Что такое период полураспада изотопа
Почему термин «период полураспада» используется для измерения радиоактивности?
Термин «период полураспада» уместен из-за экспоненциальной и квантовой природы радиоактивного распада, что делает невозможным точно предсказать, когда распадется один атом радиоактивного материала. Вместо этого измерение периода полураспада относится к статистике, представляющей время, необходимое для того, чтобы данное количество вещества уменьшилось наполовину в результате распада.
Для радиоактивных материалов это может установить, сколько времени пройдет, прежде чем материал перестанет представлять угрозу; для других материалов, таких как углерод-14, период полураспада может помочь в радиометрической датировке (углеродная датировка), для определения приблизительного возраста древних останков! Хотя это может показаться немного сложным для тех, кто не знаком с ядерной химией, это полезная и универсальная концепция для полного понимания.
Что такое радиоактивный распад?
Как вы, возможно, знаете, атомные элементы могут иметь различные изотопы, которые являются разными версиями элемента, имеющего одинаковое количество протонов, но разное количество нейтронов, содержащихся в ядре. Таким образом, атомная масса этих изотопов будет различной, как и некоторые из их физических свойств, но их химические свойства в целом одинаковы. Каждый химический элемент имеет один или несколько изотопов, некоторые из которых стабильны, а другие нестабильны. Атомное ядро считается стабильным, когда силы, удерживающие протоны и нейтроны вместе, сильнее сил, пытающихся их разделить (сильная атомная сила против электростатического отталкивания).
Простейшим примером этого является водород, который имеет два стабильных изотопа — протий (1 протон) и дейтерий (известный как «тяжелый водород», с 1 протоном и 1 нейтроном). Однако водород также имеет нестабильный природный изотоп, известный как тритий, который имеет 1 протон и 2 нейтрона. Нестабильность этого радиоизотопа означает, что он хочет распасться на другую, более стабильную форму.
Подобно человеческим существам, борющимся с романтикой, атомные ядра постоянно ищут стабильности и могут достичь ее с помощью процесса радиоактивного распада. Если внутри атомного ядра слишком много энергии, чтобы оставаться вместе, то ядро разрушится, потеряв по крайней мере некоторые части (нуклоны), которые делают его нестабильным. Исходные нестабильные ядра будут называться “родительскими”, в то время как более стабильные ядра, получившиеся в результате, будут называться «дочерними». Дочерние ядра все еще могут быть радиоактивными (нестабильными), хотя и более стабильными, чем раньше, и поэтому могут подвергнуться дальнейшему распаду. Более крупные элементы с большим количеством нуклонов, а именно любой элемент с атомным номером выше 83, имеют нестабильное ядро и, следовательно, радиоактивны. Однако интенсивность этой радиоактивности может сильно различаться.
Существует три типа радиоактивного распада, которые происходят в зависимости от типа нестабильности, обнаруженной в ядре.
Альфа-распад
В случае альфа-распада ядро будет искать стабильности, испуская альфа-частицу (два протона и два нейтрона, по сути, атом гелия). После этого типа распада атомный номер уменьшится на 2. Уран-238 является наиболее распространенным изотопом урана, встречающимся в природе, и, хотя его период полураспада составляет 4,5 миллиарда лет, когда атомное ядро распадается, он выделяет альфа-частицу, которая становится торием-234. Альфа-частицы не могут проникать во многие вещества (и их можно остановить листом бумаги!), Но они по-прежнему высвобождаются с большой скоростью и могут быть опасны для живых клеток, поскольку они могут сбивать электроны с близлежащих атомов. Следовательно, альфа-частицы опасны при проглатывании или попадании в организм, но обычно считаются безвредными для человека, поскольку они не могут проникнуть даже через одежду человека!
Бета-распад
Гамма-распад
Что такое период полураспада?
Теперь, когда у вас есть понимание радиоактивного распада, идея периода полураспада становится намного проще. Поскольку радиоактивные изотопы распадаются на более стабильные формы в результате альфа-, бета- и гамма-распада, количество исходного «родительского» материала уменьшается. Сейчас невозможно точно сказать, когда данное ядро подвергнется радиоактивному распаду, так как атомы невероятно малы и непредсказуемы. Однако, если рассматривать в больших количествах (миллионы, миллиарды или триллионы отдельных атомов), то можно измерить статистическую вероятность радиоактивного распада.
Квантовое поведение отдельных атомов невозможно оценить, но поведение большой группы атомов зависит от вероятности и, следовательно, обеспечивает надежный уровень статистической достоверности. В ядерной физике период полураспада является полезной мерой для определения того, как быстро радиоактивный изотоп будет подвергаться радиоактивному распаду или как долго стабильный изотоп будет оставаться нетронутым. Пожалуй, проще всего понять период полураспада на примере. Давайте рассмотрим период полураспада радиоизотопа никель-63, который распадается до меди-63 посредством бета-распада.
Когда радиоактивный изотоп распадается на стабильный изотоп «дочернего» материала, он больше не распадается и не испускает больше излучения. Таким образом, со временем один и тот же радиоактивный материал станет менее опасным, поскольку он не будет излучать столько альфа-, бета- или гамма-частиц. После 10 периодов полураспада уровень радиоактивности образца составит менее одной тысячной от исходной, и, как правило, он считается полностью безвредным.
Когда вы начинаете смотреть на вещи в атомном или квантовом масштабе, становится намного труднее быть точным по отношению к отдельному атому. Когда смотришь на один атом урана-235, невозможно узнать, когда он подвергнется радиоактивному распаду и станет единым атомом тория-231. Однако, наблюдая миллион атомов урана-235, с точной статистической вероятностью можно сказать, что половина атомов испытает альфа-распад в течение 703 миллионов лет!
ПЕРИОД ПОЛУРАСПАДА
Смотреть что такое «ПЕРИОД ПОЛУРАСПАДА» в других словарях:
ПЕРИОД ПОЛУРАСПАДА — промежуток времени, в течение к рого исходное число радиоактивных ядер в среднем уменьшается вдвое. При наличии N0 радиоактивных ядер в момент времени t=0 их число N убывает во времени по закону: N=N0e lt, где l постоянная радиоактивного распада … Физическая энциклопедия
ПЕРИОД ПОЛУРАСПАДА — время, за которое разлагается половина исходного радиоактивного материала или пестицида. Экологический энциклопедический словарь. Кишинев: Главная редакция Молдавской советской энциклопедии. И.И. Дедю. 1989 … Экологический словарь
ПЕРИОД ПОЛУРАСПАДА — промежуток времени T1/2, в течение которого количество нестабильных ядер уменьшается вдвое. T1/2 = 0,693/λ = 0,693·τ, где λ постоянная радиоактивного распада; τ среднее время жизни радиоактивного ядра. См. также Радиоактивность … Российская энциклопедия по охране труда
период полураспада — Время, в течение которого активность радиоактивного источника спадает до половинного значения. [Система неразрушающего контроля. Виды (методы) и технология неразрушающего контроля. Термины и определения (справочное пособие). Москва 2003 г.]… … Справочник технического переводчика
Период полураспада — квантовомеханической системы (частицы, ядра, атома, энергетического уровня и т. д.) время T½, в течение которого система распадается с вероятностью 1/2. Если рассматривается ансамбль независимых частиц, то в течение одного периода … Википедия
период полураспада — радионуклида (Т1/2), промежуток времени, за который число радиоактивных ядер в среднем уменьшается вдвое. * * * ПЕРИОД ПОЛУРАСПАДА ПЕРИОД ПОЛУРАСПАДА радионуклида (T1/2), промежуток времени, за который первоначальное число радиоактивных атомов… … Энциклопедический словарь
период полураспада — pusėjimo trukmė statusas T sritis fizika atitikmenys: angl. half life; half life period; half value time vok. Halbwertszeit, f; Rückenhalbwertsdauer, f; Rückenhalbwertzeit, f rus. время полураспада, n; время полуспада, n; период полураспада, m… … Fizikos terminų žodynas
период полураспада — skilimo pusėjimo trukmė statusas T sritis fizika atitikmenys: angl. decay half time; decay period vok. Halbwertszeit des radioaktiven Zerfalls, f rus. время полураспада, m; период полураспада, m pranc. période de demi vie, f; période de… … Fizikos terminų žodynas
ПЕРИОД ПОЛУРАСПАДА — (Т0,5) период распада в почве и др. средах. Чаще всего данное значение характеризует потерю веществом пестицидных свойств на 50% … Пестициды и регуляторы роста растений
период полураспада — pusėjimo trukmė statusas T sritis Standartizacija ir metrologija apibrėžtis Vidutinis laiko tarpas, per kurį skyla pusė visų radioaktyviojo nuklido bandinio atomų. atitikmenys: angl. half life; half life period; half value time vok. Halbperiode,… … Penkiakalbis aiškinamasis metrologijos terminų žodynas
Наверное, нет на земле такого человека, который не слышал бы об изотопах. Но далеко не все знают, что это такое. Особенно пугающе звучит словосочетание «радиоактивные изотопы». Эти непонятные химические элементы нагоняют ужас на человечество, но на самом деле они не так страшны, как это может показаться на первый взгляд.
Определение
Чтобы разобраться с понятием радиоактивных элементов, необходимо для начала сказать, что изотопы – это образцы одного и тот же химического элемента, но с разной массой. Что это значит? Вопросы исчезнут, если для начала мы вспомним строение атома. Состоит он из электронов, протонов и нейтронов. Число первых двух элементарных частиц в ядре атома всегда постоянно, тогда как нейтроны, имеющие собственную массу, могут встречаться в одном и том же веществе в разных количествах. Это обстоятельство и порождает разнообразие химических элементов с разными физическими свойствами.
Теперь мы можем дать научное определение исследуемому понятию. Итак, изотопы – это совокупный набор похожих по свойствам химических элементов, но имеющих разную массу и физические свойства. Согласно более современной терминологии, они носят название плеяды нуклеотидов химического элемента.
Немного истории
В начале прошлого века ученые обнаружили, что у одного и того же химического соединения в разных условиях могут наблюдаться разные массы ядер электронов. С чисто теоретической точки зрения, такие элементы можно было посчитать новыми и начать заполнять ими пустые клеточки в периодической таблице Д. Менделеева. Но свободных ячеек в ней всего девять, а новые элементы ученые открывали десятками. К тому же и математические подсчеты показали, что обнаруженные соединения не могут считаться ранее не известными, ведь их химические свойства полностью соответствовали характеристикам уже существующих.
После длительных обсуждений было решено назвать эти элементы изотопами и помещать их в одну клеточку с теми, ядра которых содержат с ними одинаковое количество электронов. Ученым удалось определить, что изотопы – это всего лишь некоторые вариации химических элементов. Однако причины их возникновения и длительность жизни изучались еще почти целое столетие. Даже в начале XXI века утверждать, что человечество знает абсолютно все об изотопах, нельзя.
Стойкие и нестойкие вариации
Каждый химический элемент имеет несколько изотопов. Из-за того, что в их ядрах есть свободные нейтроны, они не всегда вступают в стабильные связи с остальными составляющими атома. Через некоторое время свободные частицы покидают ядро, из-за чего меняется его масса и физические свойства. Так образуются другие изотопы, что ведет в конце концов к образованию вещества с равным количеством протонов, нейтронов и электронов.
Те вещества, которые распадаются очень быстро, называются радиоактивными изотопами. Они выпускают в пространство большое количество нейтронов, образующих мощное ионизирующее гамма-излучение, известное своей сильной проникающей способностью, которая негативно влияет на живые организмы.
