Что такое планирование эксперимента
Планирование эксперимента
Планирование эксперимента (англ. experimental design techniques) — комплекс мероприятий, направленных на эффективную постановку опытов. Основная цель планирования эксперимента — достижение максимальной точности измерений при минимальном количестве проведенных опытов и сохранении статистической достоверности результатов.
Планирование эксперимента применяется при поиске оптимальных условий, построении интерполяционных формул, выборе значимых факторов, оценке и уточнении констант теоретических моделей и др.
История
Планирование эксперимента возникло в 20-х годах XX века из потребности устранить или хотя бы уменьшить систематические ошибки в сельскохозяйственных исследованиях путем рандомизации условий проведения эксперимента. Процедура планирования оказалась направленной не только на уменьшение дисперсии оцениваемых параметров, но также и на рандомизацию относительно сопутствующих, спонтанно изменяющихся и неконтролируемых переменных. В результате удалось избавится от смещения в оценках.
С 1918 г. Р. Фишер начал свою известную серию работ на Рочемстедской агробиологической станции в Англии. В 1935 году появилась его монография «Design of Experiments», давшая название всему направлению. В 1942 году А. Кишен рассмотрел планирование эксперимента по латинским кубам, которое явилось дальнейшим развитием теории латинских квадратов. Затем Р. Фишер независимо опубликовал сведения об ортогональных гипер-греко-латинских кубах и гипер-кубах. Вскоре после этого в 1946 г. Р. Рао рассмотрел их комбинаторные свойства. Дальнейшему развитию теории латинских квадратов посвящены работы Х. Манна (1947—1950 гг).
Первое глубокое математическое исследование блок-схемы выполнено Р. Боузом в 1939 г. Вначале была разработана теория сбалансированных неполноблочных планов (BIB-схемы). Затем Р. Боуз, К. Нер и Р. Рао обобщили эти планы и разработали теорию частично сбалансированных неполноблочных планов (РBIB-схемы). С тех пор изучению блок-схем уделяется большое внимание как со стороны специалистов по планированию эксперимента (Ф. Йетс, Г. Кокс, В. Кохрен, В. Федерер, К. Гульден, О. Кемптгорн и другие), так и со стороны специалистов по комбинаторному анализу (Боуз, Ф. Шимамото, В. Клатсворси, С. Шрикханде, А. Гофман и др.).
Исследования Р. Фишера знаменуют начало первого этапа развития методов планирования эксперимента. Фишер разработал метод факторного планирования. Йетс предложил для этого метода простую вычислительную схему. Факторное планирование получило широкое распространение. Особенностью факторного эксперимента является необходимость ставить сразу большое число опытов.
В 1945 г. Д. Финни ввел дробные реплики от факторного эксперимента. Это позволило сократить число опытов и открыло дорогу техническим приложениям планирования. Другая возможность сокращения необходимого числа опытов была показана в 1946 г. Р. Плакеттом и Д. Берманом, которые ввели насыщенные факторные планы.
Г. Хотеллинг в 1941 г. предложил находить экстремум по экспериментальным данным с использованием степенных разложений и градиента. Следующим важным этапом было введение принципа последовательного шагового экспериментирования. Этот принцип, высказанный в 1947 г. М. Фридманом и Л. Сэвиджем, позволил распространить на экспериментальное определение экстремума — итерацию.
Чтобы построить современную теорию планирования эксперимента, не хватало одного звена — формализации объекта исследования. Это звено появилось в 1947 г. после создания Н. Винером теории кибернетики. Кибернетическое понятие «черный ящик», играет в планировании важную роль.
В 1951 г. работой американских ученых Дж. Бокса и К. Уилсона начался новый этап развития планирования эксперимента. В ней сформулирована и доведена до практических рекомендаций идея последовательного экспериментального определения оптимальных условий проведения процессов с использованием оценки коэффициентов степенных разложений методом наименьших квадратов, движение по градиенту и отыскание интерполяционного полинома в области экстремума функции отклика (почти стационарной области).
В 1954—1955 гг. Дж. Бокс, а затем П. Юл. показали, что планирование эксперимента можно использовать при исследовании физико-химических процессов, если априори высказаны одна или несколько возможных гипотез. Направление получило развитие в работах Н. П. Клепикова, С. Н. Соколова и В. В. Федорова в ядерной физике.
Третий этап развития теории планирования эксперимента начался в 1957 г., когда Бокс применил свой метод в промышленности. Этот метод стал называться «эволюционным планированием». В 1958 г. Г. Шиффе предложил новый метод планирования эксперимента для изучения физико-химических диаграмм состав — свойство под названием «симплексной решетки».
Развитие теории планирование эксперимента в СССР отражено в работах В. В. Налимова, Ю. П. Адлера, Ю. В. Грановского, Е. В. Марковой, В. Б. Тихомирова.
