Что такое периодическое движение в физике определение
Переодическое движение
Среди разнообразных механических движений, совершающихся в природе и технике, встречаются такие, которые повторяются через равные промежутки времени. Движения такого рода называются периодическими. Промежуток времени, через который движение повторяется, называется периодом.
ПЕРИОДИЧЕСКОЕ ДВИЖЕНИЕ— движение тела, при к-ром его положение в пространстве и скорость повторяются через нек-рые равные промежутки времени.
Гармоническое колебание — колебания, при которых физическая (или любая другая) величина изменяется с течением времени по синусоидальному или косинусоидальному закону. Кинематическое уравнение гармонических колебаний имеет вид

где х — смещение (отклонение) колеблющейся точки от положения равновесия в момент времени t; А — амплитуда колебаний, это величина, определяющая максимальное отклонение колеблющейся точки от положения равновесия; ω — циклическая частота, величина, показывающая число полных колебаний происходящих в течение 2π секунд 

Свободными, или собственными колебаниями, называются колебания, которые происходят в системе предоставленной самой себе, после того как она была выведена внешним воздействием из состояния равновесия. Примером могут служить колебания шарика, подвешенного на нити.
Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет
Что такое периодическое движение в физике определение
Периодические процессы характеризуются последовательностью состояний, через которые проходит система в течение одного периода. Если эта последовательность точно повторяется через равные промежутки времени, то колебания называются незатухающими. При нарастающих или затухающих колебаниях периодически повторяются только определенные состояния системы, например прохождение колеблющегося тела через положение равновесия и т. п.
Среди множества различных незатухающих колебаний простейшим является гармоническое колебательное движение, описываемое функцией синуса или косинуса:
Во всех случаях, когда рассматривается одно колебание, можно выбрать начало отсчета времени так, чтобы 
Формула (4.1) описывает гармонические колебательные движения, происходящие вдоль какой-нибудь линии — отрезка прямой или кривой. В этом случае для определения положения колеблющегося тела достаточно задать только расстояние х от тела до положения равновесия. Колебательные системы, в которых возможно только одно
колебательное движение (вдоль одной линии), изображены на рис. 1.37; их называют колебательными системами с одной степенью свободы. Простой маятник (см. рис. 1.36, а) может совершать два независимых друг от друга колебания в двух взаимно перпендикулярных направлениях, поэтому его относят к колебательным системам, обладающим двумя степенями свободы. Пружинный маятник, изображенный на рис. 1.36, б, может колебаться в трех независимых направлениях и поэтому является колебательной системой с тремя степенями свободы.
Для описания колебательного движения сплошного твердого тела (рис. 1.38, а) удобнее измерять углы поворота а от равновесного состояния; углы, отсчитываёмые по одну сторону от 


Периодическое движение: вращение и колебание
Пока я смотрел прямо вверх (маятник приходился как раз надо мною), мне почудилось, что он двигается. Минуту спустя впечатление подтвердилось. Ход маятника был короткий и, разумеется, медленный. Несколько мгновений я следил за ним с некоторым страхом, но скорей с любопытством. Наконец, наскуча его унылым качанием, я решил оглядеться.
Э. По. Колодец и маятник
Теперь познакомимся с тем, что происходит, если тело движется прямолинейно и одновременно с этим участвует во вращательном движении. Представьте себе, что катится колесо. Мы уже говорили, что при этом его единственная точка, а именно центр, движется прямолинейно, а остальные, наряду с этим поступательным движением, движутся по окружности вокруг этого центра. Какие траектории будут описывать эти точки, например точка, находящаяся на ободе колеса? Рассмотрим это на графике, где по оси x отложим положение точки относительно места начала её движения, а по оси у – её высоту над землёй (рис. 55). Мы видим, что эта высота меняется в пределах от нуля до размеров диаметра колеса. По мере того как колесо катится всё дальше, высота положения точки на его ободе постепенно повышается, затем начинает плавно снижаться до нуля и снова постепенно повышаться. Такое движение называют периодическим.
Вращение.