Более стойкие изотопы не являются радиоактивными, поскольку количество выделяемых ими свободных нейтронов не способно образовывать излучения и существенно влиять на другие атомы.
Достаточно давно учеными была установлена одна важная закономерность: у каждого химического элемента есть свои изотопы, стойкие или радиоактивные. Интересно, что многие из них были получены в лабораторных условиях, а их присутствие в естественном виде невелико и не всегда фиксируется приборами.
Распространение в природе
В естественных условиях чаще всего встречаются вещества, масса изотопа которых напрямую определяется его порядковым числом в таблице Д. Менделеева. К примеру, водород, обозначаемый символом Н, имеет порядковый номер 1, а его масса равна единице. Изотопы его, 2Н и 3Н, в природе встречаются крайне редко.
Даже человеческий организм имеет некоторое количество радиоактивных изотопов. Попадают они внутрь через пищу в виде изотопов углерода, который, в свою очередь, впитывается растениями из почвы или воздуха и переходит в состав органических веществ в процессе фотосинтеза. Поэтому и человек, и животные, и растения излучают определенный радиационный фон. Только он настолько низкий, что не мешает нормальному функционированию и росту.
Источниками, которые способствуют образованию изотопов, выступают внутренние слои земного ядра и излучения из космоса.
Как известно, температура на планете во многом зависит от ее горячего ядра. Но только совсем недавно стало понятно, что источником этого тепла выступает сложная термоядерная реакция, в которой участвуют радиоактивные изотопы.
Распад изотопов
Поскольку изотопы – это нестойкие образования, можно предположить, что они по прошествии времени всегда распадаются на более постоянные ядра химических элементов. Это утверждение верно, поскольку ученым не удалось обнаружить в природе огромного количества радиоактивных изотопов. Да и большинство из тех, которые были добыты в лабораториях, просуществовали от пары минут до нескольких дней, а потом снова превратились в обычные химические элементы.
Но есть в природе и такие изотопы, которые оказываются очень устойчивыми к распаду. Они могут существовать миллиарды лет. Образовались такие элементы в те далекие времена, когда земля еще формировалась, а на ее поверхности не было даже твердой коры.
Радиоактивные изотопы распадаются и вновь образуются очень быстро. Поэтому с той целью, чтобы облегчить оценку стойкости изотопа, учеными было принято решение рассматривать категорию периода его полураспада.
Период полураспада
Не всем читателям может быть сразу понятно, что имеется в виду под этим понятием. Определим же его. Период полураспада изотопа – это время, за которое перестанет существовать условная половина взятого вещества.
Это не означает, что оставшаяся часть соединения будет уничтожена за такое же количество времени. Применительно к этой половине необходимо рассматривать иную категорию – период времени, за который исчезнет ее вторая часть, то есть четверть изначального количества вещества. И такое рассмотрение продолжается до бесконечности. Можно предположить, что время полного распада изначального количества вещества посчитать просто невозможно, поскольку этот процесс практически бесконечен.
Однако ученые, зная период полураспада, могут определить, какое количество вещества существовало вначале. Эти данные успешно используются в смежных науках.
В современном научном мире понятие полного распада практически не используется. Относительно каждого изотопа принято указывать время его полураспада, которое варьирует от нескольких секунд до многих миллиардов лет. Чем меньше показатель полураспада, там большее излучение исходит от вещества и тем выше его радиоактивность.
Обогащение ископаемых
В некоторых отраслях науки и техники использование относительно большого количества радиоактивных веществ считается обязательным. Но при этом в естественных условиях таких соединений совсем немного.
Известно, что изотопы – это нераспространенные варианты химических элементов. Количество их измеряется несколькими процентами от самой стойкой разновидности. Именно поэтому ученым необходимо проводить искусственное обогащение ископаемых материалов.
За годы исследований удалось узнать, что распад изотопа сопровождается цепной реакцией. Освобожденные нейтроны одного вещества начинают влиять на другое. В результате этого тяжелые ядра распадаются на более легкие и получаются новые химические элементы.