Этапы планирования эксперимента
Методы планирования эксперимента позволяют минимизировать число необходимых испытаний, установить рациональный порядок и условия проведения исследований в зависимости от их вида и требуемой точности результатов. Если же по каким-либо причинам число испытаний уже ограничено, то методы дают оценку точности, с которой в этом случае будут получены результаты. Методы учитывают случайный характер рассеяния свойств испытываемых объектов и характеристик используемого оборудования. Они базируются на методах теории вероятности и математической статистики.
Планирование эксперимента включает ряд этапов.
1. Установление цели эксперимента (определение характеристик, свойств и т. п.) и его вида (определительные, контрольные, сравнительные, исследовательские).
2. Уточнение условий проведения эксперимента (имеющееся или доступное оборудование, сроки работ, финансовые ресурсы, численность и кадровый состав работников и т. п.). Выбор вида испытаний (нормальные, ускоренные, сокращенные в условиях лаборатории, на стенде, полигонные, натурные или эксплуатационные).
3. Выявление и выбор входных и выходных параметров на основе сбора и анализа предварительной (априорной) информации. Входные параметры (факторы) могут быть детерминированными, то есть регистрируемыми и управляемыми (зависимыми от наблюдателя), и случайными, то есть регистрируемыми, но неуправляемыми. Наряду с ними на состояние исследуемого объекта могут оказывать влияние нерегистрируемые и неуправляемые параметры, которые вносят систематическую или случайную погрешность в результаты измерений. Это — ошибки измерительного оборудования, изменение свойств исследуемого объекта в период эксперимента, например, из-за старения материала или его износа, воздействие персонала и т. д.
4. Установление потребной точности результатов измерений (выходных параметров), области возможного изменения входных параметров, уточнение видов воздействий. Выбирается вид образцов или исследуемых объектов, учитывая степень их соответствия реальному изделию по состоянию, устройству, форме, размерам и другим характеристикам.
На назначение степени точности влияют условия изготовления и эксплуатации объекта, при создании которого будут использоваться эти экспериментальные данные. Условия изготовления, то есть возможности производства, ограничивают наивысшую реально достижимую точность. Условия эксплуатации, то есть условия обеспечения нормальной работы объекта, определяют минимальные требования к точности.
Точность экспериментальных данных также существенно зависит от объёма (числа) испытаний — чем испытаний больше, тем (при тех же условиях) выше достоверность результатов.
Для ряда случаев (при небольшом числе факторов и известном законе их распределения) можно заранее рассчитать минимально необходимое число испытаний, проведение которых позволит получить результаты с требуемой точностью.
5. Составление плана и проведение эксперимента — количество и порядок испытаний, способ сбора, хранения и документирования данных.
Порядок проведения испытаний важен, если входные параметры (факторы) при исследовании одного и того же объекта в течение одного опыта принимают разные значения. Например, при испытании на усталость при ступенчатом изменении уровня нагрузки предел выносливости зависит от последовательности нагружения, так как по-разному идет накопление повреждений, и, следовательно, будет разная величина предела выносливости.
В ряде случаев, когда систематически действующие параметры сложно учесть и проконтролировать, их преобразуют в случайные, специально предусматривая случайный порядок проведения испытаний (рандомизация эксперимента). Это позволяет применять к анализу результатов методы математической теории статистики.
Порядок испытаний также важен в процессе поисковых исследований: в зависимости от выбранной последовательности действий при экспериментальном поиске оптимального соотношения параметров объекта или какого-то процесса может потребоваться больше или меньше опытов. Эти экспериментальные задачи подобны математическим задачам численного поиска оптимальных решений. Наиболее хорошо разработаны методы одномерного поиска (однофакторные однокритериальные задачи), такие как метод Фибоначчи, метод золотого сечения.
6. Статистическая обработка результатов эксперимента, построение математической модели поведения исследуемых характеристик.
Необходимость обработки вызвана тем, что выборочный анализ отдельных данных, вне связи с остальными результатами, или же некорректная их обработка могут не только снизить ценность практических рекомендаций, но и привести к ошибочным выводам. Обработка результатов включает:
Построение математической модели выполняется в случаях, когда должны быть получены количественные характеристики взаимосвязанных входных и выходных исследуемых параметров. Это — задачи аппроксимации, то есть выбора математической зависимости, наилучшим образом соответствующей экспериментальным данным. Для этих целей применяют регрессионные модели, которые основаны на разложении искомой функции в ряд с удержанием одного (линейная зависимость, линия регрессии) или нескольких (нелинейные зависимости) членов разложения (ряды Фурье, Тейлора). Одним из методов подбора линии регрессии является широко распространенный метод наименьших квадратов.
Для оценки степени взаимосвязанности факторов или выходных параметров проводят корреляционный анализ результатов испытаний. В качестве меры взаимосвязанности используют коэффициент корреляции: для независимых или нелинейно зависимых случайных величин он равен или близок к нулю, а его близость к единице свидетельствует о полной взаимосвязанности величин и наличии между ними линейной зависимости.
