей новый период колебаний спустя время \(\large \Delta t\), начальный угол \(\large \varphi_ <0>\) будет отличаться от нулевого значения.

Определим угол \(\large \varphi_ <0>\) с помощью графика колебаний.

Обратим внимание (рис. 8) на то, что время, лежащее на горизонтальной оси, измеряется в секундах, а величина \(\large \varphi_ <0>\) — в радианах. Значит, нужно связать формулой кусочек времени \(\large \Delta t\) и соответствующий ему начальный угол \(\large \varphi_ <0>\).

Как вычислить начальный угол по интервалу смещения

Алгоритм нахождения начального угла состоит из нескольких несложных шагов.

\[\large T = 5 – 1 = 4 \left( \text <сек>\right)\]

Из графика следует, что период T = 4 сек.

Полученное значение дроби означает, что красная кривая сдвинута относительно точки t = 0 и черной кривой на четверть периода.

Для этого используем формулу:

\(\large \displaystyle \frac<1> <4>\cdot 2\pi = \frac<\pi > <2>=\varphi_ <0>\)

Значит, интервалу \(\large \Delta t\) соответствует угол \(\large \displaystyle \frac<\pi > <2>\) – это начальная фаза для красной кривой на рисунке.

Чтобы обозначить запаздывание, будем использовать знак «минус» для начального угла:

Примечание: Если на кривой колебаний начало ближайшего периода лежит левее точки t = 0, то в таком случае, угол \(\large \displaystyle \frac<\pi > <2>\) имеет знак «плюс».

Для не сдвинутого влево, либо вправо, синуса или косинуса, начальная фаза нулевая \(\large \varphi_ <0>= 0 \).

Для синуса или косинуса, сдвинутого влево по графику и опережающего обычную функцию, начальная фаза берется со знаком «+».

А если функция сдвинута вправо и запаздывает относительно обычной функции, величину \(\large \varphi_ <0>\) записываем со знаком «-».

Примечания:

Благодаря таким допущениям график колебаний при решении большинства задач можно изображать, начиная из окрестности нуля и преимущественно в правой полуплоскости.

Что такое фаза колебаний

Рассмотрим еще раз обыкновенные детские качели (рис. 9) и угол их отклонения от положения равновесия. С течением времени этот угол изменяется, то есть, он зависит от времени.

Что такое период колебаний амплитуда колебаний. Смотреть фото Что такое период колебаний амплитуда колебаний. Смотреть картинку Что такое период колебаний амплитуда колебаний. Картинка про Что такое период колебаний амплитуда колебаний. Фото Что такое период колебаний амплитуда колебаний

В процессе колебаний изменяется угол отклонения от равновесия. Этот изменяющийся угол называют фазой колебаний и обозначают \(\varphi\).

Различия между фазой и начальной фазой

Существуют два угла отклонения от равновесия – начальный, он задается перед началом колебаний и, угол, изменяющийся во время колебаний.

Первый угол называют начальной \( \varphi_<0>\) фазой (рис. 10а), она считается неизменной величиной. А второй угол – просто \( \varphi\) фазой (рис. 10б) – это величина переменная.

Что такое период колебаний амплитуда колебаний. Смотреть фото Что такое период колебаний амплитуда колебаний. Смотреть картинку Что такое период колебаний амплитуда колебаний. Картинка про Что такое период колебаний амплитуда колебаний. Фото Что такое период колебаний амплитуда колебаний

Как на графике колебаний отметить фазу

На графике колебаний фаза \(\large \varphi\) выглядит, как точка на кривой. С течением времени эта точка сдвигается (бежит) по графику слева направо (рис. 11). То есть, в разные моменты времени она будет находиться на различных участках кривой.

На рисунке отмечены две крупные красные точки, они соответствуют фазам колебаний в моменты времени t1 и t2.

Что такое период колебаний амплитуда колебаний. Смотреть фото Что такое период колебаний амплитуда колебаний. Смотреть картинку Что такое период колебаний амплитуда колебаний. Картинка про Что такое период колебаний амплитуда колебаний. Фото Что такое период колебаний амплитуда колебаний

А начальная фаза на графике колебаний выглядит, как место, в котором находится точка, лежащая на кривой колебаний, в момент времени t=0. На рисунке дополнительно присутствует одна мелкая красная точка, она соответствует начальной фазе колебаний.

Как определить фазу с помощью формулы

Пусть нам известны величины \(\large \omega\) — циклическая частота и \(\large \varphi_<0>\) — начальная фаза. Во время колебаний эти величины не изменяются, то есть, являются константами.

Время колебаний t будет величиной переменной.

Фазу \(\large \varphi\), соответствующую любому интересующему нас моменту t времени, можно определить из такого уравнения:

Левая и правая части этого уравнения имеют размерность угла (т. е. измеряются в радианах, или градусах). А подставляя вместо символа t в это уравнение интересующие нас значения времени, можно получать соответствующие им значения фазы.

Что такое разность фаз

Обычно понятие разности фаз применяют, когда сравнивают два колебательных процесса между собой.

Рассмотрим два колебательных процесса (рис. 12). Каждый имеет свою начальную фазу.

\( \large \varphi_<01>\) – для первого процесса и,

\( \large \varphi_<02>\) – для второго процесса.

Что такое период колебаний амплитуда колебаний. Смотреть фото Что такое период колебаний амплитуда колебаний. Смотреть картинку Что такое период колебаний амплитуда колебаний. Картинка про Что такое период колебаний амплитуда колебаний. Фото Что такое период колебаний амплитуда колебаний

Определим разность фаз между первым и вторым колебательными процессами:

Величина \(\large \Delta \varphi \) показывает, на сколько отличаются фазы двух колебаний, она называется разностью фаз.

Как связаны характеристики колебаний — формулы

Движение по окружности и колебательное движение имеют определенную схожесть, так как эти виды движения могут быть периодическими.

Поэтому, основные формулы, применимые для движения по окружности, подойдут так же, для описания колебательного движения.

\( \large T \left( c \right) \) – время одного полного колебания (период колебаний);

\( \large N \left( \text <шт>\right) \) – количество полных колебаний;

\( \large t \left( c \right) \) – общее время для нескольких колебаний;

\(\large \nu \left( \text <Гц>\right) \) – частота колебаний.

\(\large \displaystyle \omega \left( \frac<\text<рад>> \right) \) – циклическая (круговая) частота колебаний.

\(\large \varphi_ <0>\left( \text <рад>\right) \) — начальная фаза;

\(\large \varphi \left( \text <рад>\right) \) – фаза (угол) в выбранный момент времени t;

\(\large \Delta t \left( c \right) \) — интервал времени, на который относительно точки t=0 сдвинуто начало ближайшего периода.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *