Что такое пид регулятор в частотнике
Преобразователь частоты и пид-регулятор — общая настройка
Для процессов системы требуется способность параметров к реагированию на внешнее действие и поддержание системных постоянных величин. Для примера, система насосов с клапанами отвода. Для каждого клапана поддержание потока в постоянном виде обеспечивает постоянное давление в трубах. Помпа в системе приводится в действие приводом, при открывании клапана скорость двигателя увеличивается и снижается при закрытии, чтобы поддерживать давление в трубах на одном уровне.
Настраивание ПИД-регулятора общего вида
Для такого поддержания давления существует прибор, который называется регулятором задания. Давление в трубах на датчике идет в сравнение с параметром заданного давления. Регулятор сравнивает системное давление с давлением задания, определяет задачу скорости для двигателя для изменения ошибки. Простой вид регулятора применяет план действий ПИД-регулирования. В нем применяются три составляющие типа регуляторов для удаления ошибки: дифференциальный, интегральный и пропорциональный регулятор.
Регулятор пропорционального типа
Такой регулятор – главный, скорость задается в прямой зависимости от ошибки. При применении пропорционального регулятора система будет иметь ошибку. Малые значения коэффициента регулятора пропорционального типа дают вялость системы, а высокие параметры к колебаниям и нестабильности системы.
Регулятор интегрального типа
Такой регулятор применяется для удаления ошибки. Скорость увеличится до удаления ошибки (снизится при негативной ошибке). Небольшие значения суммирующей составляющей слишком оказывают влияние на деятельность регулятора в общем. При установлении больших значений происходит промахивание системы, она функционирует с перерегулированием.
Регулятор дифференциального типа
Такой регулятор измеряет скорость корректировки ошибки, применяет для повышения системного быстродействия, увеличивает регуляторное быстродействие в общем. Во время увеличения быстродействия регулятора повышается перерегулирование. Это обуславливает к системной нестабильности. Во многих случаях составляющая дифференциальная становится равной нулю или близкой к наименьшему значению для того, чтобы предотвратить это состояние. Она бывает полезной в позиционирующей системе.
Работа регулятора в обратном и прямом действии
Множество регуляторов имеют принцип прямого действия. Повышение скорости двигателя приводит к повышению переменной величины процесса. Это случай в системе насосов, давление это величина переменная процесса. Повышение скорости двигателя обуславливает повышение давления. Во многих системах повышение скорости двигателя обуславливает к снижению параметра переменной процесса. Температура вещества, которое обдувается вентиляционной системой теплообменника – процессная переменная величина: при повышении скорости вентиляционной системы температура вещества снижается. В этом разе нужно применить регулятор действия обратного вида.
Настраивание ПИД-регулятора
Для моторной управляемости системы настраивание ПИД-регулятора бывает сложным процессом. Расскажем, какие шаги для настройки могут сделать проще эту процедуру.
Настраивание датчика на 20 миллиампер ПИД-регулированием
1. Действия в программном меню
Управляющая панель частотного преобразователя А300 состоит из 3-уровневой структуры:
2. Настраивание характеристик электромотора и определение направления момента
Установить метод управления частотником в значении Р0-02:
Установить характеристики номинального значения электромотора (применяйте параметры с таблички и паспорта электромотора):
После подсоединения и введения параметров нужно проконтролировать направление вращающего момента электромотора. После отключения меню программы на экране покажется 50 герц, клавишей «вниз» установите наименьшую частоту для задания направления вращающего момента. Для пуска мотора нажмите клавишу «пуск» (параметр Р0-02=0), определите направление момента вращения, затормозите мотор, нажав клавишу «стоп».
Если вращение не совпадает с направлением, то измените две любые фазы питания мотора (замену фаз производить при отключенном частотнике) или поменяйте параметр настройки Р0-09= (0-вперед, 1-назад). Еще раз проконтролируйте момент вращения, нажав клавишу «пуск», если направление момента вращения совпадает, то затормозите мотор, нажав клавишу «стоп». Нажмите клавишу «вверх» и возвратите настроенную частоту 50 герц.
3. Подсоединение датчика (выход на 20 миллиампер)
Переставить соединение «J1» в состояние «I».
4. Контроль обратной связи
Связь обратного вида (4 мА).