Это явление получило название цепной реакции, в результате которой можно получить более стойкие, но менее распространенные изотопы, которые в дальнейшем используются в народном хозяйстве.
Применение энергии распада
Также учеными было выяснено, что в ходе распада радиоактивного изотопа выделяется огромное количество свободной энергии. Ее количество принято измерять единицей Кюри, равной времени деления 1 г радона-222 за 1 секунду. Чем выше этот показатель, тем больше энергии выделяется.
Это стало поводом для разработки способов использования свободной энергии. Так появились атомные реакторы, в которые помещается радиоактивный изотоп. Большая часть энергии, выделяемой им, собирается и превращается в электричество. На основании этих реакторов создаются атомные станции, которые дают самое дешевое электричество. Уменьшенные варианты таких реакторов ставят на самоходные механизмы. Учитывая опасность аварий, чаще всего такими машинами выступают подводные лодки. В случае отказа реактора количество жертв на подлодке будет легче свести к минимуму.
Изотопы в медицине
В мирных целях распад радиоактивных изотопов научились использовать в медицине. Направив излучение на пораженный участок организма, можно приостановить течение болезни или помочь пациенту полностью излечиться.
Но чаще радиоактивные изотопы используют для диагностики. Все дело в том, что их движение и характер скопления проще всего зафиксировать по излучению, которое они производят. Так, в организм человека вводится определенное неопасное количество радиоактивного вещества, а по приборам медики наблюдают, как и куда оно попадет.
Таким образом проводят диагностику работы головного мозга, характера раковых опухолей, особенности работы желез внутренней и внешней секреции.
Применение в археологии
Известно, что в живых организмах всегда есть радиоактивный углерод-14, полураспад изотопа которого равен 5570 лет. Кроме того, ученные знают, какое количество этого элемента содержится в организме до момента его смерти. Это значит, что все спиленные деревья излучают одинаковое количество радиации. Со временем интенсивность излучения падает.
Это помогает археологам определить, как давно умерло дерево, из которого построили галеру или любой другой корабль, а значит, и само время строительства. Этот метод исследования получил название радиоактивного углеродного анализа. Благодаря ему ученым легче установить хронологию исторических событий.
Полураспад
Пери́од полураспа́да квантовомеханической системы (частицы, ядра, атома, энергетического уровня и т. д.) — время T½, в течение которого система распадается с вероятностью 1/2. Если рассматривается ансамбль независимых частиц, то в течение одного периода полураспада количество выживших частиц уменьшится в среднем в 2 раза. Термин применим только к экспоненциально распадающимся системам.
Не следует считать, что за два периода полураспада распадутся все частицы, взятые в начальный момент. Поскольку каждый период полураспада уменьшает число выживших частиц вдвое, за время 2T½ останется четверть от начального числа частиц, за 3T½ — одна восьмая и т. д. Вообще, доля выживших частиц (или, точнее, вероятность выживания p для данной частицы) зависит от времени t следующим образом:
.
Период полураспада, среднее время жизни τ и константа распада λ связаны следующими соотношениями:
.
Иногда период полураспада называют также полупериодом распада.
Содержание
Пример
Если обозначить для данного момента времени число ядер способных к радиоактивному превращению через N, а промежуток времени через t2 — t1, где t1 и t2 — достаточно близкие моменты времени (t1 9 и 1,389*10 10 лет. Легко подсчитать число атомов урана 238, испытывающих превращение в данном количестве урана, например, в одном килограмме в течение одной секунды. Количество любого элемента в граммах, численно равное атомному весу, содержит, как известно, 6,02*10 23 атомов. Поэтому согласно приведённой выше формуле n = KN(t2 — t1) найдём число атомов урана, распадающихся в одном килограмме в одну секунду, имея ввиду, что в году 365*24*60*60 секунд,
.
Вычисления приводят к тому, что в одном килограмме урана в течение одной секунды распадается двенадцать миллионов атомов. Несмотря на такое огромное число, всё же скорость превращения ничтожно мала. Действительно, в секунду распадается следующая часть урана:
.