При обработке или использовании экспериментальных данных, представленных в табличном виде, возникает потребность получения промежуточных значений. Для этого применяют методы линейной и нелинейной (полиноминальной) интерполяции (определение промежуточных значений) и экстраполяции (определение значений, лежащих вне интервала изменения данных).
7. Объяснение полученных результатов и формулирование рекомендаций по их использованию, уточнению методики проведения эксперимента.
Снижение трудоемкости и сокращение сроков испытаний достигается применением автоматизированных экспериментальных комплексов. Такой комплекс включает испытательные стенды с автоматизированной установкой режимов (позволяет имитировать реальные режимы работы), автоматически обрабатывает результаты, ведет статистический анализ и документирует исследования. Но велика и ответственность инженера в этих исследованиях: четкое поставленные цели испытаний и правильно принятое решение позволяют точно найти слабое место изделия, сократить затраты на доводку и итерационность процесса проектирования.
Планирование эксперимента (стр. 1 )
| Из за большого объема этот материал размещен на нескольких страницах: 1 2 3 4 5 6 7 8 |
ФГБОУВПО «Воронежский государственный технический университет»
Утверждено Редакционно-издательским советом университета в качестве учебного пособия
, Попов эксперимента: учеб. пособие. Воронеж: ФГБОУВПО «Воронежский государственный технический университет», 20с.
Учебное пособие разработано в рамках реализации федеральной целевой программы «Научные и научно-педагогические кадры инновационной России» на 2009 – 2013 годы, соглашение № 14.B37.21.1824, связанной с выполнением научно-исследовательской работы (проекта) по теме «Исследование, разработка конструкции неразрезных эллиптических обтекателей воздухозаборников двигателей летательных аппаратов и моделирование технологического процесса»
Табл. 3. Ил. 8. Библиогр.: 4 назв.
Научный редактор канд. техн. наук, доц.
Рецензенты: филиал «Иркут»» в г. Воронеже (зам. руководителя, канд. техн. наук, с. н.с. );
© Оформление. ФГБОУВПО «Воронежский государственный технический Университет», 2013
Традиционные методы исследований связаны с экспериментами, которые требуют больших затрат, сил и средств.
Эксперименты, как правило, являются многофакторными и связаны с оптимизацией качества материалов, отысканием оптимальных условий проведения технологических процессов, разработкой наиболее рациональных конструкций оборудования и т. д. Системы, которые служат объектом таких исследований, очень часто являются такими сложными, что не поддаются теоретическому изучению в разумные сроки. Поэтому, несмотря на значительный объем выполненных научно-исследовательских работ, из-за отсутствия реальной возможности достаточно полно изучить значительное число объектов исследования, как следствие, многие решения принимаются на основании информации, имеющей случайный характер, и поэтому далеки от оптимальных.
Исходя из выше изложенного возникает необходимость поиска пути, позволяющего вести исследовательскую работу ускоренными темпами и обеспечивающим принятие решений, близких к оптимальным. Этим путем и явились статистические методы планирования эксперимента, предложенные английским статистиком Рональдом Фишером (конец двадцатых годов). Он впервые показал целесообразность одновременного варьирования всеми факторами в противовес широко распространенному однофакторному эксперименту [1].
Цель данного учебного пособия – ознакомление студентов с наиболее часто применяемыми и простыми методами планирования эксперимента, выработка навыков практического применения. Более подробно рассмотрена задача оптимизации процессов.
1 Основные понятия планирования эксперимента
Планирование эксперимента, имеет свою определенную терминологию. Рассмотрим общие термины.
Эксперимент — это система операций, воздействий и (или) наблюдений, направленных на получение информации об объекте при исследовательских испытаниях.
Опыт — воспроизведение исследуемого явления в определенных условиях проведения эксперимента при возможности регистрации его результатов. Опыт — отдельная элементарная часть эксперимента.
Планирование эксперимента — процедура выбора числа опытов и условий их проведения, необходимых для решения поставленной задачи с требуемой точностью. Все факторы, определяющие процесс, изменяются одновременно по специальным правилам, а результаты эксперимента представляются в виде математической модели.
Задачи, для решения которых может использоваться планирование эксперимента, чрезвычайно разнообразны. К ним относятся: поиск оптимальных условий, построение интерполяционных формул, выбор существенных факторов, оценка и уточнение констант теоретических моделей, выбор наиболее приемлемых из некоторого множества гипотез о механизме явлений, исследование диаграмм состав – свойство и т. д.
Поиск оптимальных условий является одной из наиболее распространенных научно-технических задач. Они возникают в тот момент, когда установлена возможность проведения процесса и необходимо найти наилучшие (оптимальные) условия его реализации. Такие задачи называются – задачами оптимизации. Процесс их решения называется – процессом оптимизации или просто оптимизацией. Примеры задачи оптимизации – выбор оптимального состава многокомпонентных смесей и сплавов, повышение производительности действующих установок, повышение качества продукции, снижение затрат на ее получение и т. п.