Для того чтобы наблюдать периодические движения, необязательно, чтобы тела передвигались в пространстве вдоль прямой линии. В некоторых случаях достаточно, чтобы они просто вращались. В этом легко убедиться, посмотрев на обычные часы. Их стрелки вращаются вокруг оси, и при этом мы замечаем, что они периодически возвращаются в одну и ту же точку циферблата. Можно построить график, аналогичный предыдущему, но теперь по оси x отложить уже не расстояние, а время. По оси у отложим цифры, на которые указывает стрелка. Правда, может возникнуть проблема: как измерять отрезки времени? Этого нельзя сделать по нашим часам, поскольку с их помощью мы измеряем движение стрелок самих часов.
Рис. 55. Траектория движения точки оси и обода колеса при его качении
Для этой цели нужно воспользоваться другими часами, например песочными. Также можно считать свой пульс, как это делал Галилей, или просто довериться внутреннему ощущению времени, о котором мы говорили в предыдущей главе. В любом случае мы знаем, что время проходит, правильнее сказать, длится. И по мере того как оно длится, стрелки на циферблате часов меняют своё положение от 1 до 12, снова от 1 до 12 и так всё время, пока мы будем наблюдать. Но если часы имеют три стрелки – часовую, минутную и секундную, то они будут возвращаться в исходное положение, скажем, к цифре 1, через неодинаковое время. Секундной стрелке для этого понадобится 60 с, минутной – час, т. е. 3600 с, а часовой – 12 ч, т. е. 43 200 с. Это означает, что разные стрелки имеют различные периоды обращения, которые равны соответственно минуте, часу и 12 часам. Такое движение называют периодическим, и мы его уже обсуждали в предыдущем параграфе. По завершении цикла – полного оборота стрелки – она возвращается в исходное положение, и всё начинается сначала. Но это начало будет началом только с точки зрения этой стрелки, а с точки зрения других – процесс будет продолжаться. Если у нас есть часы с разными стрелками, мы можем не пользоваться для отсчёта никакими другими часами, а просто построить график, отложив по оси х показания минутной стрелки, а по оси у – секундной. Ровно через минуту секундная стрелка вернётся в исходное положение и начнёт отсчёт сначала, а минутная сдвинется только на одно деление и будет отсчитывать всё новые отрезки времени. Посмотрев на график, мы увидим, что на нём изображена периодическая функция. Через равные отрезки на оси х, соответствующие минуте, точка будет иметь одинаковые значения, если отсчитывать их по оси х. Мы получили периодическое движение с периодом , составляющим 1 мин.
Под периодическими процессами понимают такие изменения в системах, когда их положение или состояние через определённый промежуток времени возвращается к тому, которое уже имело место раньше. Самым наглядным периодическим процессом служит движение Земли вокруг своей оси и вокруг Солнца. С интервалом в 24 ч Солнце появляется над горизонтом, проходит через зенит и исчезает за другой точкой горизонта. С интервалом приблизительно в 365 дней меняется температура воздуха, распускаются и опадают листья, празднуется день рождения, начинается и кончается учебный год. Но эти примеры хотя и наглядны, но не совсем точны. Солнце сегодня восходит и заходит не совсем в тех точках, где оно это делало вчера, листья в этом году могут распуститься раньше или позже, чем в предыдущем, да и вообще Земля оборачивается вокруг Солнца не за 365 дней, а несколько медленнее. Так что такая периодичность, в отличие от периодичности точных физических процессов, имеет приблизительный характер. Но именно чередование времени суток и времён года послужило для человечества началом измерения времени, создания календаря и внесло порядок в хозяйственное и социальное устройство.
Колебания.
Математический маятник. Процесс колебания математического маятника выглядит следующим образом (рис. 56). Отведём груз на некоторое расстояние. Тогда на него будет действовать сила тяжести, направленная вертикально вниз, и сила натяжения нити. В результате сложения этих сил груз будет совершать движение по дуге. Оказавшись в самой низкой точке, он достигнет положения равновесия. Но он не останавливается, а по инерции продолжает своё движение по дуге, но уже поднимаясь вверх. Так как ускорения во время снижения и во время подъёма равны по модулю, высота этой точки будет в точности равна той, с которой маятник начал своё снижение. Поэтому весь процесс движения повторяется, но в обратном направлении. При отсутствии трения эти колебания будут продолжаться бесконечно.