5.Как настраивать значение параметра ПИД-регулирования.
Пример установки значения:
Подсоединен датчик давления на 16 бар с сигналом выхода от 4 до 20 мА. Для давления в 10 бар нужно установить значение
Пример использования регулирования ПИД
Данные
Наружные подключения
Датчик обратной связи подсоединен к токовому входу аналогового типа, датчик значения уставки к входу аналогового типа напряжения.
Обратная связь
Датчик связи определен по токовому выходу, входом связи обратного вида применяется токовый вход. Задается РR.10-00=02 (обратная связь с минусом по входу, повышение частоты выхода, повышает давление).
Отградуированная характеристика датчика
Сигнал связи обратного вида в масштабе
Вход связи обратного вида не создает масштаб по усилению и смещению. Применяя параметр PR10-01 можно изменять значение сигнала связи обратного вида в расчетах.
Применение параметра PR10-01 для корректировки значения сигнала связи обратного типа.
Значением PR10-01 можно корректировать значение сигнала связи обратного вида, который применяется в вычислениях. Интервал пропорциональности 0-10, по настройкам завода 1.
Сигнал связи обратного вида повышается в 2 раза перед установкой в ПИД-регулятор. Это равно снижению интервала входа в 2 раза.
Сигнал связи обратного вида снижается в 2 раза перед установкой в регулятор, это эквивалентно увеличению интервала входа в 2 раза. Сейчас интервал ограничен значением датчика.
Пример установки значения параметра PR10-01 (масштаб усиления обратной связи).
Интервал действия датчика:
Наибольшее давление функционирования: 2000Ра.
Это будет равно: 2000Ра –(-1000Ра)
Если интервал действия не больше 2000Ра с датчиком, то величина параметра
Формула вычисления параметра PR10-01.
Наибольший сигнал датчика: MaxVal
Наименьший сигнал датчика: MinVal
Наибольший нужный сигнал связи обратного вида MaxFBVal
Величина значения ПИД (установленная частота).
Установленную частоту можно изменять операторами наклона и перемещения опции преобразования.
Направление момента вращения установки вентилятора не изменяется, лучше применять AVI вход с заданием значения PR 02-00=01.
PR10-01 (наибольшая частота).
Задать в PR01-00 величину наибольшей частоты механизма вентиляции (PR01-00 = 50 герц).
Наименьшая частота.
Наименьшая частота не оказывает влияния на действие регулировки.
Наклон и перемещение опции преобразования.
Задать PR04-00 AVI перемещение интервала.
PR04-01 AVI полярность.
PR04-02 AVI корректировка наклона.
Вращение производится в одну сторону, PR04-03 = 0 (по заводским настройкам).
Величина уставки.
Для установки величины входа интервал частоты рассчитывается 0-100%.
Установка значения уставки.
При функционировании вентилятора давлению в 1500 Ра равен сигнал датчика 10,67 мА. Величине уставки 1500 Ра равна частота выхода 42%*50 герц = 21 герц и 84%*50 герц = 42 герц.
Можно устанавливать значение в Ра. Если 100% интервала равно 2000 Ра, то при коэффициенте 00-05 = 2000/Fmax = 2000/50 = 40, установленная величина 1500 и задается 1500 Ра.
Интервал частоты выхода.
Верхняя граница частоты выхода при регулировке определяется формулой:
ПИД-регулирование
Ускорение – замедление.
При взаимодействии с регулированием ПИД нужно время ускорения и замедления устанавливать минимальным для качественной регулировки.
Советы по настраиванию:
ПИД-регуляторы в частотных преобразователях «Веспер» — высокая точность процесса автоматического регулирования
Преобразователи частоты, как устройства управления асинхронными электродвигателями, — электронные приборы на базе микропроцессорных устройств со своим уникальным программным обеспечением. Они заметно улучшают работу
электропривода и, благодаря встроенному программному модулю «ПИД- регулятор», позволяют оптимизировать работу частотно-регулируемого электропривода в режиме автоматического регулирования параметров технологических процессов.
Благодаря продуманному интерфейсу и упорядоченной структуре меню специалист любого уровня сможет запустить ПЧ «Веспер». Но, чтобы уйти от типичных ошибок при интеграции ПЧ в систему автоматического регулирования, необходимо ознакомиться с принципами работы ПИД-регуляторов и этапами настройки.