Выделяют следующие этапы построения математической модели
1. сбор и анализ априорной информации;
2. выбор факторов и выходных переменных, области экспериментирования;
3. выбор математической модели, с помощью которой будут представляться экспериментальные данные;
4. выбор критерия оптимальности и плана эксперимента;
5. определение метода анализа данных;
6. проведение эксперимента;
7. проверка статистических предпосылок для полученных экспериментальных данных;
8. обработка результатов;
9. интерпретация и рекомендации.
Факторы определяют состояние объекта. Основное требование к факторам — управляемость. Под управляемостью понимается установление нужного значения фактора (уровня) и поддержание его в течение всего опыта. В этом состоит особенность активного эксперимента. Факторы могут быть количественными и качественными. Примерами количественных факторов являются температура, давление, концентрация и т. п. Их уровням соответствует числовая шкала. Различные катализаторы, конструкции аппаратов, способы лечения, методики преподавания являются примерами качественных факторов. Уровням таких факторов не соответствует числовая шкала, и их порядок не играет роли.
Выходные переменные — это реакции (отклики) на воздействие факторов. Отклик зависит от специфики исследования и может быть экономическим (прибыль, рентабельность), технологическим (выход, надежность), психологическим, статистическим и т. д. Параметр оптимизации должен быть эффективным с точки зрения достижения цели, универсальным, количественным, выражаемым числом, имеющим физический смысл, быть простым и легко вычисляемым.
Затраты машинного времени можно значительно сократить, если на этапе оптимизации параметров использовать экспериментальную факторную математическую модель. Экспериментальные факторные модели, в отличие от теоретических, не используют физических законов, описывающих происходящие в объектах процессы, а представляют собой некоторые формальные зависимости выходных параметров от внутренних и внешних параметров объектов проектирования.
Экспериментальная факторная модель может быть построена на основе проведения экспериментов непосредственно на самом техническом объекте (физические эксперименты), либо вычислительных экспериментов на ЭВМ с теоретической моделью.
При построении экспериментальной факторной модели объект моделирования (проектируемая техническая система) представляется в виде «черного ящика», на вход которого подаются некоторые переменные Xи Z, а на выходе можно наблюдать и регистрировать переменные Y.
В процессе проведения эксперимента изменение переменных Xи Zприводит к изменениям выходных переменных Y. Для построения факторной модели необходимо регистрировать эти изменения и осуществить необходимую их статистическую обработку для определения параметров модели.
При проведении физического эксперимента переменными Xможно управлять, изменяя их величину по заданному закону. Переменные Z— неуправляемые, принимающие случайные значения. При этом значения переменных Xи Zможно контролировать и регистрировать с помощью соответствующих измерительных приборов. Кроме того, на объект воздействуют некоторые переменные Е, которые нельзя наблюдать и контролировать. Переменные X= (x1, х2. хn) называют контролируемыми управляемыми; переменные Z = (z1, z2,…… zm) — контролируемыми, но неуправляемыми, а переменные E = (ε1, ε2. εl) — неконтролируемыми и неуправляемыми.
Переменные X и Z называют факторами. Факторы X являются управляемыми и изменяются как детерминированные переменные, а факторы Z неуправляемые, изменяемые во времени случайным образом, т. е. Z представляют собой случайные процессы. Пространство контролируемых переменных — факторов X и Z — образует факторное пространство.
Выходная переменная Y представляет собой вектор зависимых переменных моделируемого объекта. Ее называют откликом, а зависимость Y от факторов Xи Z— функцией отклика. Геометрическое представление функции отклика называют поверхностью отклика.
Переменная Е действует в процессе эксперимента бесконтрольно. Если предположить, что факторы X и Z стабилизированы во времени и сохраняют постоянные значения, то под влиянием переменных E функция отклика Y может меняться как систематическим, так и случайным образом. В первом случае говорят о систематической помехе, а во втором — о случайной помехе. При этом полагают, что случайная помеха обладает вероятностными свойствами, не изменяемыми во времени.
Возникновение помех обусловлено ошибками методик проведения физических экспериментов, ошибками измерительных приборов, неконтролируемыми изменениями параметров ихарактеристик объекта и внешней среды.
В вычислительных экспериментах объектом исследования является теоретическая математическая модель, на основе которой необходимо получить экспериментальную факторную модель. Для ее получения необходимо определить структуру и численные значения параметров модели.
Под структурой модели понимается вид математических соотношений между факторами X, Z и откликом Y. Параметры представляют собой коэффициенты уравнений факторной модели. Структуру модели обычно выбирают на основе априорной информации об объекте с учетом назначения и последующего использования модели. Задача определения параметров модели полностью формализована. Она решается методами регрессионного анализа. Экспериментальные факторные модели называют также регрессионными моделями.
Регрессионную модель можно представить выражением
(1.1)
где В — вектор параметров факторной модели.
Вид вектор-функции φ определяется выбранной структурой модели и считается заданным, а параметры В подлежат определению на основе результатов эксперимента.