Пружинный маятник. Пружинный маятник похож по принципу действия на математический, но вместо гравитации в нём действует сила упругости пружины. Если закрепить груз на горизонтальной пружине, а затем эту пружину растянуть, то сила упругости будет пропорциональна удлинению пружины (рис. 57). Под действием этой силы груз начнёт двигаться вверх к положению равновесия. Но, дойдя до точки равновесия, он не остановится, а будет по инерции продолжать двигаться в противоположную сторону, сжимая пружину. Упругая сила сжимаемой пружины сначала остановит груз, а потом заставит его двигаться в обратном направлении, пока он не вернётся в исходную точку.
Рис. 56. Разложение сил при колебании маятника
Там на груз опять будет действовать сила растянутой пружины, и колебательный процесс будет продолжаться.
период движения
Смотреть что такое «период движения» в других словарях:
ПЕРИОД — (греч. periodos путь кругом). 1) промежуток времени между двумя важными историческими событиями. 2) в астрономии то же, что цикл; в арифметике: число цифр, повторяющихся, в том же порядке, бесчисленное множество раз. 3) особенно развитое сложное… … Словарь иностранных слов русского языка
ПЕРИОД — периода, м. [греч. periodos] (книжн.). 1. Промежуток времени, в течение к–рого заканчивается какой–н. повторяющийся процесс (науч.). Синодический период обращения планеты (время, в течение к–рого планета совершает один полный оборот вокруг… … Толковый словарь Ушакова
период — а, м. période f. <лат. periodus<гр. periodos обход, круговращение, орбита небесного тела. 1. Промежуток времени, в который протекает та или иная часть общего процесса. БАС 1. Бывают в жизни его периоды во время которых выступает он из… … Исторический словарь галлицизмов русского языка
ДВИЖЕНИЯ ТЕКТОНИЧЕСКИЕ — механические (в основном) перемещения в земной коре и в верхней мантии (тектоносфере), вызывающие изменение структуры геол. теч. Д. т. обычно отражаются в рельефе земной поверхности. Они связаны с физико хим. процессами, происходящими на разных… … Геологическая энциклопедия
Период (определ. круг времени) — Период (от греч. períodos обход, круговращение, определённый круг времени), 1) промежуток времени, в течение которого совершается какой либо процесс. 2) Этап общественного развития, общественного движения. См. также Период в музыке, Период в… … Большая советская энциклопедия
ПЕРИОД — (от греческого periodos обход, круговращение, определенный круг времени), 1) промежуток времени, охватывающий какой либо законченный процесс. 2) Этап общественного развития, общественного движения … Современная энциклопедия
ПЕРИОД — (от греч. periodos обход круговращение, определенный круг времени), 1) промежуток времени, охватывающий какой либо законченный процесс.2) Этап общественного развития, общественного движения … Большой Энциклопедический словарь
ПЕРИОД ГРАФИКА — время занятия перегона парой поездов или группой чередующихся поездов, характерной для разных типов графика (парного, непарного, пачечного, пакетного). П. г. однопутной линии (фиг. 1) состоит из суммы времени занятия перегона в обоих направлениях … Технический железнодорожный словарь
Что такое периодическое движение в физике определение
Если положение автомобиля меняется относительно домов или деревьев, то говорят, что он движется относительно этих тел.
Путь- это длина траектории.
Перемещение- это вектор направленный из начального положение в конечное.
Виды механического движения.
Равномерное, неравномерное и прямолинейное движение.
По разным признакам можно выделить разные виды механического движения.
Равномерное движение встречается очень редко. Почти равномерно движется Земля вокруг Солнца, проходя приблизительно равные пути за одинаковое время.
Неравномерное движение- если тело проходит за равные промежутки времени разные пути.
При поступательном движении любая линия, проведенная на теле, будет перемещаться параллельно самой себе.
Если тело движется поступательно то его тоже можно считать материальной точкой.
Например, проведем несколько линий на игрушечном автомобиле и переместим его из одной точки в другую. На всех участках траектории автомобиль совершает поступательное движение.