Принцип работы ПИД- регулятора
Принцип пропорционально-интегрально-дифференциального (ПИД) регулирования основан на формировании управляющего сигнала, являющегося суммой трёх слагаемых (составляющих):
Эти составляющие формируются соответствующими блоками программного модуля ПИД-регулятора.
ПИД регулятор на базе микропроцессорных устройств, как и любая система автоматического регулирования с обратной связью, предусматривает наличие двух входов и одного выхода: вход сигнала обратной связи с датчика технологического параметра и вход сигнала задания требуемой величины технологического параметра. Выходной сигнал ПИД-регулятора формируется на программном уровне в результате математических вычислений с тремя слагаемыми (P, I, D):
Структура ПИД-регулятора — основные особенности
Контур П-регулятора.
Коэффициент (KP) задаётся численным значением параметра пропорциональной составляющей.
Контур ПИ-регулятора
Чтобы повысить точность (скомпенсировать статическую ошибку) и стабилизировать систему, в структуру вводится программный блок интегральной составляющей (I)
Интегральная составляющая вычисляется по формуле:
т. е. пропорциональна интегралу по времени от отклонения регулируемой величины. Она позволяет регулятору со временем учесть статическую ошибку регулирования и устранить её.
Если система не испытывает внешних возмущений, то через некоторое время значение технологического параметра стабилизируется на заданном уровне, сигнал пропорциональной составляющей будет равен нулю, а выходной сигнал будет полностью обеспечиваться интегральной составляющей. Тем не менее, интегральная составляющая также может приводить к автоколебаниям при неправильном выборе её коэффициента.
Таким образом, если использовать два программных блока — пропорциональный и интегральный, то точность процесса регулирования, а соответственно и точность поддержания значения технологического параметра значительно повысится. Степень компенсации статической ошибки регулирования прямо пропорциональна значению коэффициента пропорциональности Ki. Но чем он выше, тем медленнее будут протекать переходные процессы: при очередном запуске системы и при внешних возмущениях. ПИ-регулятор подходит для систем автоматического регулирования, где не важна скорость её реакции. В большинстве случаев для решения задач в замкнутых системах автоматического регулирования вполне достаточно использовать только ПИД- регулятор.
Контур ПИД-регулятора
Чтобы ускорить переходный процесс и еще больше стабилизировать систему, вводится программный блок дифференциальной составляющей. Результирующее значение вычисляется по формуле:
Дифференциальная составляющая пропорциональна скорости изменения отклонения текущего значения технологического параметра от заданного и предназначена для компенсирования подобных отклонений, которые прогнозируются в будущем. Отклонения могут быть вызваны внешними возмущениями или запаздыванием воздействия регулятора на систему автоматического регулирования.
Задействовать сразу три контура (P + I + D) особенно важно при необходимости увеличения быстродействия системы автоматического регулирования. ПИД-регулирование частотного преобразователя будет наиболее полезно в высокодинамичных системах, когда требуется высокая точность, стабильность и скорость управляющего сигнала. Дифференциальный канал чувствителен к ВЧ-помехам. Поэтому, при построении системы регулирования, необходимо принять меры для защиты от помех.
Преобразователь частоты в системе автоматического регулирования
Преобразователи частоты (далее ПЧ) с программным модулем «ПИД-регулятор» универсальны в применении, но особой популярностью они пользуются в гидравлических системах для поддержания постоянного давления жидкости вне зависимости от её расхода.
Типичное решение с применением ПЧ в режиме ПИД-регулирования для поддержания постоянного давления в напорном трубопроводе строится по следующему принципу:
Т.О. давление в напорном трубопроводе останется на заданном уровне и не будет зависеть от расхода.
Пусконаладка ПЧ «Веспер» в режиме ПИД-регулирования
Процесс настройки ПИД-регулятора состоит из нескольких этапов. В целом схема управления типична и состоит в основном из задания уставки и настройки оптимальных значений трех ПИД-коэффициентов.