Различают эксперименты пассивные и активные.
Пассивным называется такой эксперимент, когда значениями факторов управлять нельзя, и они принимают случайные значения. В таком эксперименте существуют только факторы Z. В процессе эксперимента в определенные моменты времени измеряются значения факторов Z и функций откликов Y. После проведения N опытов полученная информация обрабатывается статистическими методами, позволяющими определить параметры факторной модели. Такой подход к построению математической модели лежит в основе метода статистических испытаний (Монте-Карло).
Активным называется такой эксперимент, когда значениями факторов задаются и поддерживают их неизменными в заданных уровнях в каждом опыте в соответствии с планом эксперимента. Следовательно, в этом случае существуют только управляемые факторы X.
Основные особенности экспериментальных факторных моделей следующие: они статистические; представляют собой сравнительно простые функциональные зависимости между оценками математических ожиданий выходных параметров объекта от eё внутренних и внешних параметров; дают адекватное описание установленных зависимостей лишь в области факторного пространства, в которой реализован эксперимент. Статистически регрессионная модель описывает поведение объекта в среднем, характеризуя его неслучайные свойства, которые в полной мере проявляются лишь при многократном повторении опытов в неизменных условиях.
2 Основные принципы планирования эксперимента
Для получения адекватной математической модели необходимо обеспечить выполнение определенных условий проведения эксперимента. Модель называют адекватной, если в оговоренной области варьирования факторов X полученные с помощью модели значения функций отклика Y отличаются от истинных не более чем на заданную величину. Методы построения экспериментальных факторных моделей рассматриваются в теории планирования эксперимента.
Цель планирования эксперимента — получение максимума информации о свойствах исследуемого объекта при минимуме опытов. Такой подход обусловлен высокой стоимостью экспериментов, как физических, так и вычислительных, и вместе с тем необходимостью построения адекватной модели.
При планировании активных экспериментов используются следующие принципы:
– отказ от полного перебора всех возможных состояний объекта;
– постепенное усложнение структуры математической модели;
– сопоставление результатов эксперимента с величиной случайных помех;
Детальное представление о свойствах поверхности отклика может быть получено лишь при условии использования густой дискретной сетки значений факторов, покрывающей все факторное пространство. В узлах этой многомерной сетки находятся точки плана, в которых проводятся опыты. Выбор структуры факторной модели основан на постулировании определенной степени гладкости поверхности отклика. Поэтому с целью уменьшения количества опытов принимают небольшое число точек плана, для которых осуществляется реализация эксперимента.
При большом уровне случайной помехи получается большой разброс значений функции отклика Yв опытах, проведенных в одной и той же точке плана. В этом случае оказывается, что чем выше уровень помехи, тем с большей вероятностью простая модель окажется работоспособной. Чем меньше уровень помехи, тем точнее должна быть факторная модель.
Кроме случайной помехи при проведении эксперимента может иметь место систематическая помеха. Наличие этой помехи практически никак не обнаруживается и результат ее воздействия на функцию не поддается контролю. Однако если путем соответствующей организации проведения опытов искусственно создать случайную ситуацию, то систематическую помеху можно перевести в разряд случайных. Такой принцип организации эксперимента называют рандомизациейсистематически действующих помех.
Наличие помех приводит к ошибкам эксперимента. Ошибки подразделяют на систематические и случайные, соответственно наименованиям вызывающих их факторов — помех.
Рандомизацию опытов осуществляют только в физических экспериментах. Следует отметить, что в этих экспериментах систематическую ошибку может порождать наряду с отмеченными ранее факторами также неточное задание значений управляемых факторов, обусловленное некачественной калибровкой приборов для их измерения (инструментальная ошибка), конструктивными или технологическими факторами.
К факторам в активном эксперименте предъявляются определенные требования. Они должны быть:
– управляемыми(установка заданных значений и поддержание постоянными в процессе опыта);
– совместными(их взаимное влияние не должно нарушать процесс функционирования объекта);
–независимыми(уровень любого фактора должен устанавливаться независимо от уровней остальных);
– однозначными(одни факторы не должны быть функцией других);
– непосредственно влияющими на выходные параметры.
Выбор параметров оптимизации (критериев оптимизации) является одним из главных этапов работы на стадии предварительного изучения объекта исследования, т. к. правильная постановка задачи зависит от правильности выбора параметра оптимизации, являющегося функцией цели.
Под параметром оптимизации понимают характеристику цели, заданную количественно. Параметр оптимизации является реакцией (откликом) на воздействие факторов, которые определяют поведение выбранной системы.
Реальные объекты или процессы, как правило, очень сложны. Они часто требуют одновременного учета нескольких, иногда очень многих, параметров. Каждый объект может характеризоваться всей совокупностью параметров, или любым подмножеством этой совокупности, или одним – единственным параметром оптимизации. В последнем случае прочие характеристики процесса уже не выступают в качестве параметра оптимизации, а служат ограничениями. Другой путь – построение обобщенного параметра оптимизации как некоторой функции от множества исходных.