Таким образом, из наличного количества урана в одну секунду распадается его доля, равная
.
Обращаясь опять к основному закону радиоактивного распада KN(t2 — t1), то есть к тому факту, что из наличного числа атомных ядер в единицу времени распадается всего одна и та же их доля и, имея к тому же ввиду полную независимость атомных ядер в каком-либо веществе друг от друга, можно сказать, что этот закон является статистическим в том смысле, что он не указывает какие именно атомные ядра подвергнутся распаду в данный отрезок времени, а лишь говорит об их числе. Несомненно, этот закон сохраняет силу лишь для того случая, когда наличное число ядер очень велико. Некоторые из атомных ядер распадутся в ближайший момент, в то время как другие ядра будут претерпевать превращения значительно позднее, поэтому когда наличное число радиоактивных атомных ядер сравнительно невелико, закон радиоактивного распада может и не выполняться во всей строгости.
Парциальный период полураспада
Если система с периодом полураспада T1/2 может распадаться по нескольким каналам, для каждого из них можно определить парциальный период полураспада. Пусть вероятность распада по i-му каналу (коэффициент ветвления) равна pi. Тогда парциальный период полураспада по i-му каналу равен
.
Парциальный имеет смысл периода полураспада, который был бы у данной системы, если «выключить» все каналы распада, кроме i-го. Так как по определению
, то
для любого канала распада.
Стабильность периода полураспада
Во всех наблюдавшихся случаях (кроме некоторых изотопов, распадающихся путём электронного захвата) период полураспада был постоянным (отдельные сообщения об изменении периода были вызваны недостаточной точностью эксперимента, в частности, неполной очисткой от высокоактивных изотопов). В связи с этим период полураспада считается неизменным. На этом основании строится определение абсолютного геологического возраста горных пород, а также радиоуглеродный метод определения возраста биологических останков.
Предположение об изменяемости периода полураспада используется креационистами, а также представителями т. н. «альтернативной науки» для опровержения научной датировки горных пород, остатков живых существ и исторических находок, с целью дальнейшего опровержения научных теорий, построенных с использованием такой датировки. (См., например, статьи Креационизм, Научный креационизм, Критика эволюционизма, Туринская плащаница).
Вариабельность постоянной распада для электронного захвата наблюдалась в эксперименте, но она лежит в пределах процента во всём доступном в лаборатории диапазоне давлений и температур. Период полураспада в этом случае изменяется в связи с некоторой (довольно слабой) зависимостью плотности волновой функции орбитальных электронов в окрестности ядра от давления и температуры. Существенные изменения постоянной распада наблюдались также для сильно ионизованных атомов (так, в предельном случае полностью ионизованного ядра электронный захват может происходить только при взаимодействии ядра со свободными электронами плазмы; кроме того, распад, разрешённый для нейтральных атомов, в некоторых случаях для сильно ионизованных атомов может быть запрещён кинематически). Все эти варианты изменения постоянных распада, очевидно, не могут быть привлечены для «опровержения» радиохронологических датировок, поскольку погрешность самого радиохронометрического метода для большинства изотопов-хронометров составляет более процента, а высокоионизованные атомы в природных объектах на Земле не могут существовать сколько-нибудь длительное время.
Поиск возможных вариаций периодов полураспада радиоактивных изотопов, как в настоящее время, так и в течение миллиардов лет, интересен в связи с гипотезой о вариациях значений фундаментальных констант в физике (постоянной тонкой структуры, константы Ферми и т. д.). Однако тщательные измерения пока не принесли результата — в пределах погрешности эксперимента изменения периодов полураспада не были найдены. Так, было показано, что за 4,6 млрд лет константа α-распада самария-147 изменилась не более чем на 0,75 %, а для β-распада рения-187 изменение за это же время не превышает 0,5 % [1] ; в обоих случаях результаты совместимы с отсутствием таких изменений вообще.