Уставка (необходимый уровень давления для гидравлических систем) задается путем указания частоты. Показатели частоты вычисляются по формуле:
где FЗ — задание частоты, Гц;
P — необходимое давление в системе, бар;
Fmax — частота электросети на выходе, Гц;
Pmax — верхний диапазон чувствительности датчика, бар.
Для вычисления коэффициентов ПИД-регулятора применяются формулы, но на практике провести точный расчет всех этих значений крайне сложно. Вычислениям мешает нелинейность и нестационарность системы, отсутствие точных характеристик объекта управления. Поэтому настройку ПИД-регулятора частотного преобразователя зачастую проводят с использованием эмпирического и эвристического методов. Оптимальные значения подбираются опытным путем.
Также при настройке ПЧ необходимо указать параметры электропривода: номинальный ток, номинальное напряжение и прочие характеристики, необходимые для корректной работы ПЧ и всей системы автоматического регулирования в целом.
Подробные инструкции по настройке даны в технической документации к каждой модели ПЧ «Веспер». Можно запросить помощь по проведению пусконаладочных работ у технических специалистов компании ВЕСПЕР.
Использование частотных преобразователей (ПЧ) «Веспер» в режиме ПИД-регулирования
Cтатья поможет получить необходимую краткую информацию о принципе работы ПИД-регулятора и об использовании преобразователей частоты (ПЧ) в системах автоматического регулирования. В статье приведены практические рекомендации (схемы подключения, программирование, настройка) по применению различных моделей преобразователей частоты «Веспер» в системах автоматического регулирования. Материал основан на опыте эксплуатации преобразователей частоты компании «Веспер».
ООО «Веспер автоматика», г. Москва
В настоящее время преобразователи частоты стали достаточно широко распространенными приборами и применяются в различных отраслях промышленности, сельском хозяйстве, ЖКХ, быту и т. д. Их монтажом, пусконаладкой, эксплуатацией и ремонтом занимаются как высококвалифицированные специалисты, так и люди без специального образования по электроприводу.
Изложенный ниже материал является попыткой дать ответы на вопросы, наиболее часто возникающие в процессе настройки преобразователя частоты с ПИД-регулятором. Статья поможет специалистам различного уровня избежать характерных ошибок при монтаже и пусконаладке преобразователей частоты, используемых для работы в системах автоматического регулирования.
Причины, по которым не удается обеспечить удовлетворительную работу оборудования, обычно достаточно просты:
Статья поможет избежать подобных неприятностей. Техническому сотруднику, который впервые сталкивается с решением подобной задачи, целесообразно прочитать ее полностью. Для подготовленных специалистов, имеющих опыт настройки систем с ПИД-регулятором, возможно, будет полезна глава «Подключение и настройка преобразователей частоты “Веспер” в режиме ПИД-регулирования», где приведены типовые решения по применению различных моделей преобразователей частоты «Веспер» в системах автоматического регулирования.
Надеемся, данная статья принесет пользу электротехническому персоналу предприятий, но она не заменит руководства по эксплуатации и учебника по электроприводу.
Принцип работы ПИД-регулятора
Многие преобразователи частоты имеют функцию ПИД-регулирования (пропорционально-интегрально-дифференциального регулирования). ПИД-регулятор является одним из основных узлов замкнутой системы регулирования нужного параметра: давления, расхода, уровня, скорости, температуры и т. д.
В преобразователе частоты ПИД-регулятор имеет два входа (рис. 1). На один вход поступает сигнал задания необходимой величины параметра, этот сигнал еще называют уставкой. На второй – сигнал обратной связи от датчика о фактическом значении параметра. В зависимости от величины и знака рассогласования между этими сигналами на выходе ПИД-регулятора формируется сигнал, изменяющий выходную частоту преобразователя с целью максимально уравнять уставку и фактический уровень сигнала. Выходной сигнал ПИД-регулятора определяется величиной рассогласования (пропорциональная составляющая), длительностью рассогласования (интегральная составляющая) и скоростью изменения рассогласования (дифференциальная составляющая).