Параметр оптимизации (Функции отклика) – это признак, по которому оптимизируется процесс. Он должен быть количественным, задаваться числом. Множество значений, которые может принимать параметр оптимизации, называется областью его определения. Области определения могут быть непрерывными и дискретными, ограниченными и неограниченными. Например, выход реакции – это параметр оптимизации с непрерывной ограниченной областью определения. Он может изменяться в интервале от 0 до 100%. Число бракованных изделий, число зерен на шлифе сплава, число кровяных телец в пробе крови – вот примеры параметров с дискретной областью определения, ограниченной снизу.
Количественная оценка параметра оптимизации на практике не всегда возможна. В таких случаях пользуются приемом, называемым ранжированием. При этом параметрам оптимизации присваиваются оценки – ранги по заранее выбранной шкале: двухбалльной, пятибалльной и т. д. Ранговый параметр имеет дискретную ограниченную область определения. В простейшем случае область содержит два значения (да, нет; хорошо, плохо). Это может соответствовать, например, годной продукции и браку.
2.1 Виды параметров оптимизации
В зависимости от объекта и цели параметры оптимизации могут быть весьма разнообразными. Введем некоторую классификацию [2]. Реальные ситуации, как правило довольно сложны. Они часто требуют нескольких, иногда очень многих, параметров. В принципе каждый объект может характеризоваться сразу всей совокупностью параметров, приведенных на рисунке 2, или любым подмножеством из этой совокупности. Движение к оптимуму возможно, если выбран один-единственный параметр оптимизации. Тогда прочие характеристики процесса уже не выступают в качестве параметров оптимизации, а служат ограничениями. Другой путь — построение обобщенного параметра оптимизации как некоторой функции от множества исходных [1—3].
Рисунок 2 – Классификация параметров оптимизации
Прокомментируем некоторые элементы схемы.
Экономические параметры оптимизации, такие, как прибыль, себестоимость и рентабельность, обычно используются при исследовании действующих промышленных объектов, тогда как затраты на эксперимент имеет смысл оценивать в любых исследованиях, в том числе и лабораторных. Если цена опытов одинакова, затраты на эксперимент пропорциональны числу опытов, которые необходимо поставить для решения данной задачи. Это в значительной мере определяет выбор плана эксперимента.
Среди технико-экономических параметров наибольшее распространение имеет производительность. Такие параметры, как долговечность, надежность и стабильность, связаны с длительными наблюдениями. Имеется некоторый опыт их использования при изучении дорогостоящих ответственных объектов, например радиоэлектронной аппаратуры.
Почти во всех исследованиях приходится учитывать количество и качество получаемого продукта. Как меру количества продукта используют выход, например, процент выхода химической реакции, выход годных изделий.
Показатели качества чрезвычайно разнообразны. В схеме они сгруппированы по видам свойств. Характеристики количества и качества продукта образуют группу технико-технологических параметров.
Под рубрикой «прочие» сгруппированы различные параметры, которые реже встречаются, но не являются менее важными. Сюда попали статистические параметры, используемые для улучшения характеристик случайных величин или случайных функций. В качестве примеров назовем задачи на минимизацию дисперсии случайной величины, на уменьшение числа выбросов случайного процесса за фиксированный уровень и т. д. Последняя задача возникает, в частности, при выборе оптимальных настроек автоматических регуляторов или при улучшении свойств нитей (проволока, пряжа, искусственное волокно и др.).
2.2 Требования к параметрам оптимизации
1) параметр оптимизации должен быть количественным.
2) параметр оптимизации должен выражаться одним числом. Иногда это получается естественно, как регистрация показания прибора. Например, скорость движения машины определяется числом на спидометре. Часто приходится проводить некоторые вычисления. Так бывает при расчете выхода реакции. В химии часто требуется получать продукт с заданным отношением компонентов, например, А:В=3:2. Один из возможных вариантов решения подобных задач состоит в том, чтобы выразить отношение одним числом (1,5) и в качестве параметра оптимизации пользоваться значением отклонений (или квадратов отклонений) от этого числа.
3) однозначность в статистическом смысле. Заданному набору значений факторов должно соответствовать одно значение параметра оптимизации, при этом обратное неверно: одному и тому же значению параметра могут соответствовать разные наборы значений факторов.
4) наиболее важным требованием к параметрам оптимизации является его возможность действительно эффективной оценки функционирования системы. Представление об объекте не остается постоянным в ходе исследования. Оно меняется по мере накопления информации и в зависимости от достигнутых результатов. Это приводит к последовательному подходу при выборе параметра оптимизации. Так, например, на первых стадиях исследования технологических процессов в качестве параметра оптимизации часто используется выход продукта. Однако в дальнейшем, когда возможность повышения выхода исчерпан, начинают интересоваться такими параметрами, как себестоимость, чистота продукта и т. д. Оценка эффективности функционирования системы может осуществляться как для всей системы в целом, так и оценкой эффективности ряда подсистем, составляющих данную систему. Но при этом необходимо учитывать возможность того, что оптимальность каждой из подсистем по своему параметру оптимизации «не исключает возможность гибели системы в целом». Это означает, что попытка добиться оптимума с учетом некоторого локального или промежуточного параметра оптимизации может оказаться неэффективной или даже привести к браку.
5) требование универсальности или полноты. Под универсальностью параметра оптимизации понимают его способность всесторонне охарактеризовать объект. В частности, технологические параметры недостаточно универсальны: они не учитывают экономику. Универсальностью обладают, например, обобщенные параметры оптимизации, которые строятся как функции от нескольких частных параметров.
6) параметр оптимизации желательно должен иметь физический смысл, быть простым и легко вычисляем. Требование физического смысла связано с последующей интерпретацией результатов эксперимента. Не представляет труда объяснить, что значит максимум извлечения, максимум содержания ценного компонента. Эти и подобные им технологические параметры оптимизации имеют ясный физический смысл, но иногда для них может не выполняться, например, требование статистической эффективности. Тогда рекомендуется переходить к преобразованию параметра оптимизации. Второе требование, т. е. простота и легко вычисляемость, также весьма существенны. Для процессов разделения термодинамические параметры оптимизации более универсальны. Однако на практике ими пользуются мало: их расчет довольно труден. Из приведенных двух требований первое является более существенным, потому что часто удается найти идеальную характеристику системы и сравнить ее с реальной характеристикой.
После выбора объекта исследования и параметра оптимизации нужно рассмотреть все факторы, которые могут влиять на процесс. Если какой-либо существенный фактор окажется неучтенным и принимал произвольные значения, не контролируемые экспериментатором, то это значительно увеличит ошибку опыта. При поддержании этого фактора на определенном уровне может быть получено ложное представление об оптимуме, т. к. нет гарантии, что полученный уровень является оптимальным.
С другой стороны большое число факторов увеличивает число опытов и размерность факторного пространства.
Выбор факторов эксперимента является весьма существенным, от этого зависит успех оптимизации.
Фактор – измеряемая переменная величина, принимающая в некоторый момент времени определенное значение и влияющая на объект исследования.
Факторы должны иметь область определения, внутри которой задаются его конкретные значения. Область определения может быть непрерывной или дискретной. При планировании эксперимента значения факторов принимаются дискретными, что связано с уровнями факторов. В практических задачах области определения факторов имеют ограничения, которые носят либо принципиальный, либо технический характер.
Факторы разделяются на количественные и качественные.
К количественным относятся те факторы, которые можно измерять, взвешивать и т. д.
Качественные факторы – это различные вещества, технологические способы, приборы, исполнители и т. п.
Хотя к качественным факторам не соответствует числовая шкала, но при планировании эксперимента к ним применяют условную порядковую шкалу в соответствии с уровнями, т. е. производится кодирование. Порядок уровней здесь произволен, но после кодирования он фиксируется.
2.3.1 Требования к факторам эксперимента
1) Факторы должны быть управляемыми, это значит, что выбранное нужное значение фактора можно поддерживать постоянным в течение всего опыта. Планировать эксперимент можно только в том случае, если уровни факторов подчиняются воле экспериментатора. Например, экспериментальная установка смонтирована на открытой площадке. Здесь температурой воздуха мы не можем управлять, ее можно только контролировать, и потому при выполнении опытов температуру, как фактор, мы не можем учитывать.
2) Чтобы точно определить фактор, нужно указать последовательность действий (операций), с помощью которых устанавливаются его конкретные значения. Такое определение называется операциональным. Так, если фактором является давление в некотором аппарате, то совершенно необходимо указать, в какой точке и с помощью какого прибора оно измеряется и как оно устанавливается. Введение операционального определения обеспечивает однозначное понимание фактора.
3) Точность замеров факторов должна быть возможно более высокой. Степень точности определяется диапазоном изменения факторов. В длительных процессах, измеряемых многими часами, минуты можно не учитывать, а в быстрых процессах приходится учитывать доли секунды.
Исследование существенно усложняется, если фактор измеряется с большой ошибкой или значения факторов трудно поддерживать на выбранном уровне (уровень фактора «плывет»), то приходится применять специальные методы исследования, например, конфлюэнтный анализ [3,4].
4) Факторы должны быть однозначны. Трудно управлять фактором, который является функцией других факторов. Но в планировании могут участвовать другие факторы, такие, как соотношения между компонентами, их логарифмы и т. п. Необходимость введения сложных факторов возникает при желании представить динамические особенности объекта в статической форме. Например, требуется найти оптимальный режим подъема температуры в реакторе. Если относительно температуры известно, что она должна нарастать линейно, то в качестве фактора вместо функции (в данном случае линейной) можно использовать тангенс угла наклона, т. е. градиент.