Рис. 1. Структурная схема ПИД-регулятора
Пропорциональная составляющая стремится устранить непосредственную ошибку в значении регулируемого параметра, наблюдаемую в данный момент времени. Значение этой составляющей прямо пропорционально отклонению измеряемой величины от уставки. Подобный регулятор называется пропорциональным, или П‑регулятором. Его выходной сигнал – это ошибка управления e(t), умноженная на коэффициент KP:
При использовании только пропорционального регулятора значение регулируемой величины никогда не устанавливается на заданном значении, и всегда будет иметь место статическая ошибка. По мере увеличения коэффициента пропорциональности растет точность и скорость отработки отклонения, но снижается устойчивость системы и может возникнуть колебательный процесс.
Для устранения статической ошибки в структуру регулятора вводят интегральную составляющую с коэффициентом KI :
Такой регулятор называется пропорционально-интегральным, или ПИ-регулятором. Выходной сигнал интегратора пропорционален накопленной ошибке, что обеспечивает нулевую ошибку в установившемся состоянии, но замедляет переходный процесс.
Для ускорения переходных процессов в структуру регулятора вводят дифференциальную составляющую с коэффициентом KD:
Такой регулятор называется пропорционально-интегрально-дифференцирующим, или ПИД-регулятором. Сигнал дифференциального канала наиболее важен при быстрых изменениях сигнала на входах регулятора и исчезает в установившемся режиме. Он позволяет реагировать не на само увеличение ошибки, а на скорость ее изменения. Главный недостаток дифференциального канала – большое влияние высокочастотных помех, например шумов измерений.
Преобразователь частоты в системе автоматического регулирования
Наиболее часто преобразователи частоты, работающие в режиме ПИД-регулирования, решают задачу поддержания постоянного давления в различных гидравлических системах. Рассмотрим для примера работу системы поддержания заданного давления жидкости в трубопроводе вне зависимости от ее расхода.
Для осуществления регулирования с использованием преобразователя частоты обычно строится замкнутая система (рис. 2). На ее вход подаются сигнал задания давления (уставка) и сигнал реального давления, получаемый с датчика обратной связи. Отклонение между реальным и заданным значениями преобразуется ПИД-регулятором в сигнал задания частоты для преобразователя. Под воздействием сигнала задания преобразователь изменяет скорость вращения электродвигателя насоса и стремится привести отклонение между заданным и реальным значением давления к нулю.
Рис. 2. Система автоматического поддержания заданного давления
В случае падения давления (например, вследствие увеличения расхода воды) ПИД-регулятор увеличит выходную частоту преобразователя частоты, что приведет к увеличению скорости вращения насоса, и давление в системе начнет повышаться. Если же давление окажется больше заданной величины (например, вследствие снижения расхода воды), ПИД-регулятор уменьшит выходную частоту и давление уменьшится. Таким образом, давление в системе поддерживается на заданной величине и не зависит от расхода.
Подключение и настройка преобразователей частоты «Веспер» в режиме ПИД-регулирования
Рассмотрим применение преобразователей частоты «Веспер» с встроенным ПИД-регулятором в системах автоматического регулирования. В качестве примера используем систему водоснабжения, в которой требуется поддерживать заданное давление независимо от расхода воды. Необходимый уровень давления задается в преобразователе частоты посредством установки задания частоты. Значение частоты рассчитывается по формуле:
где FЗ – задание частоты, Гц;
P – необходимое давление в системе, бар;
Fmax – максимальная выходная частота, Гц;
Pmax – максимальное давление датчика, бар.
Например, если необходимое давление в системе 5 бар и применяется датчик 0–10 бар, то необходимо установить заданную частоту:
Во всех приведенных ниже примерах используются одинаковые схемы управления преобразователями частоты:
Рис. 3. Датчик давления
5. Установить рассчитанное задание частоты FЗ с помощью кнопок на пульте управления.
Рис. 4. Схема подключения преобразователей частоты серии Е2-8300
Параметры 11-2 (пропорциональная величина ПИД), 11-3 (интегральная величина ПИД) и 11-4 (дифференциальная величина ПИД) соответствуют предустановленным значениям и при необходимости подбираются на конкретном объекте для оптимальной работы регулятора.
Пример 2
Подключение и настройка преобразователей частоты серии EI-7011 и EI-P7012 для работы в режиме ПИД-регулирования.
4. Установить рассчитанное задание частоты FЗ с помощью кнопок на пульте управления.
Параметры CD‑086 (пропорциональная величина ПИД), CD‑087 (интегральная величина ПИД) и CD‑088 (дифференциальная величина ПИД) соответствуют предустановленным значениям и при необходимости подбираются на конкретном объекте для оптимальной работы регулятора.
Измеренную преобразователем частоты величину давления (приведенную к частоте 50 Гц) можно проконтролировать с помощью параметра монитора U‑13. Например, для датчика 0–10 бар величина давления 4 бар будет иметь вид «020 Гц».
Рис. 5. Схема подключения преобразователей частоты серии EI‑7011 и EI-P7012
Пример 3
Подключение и настройка преобразователей частоты серии E3-9100 для работы в режиме ПИД-регулирования.
1. Подключить преобразователь частоты согласно рис. 6.
2. Установить переключатель SW1 в положение «NPN».
3. Установить переключатель SW2 в положение «I».
4. Запрограммировать следующие параметры:
Параметры C‑62 (пропорциональная величина ПИД), C‑63 (интегральная величина ПИД) и C‑66 (дифференциальная величина ПИД) соответствуют предустановленным значениям и при необходимости подбираются на конкретном объекте для оптимальной работы регулятора.
Измеренную преобразователем частоты величину давления (приведенную к частоте 50 Гц) можно проконтролировать в режиме мониторинга состояния ПЧ. Например, для датчика 0–10 бар величина давления 4 бар будет иметь вид «d 20.0».
Рис. 6. Схема подключения преобразователей частоты серии E3-9100
Пример 4
Подключение и настройка преобразователей частоты серии EI-9011 для работы в режиме ПИД-регулирования.
1. Подключить преобразователь частоты согласно рис. 7.
2. Установить переключатель J1 в верхнее положение.
3. Запрограммировать следующие параметры:
Параметры B5-02 (пропорциональная величина ПИД), B5-03 (интегральная величина ПИД) и B5-05 (дифференциальная величина ПИД) соответствуют предустановленным значениям и при необходимости подбираются на конкретном объекте для оптимальной работы регулятора.
Измеренную преобразователем частоты величину давления можно проконтролировать с помощью параметра монитора U1-16. Величина отображается в процентах от максимального давления датчика. Например, для датчика 0–10 бар величина давления 4 бар будет иметь вид «40.0».
Общие рекомендации по настройке преобразователей частоты в системе автоматического регулирования
Процесс настройки ПИД-регулятора состоит в основном из задания уставки и оптимальных значений указанных трех коэффициентов. Существуют математические методы вычисления оптимальных коэффициентов ПИД-регулятора исходя из обеспечения наибольшей устойчивости системы, однако на практике настройка регулятора часто проводится эмпирическим методом. Приведенные ниже рекомендации могут оказать практическую помощь в настройке системы ПИД-регулирования.
Для уменьшения статической ошибки и ускорения реакции системы необходимо увеличить пропорциональную составляющую. Следует помнить, что чрезмерное увеличение коэффициента усиления пропорционального регулятора приводит к автоколебаниям и к неустойчивой работе системы регулирования.
Для устранения статической ошибки используют интегральный регулятор, в котором, изменяя интегральный коэффициент, получают требуемую точность и стабильность регулирования. Однако при больших значениях интегральной составляющей время реакции на возмущающее воздействие может быть значительным.
Дифференциальная составляющая ПИД-регулятора используется в высокодинамичных системах регулирования скорости, положения, синхронизации и т. п. Поэтому во многих случаях используются только ПИ-регуляторы, которых вполне достаточно для решения большинства задач, возникающих в замкнутых системах регулирования.
Также при настройке преобразователей частоты необходимо задавать общие параметры электропривода: номинальный ток электродвигателя, номинальное напряжение электродвигателя, значение питающего напряжения и другие, необходимые для корректной работы преобразователя частоты и всей системы.
Надеемся, изложенный материал принес вам пользу и основной цели мы достигли: показали на практике, что настройка преобразователей частоты «Веспер» в режиме ПИД-регулирования не представляет сложности и доступна пользователю даже без специального образования. В случаях, когда указанной информации окажется недостаточно, следует обратиться к технической документации на преобразователь частоты либо за консультацией к техническим специалистам компании «Веспер».
Статья опубликована в журнале «ИСУП» №1(67)_2017