5) При планировании эксперимента одновременно изменяют несколько факторов, поэтому необходимо знать требования к совокупности факторов. Прежде всего выдвигается требование совместимости. Совместимость факторов означает, что все их комбинации осуществимы и безопасны. Несовместимость факторов наблюдается на границах областей их определения. Избавиться от нее можно сокращением областей. Положение усложняется, если несовместимость проявляется внутри областей определения. Одно из возможных решений – разбиение на подобласти и решение двух отдельных задач.
6) При планировании эксперимента важна независимость факторов, т. е. возможность установления фактора на любом уровне вне зависимости от уровней других факторов. Если это условие невыполнимо, то невозможно планировать эксперимент.
2.3.2 Требования к совокупности факторов
При планировании эксперимента обычно одновременно изменяется несколько факторов. Поэтому очень важно сформулировать требования, которые предъявляются к совокупности факторов. Прежде всего выдвигается требование совместимости. Совместимость факторов означает, что все их комбинации осуществимы и безопасны. Это очень важное требование. Представьте себе, что вы поступили легкомысленно, не обратили внимания на требование совместимости факторов и запланировали такие условия опыта, которые могут привести к взрыву установки или осмолению продукта. Согласитесь, что такой результат очень далек от целей оптимизации.
Несовместимость факторов может наблюдаться на границах областей их определения. Избавиться от нее можно сокращением областей. Положение усложняется, если несовместимость проявляется внутри областей определения. Одно из возможных решений — разбиение на подобласти и решение двух отдельных задач.
При планировании эксперимента важна независимость факторов, т. е. возможность установления фактора на любом уровне вне зависимости от уровней других факторов. Если это условие невыполнимо, то невозможно планировать эксперимент. Итак, мы подошли ко второму требованию — отсутствию корреляции между факторами. Требование некоррелированности не означает, что между значениями факторов нет никакой связи. Достаточно, чтобы связь не была линейной.
3 Планирование эксперимента
3.1 План эксперимента
При проведении активного эксперимента задается определенный план варьирования факторов, т. е. эксперимент заранее планируется
План эксперимента — совокупность данных, определяющих число, условия и порядок реализации опытов.
Планирование эксперимента — выбор плана эксперимента, удовлетворяющего заданным требованиям.
Точка плана — упорядоченная совокупность численных значений факторов, соответствующая условиям проведения опыта, т. е. точка факторного пространства, в которой проводится эксперимент. Точке плана с номером i соответствует вектор-строка (3.1):
(3.1)
Общая совокупность таких векторов Xi, i= 1, Lобразует план эксперимента, а совокупность различных векторов, число которых обозначим N, — спектр плана.
В активном эксперименте факторы могут принимать только фиксированные значения. Фиксированное значение фактора называют уровнем фактора. Количество принимаемых уровней факторов зависит от выбранной структуры факторной модели и принятого плана эксперимента. Минимальный Xjmin и максимальный Хimах, j=l, n (n — число факторов) уровни всех факторов выделяют в факторном пространстве некоторый гиперпараллелепипед, представляющий собой область планирования. В области планирования находятся все возможные значения факторов, используемые в эксперименте.
Вектор задает точку центра областипланирования. Координаты этой точки Xj0 обычно выбирают из соотношения (3.2)
(3.2)
Точку Х0называют центром эксперимента. Она определяет основной уровень факторов Хj0, j = 1,n. Центр эксперимента стремятся выбрать как можно ближе к точке, которая соответствует искомым оптимальным значениям факторов. Для этого используется априорная информация об объекте.
Интервалом (или шагом) варьирования фактора Xj называют величину, вычисляемую по формулам (3.3, 3.4):
(3.3)
(3.4)
Рисунок 3 – Геометрическое представление области планирования при двух факторах: Х1 и Х2
После установления нулевой точки выбирают интервалы варьирования факторов. Это связано с определением таких значений факторов, которые в кодированных величинах соответствуют +1 и –1. Интервалы варьирования выбирают с учетом того, что значения факторов, соответствующие уровням +1 и –1, должны быть достаточно отличимы от значения, соответствующему нулевому уровню. Поэтому во всех случаях величина интервала варьирования должна быть больше удвоенной квадратичной ошибки фиксирования данного фактора. С другой стороны, чрезмерное увеличение величины интервалов варьирования нежелательно, т. к. это может привести к снижению эффективности поиска оптимума. А очень малый интервал варьирования уменьшает область эксперимента, что замедляет поиск оптимума.
При выборе интервала варьирования целесообразно учитывать, если это возможно, число уровней варьирования факторов в области эксперимента. От числа уровней зависят объем эксперимента и эффективность оптимизации.
План эксперимента удобно представлять в матричной форме.
Матрица планапредставляет собой прямоугольную таблицу, содержащую информацию о количестве и условиях проведения опытов. Строки матрицы плана соответствуют опытам, а столбцы — факторам. Размерность матрицы плана L х n, где L— число опытов, n— число факторов. При проведении повторных (дублирующих) опытов в одних и тех же точках плана матрица плана содержит ряд совпадающих строк.