Что такое пластичность конструкционных материалов
Материаловедение
Физико-механические свойства конструкционных материалов
Физико-механические свойства конструкционных материалов подразделяются на:
Конструкционные свойства
К конструкционным свойствам относятся:
Эти свойства определяют прочность и долговечность машины.
Прочность – это способность материала сопротивляться деформации и разрушению.
Деформацией называется изменение размеров и формы тела под действием внешних сил. Деформации подразделяются на упругие и пластические. Упругие деформации исчезают после окончания действия сил, а пластические остаются.
Пластичность – способность материала деформироваться. Пластичность обеспечивает конструктивную прочность деталей под нагрузкой и нейтрализует влияние концентраторов напряжений – отверстий, вырезов и т. п. При пластическом деформировании металла одновременно с изменением формы изменяется ряд свойств, в частности при холодном деформировании повышается прочность, но снижается пластичность.
Большинство механических характеристик материалов определяют в результате испытания образцов на растяжение (ГОСТ 1497-84).
При растяжении образцов с площадью поперечного сечения Fa и рабочей (расчетной) длиной lо строят диаграмму растяжения в координатах: нагрузка P – удлинение ∆l образца (Рисунок 3.).
Диаграмма растяжения характеризует поведение металла при деформировании от момента начала нагружения до разрушения образца. На диаграмме выделяют три участка:
Рисунок 3. Диаграмма растяжения металла
Отмеченные выше нагрузки на кривой растяжения ( Pупр, PT, Pmax, Pk ) служат для определения основных характеристик прочности (напряжений):
Временное сопротивление (предел прочности) σв – это напряжение, соответствующее наибольшей нагрузке, предшествующей разрушению образца.
где Р – максимальная нагрузка, предшествующая разрушению;
F 0 – первоначальная площадь поперечного сечения образца.
Относительное остаточное удлинение определяется по формуле:
где lк – длина образца после испытания;
l0 –длина образца до испытания.
Относительное остаточное сужение определяется из выражения:
где F0 – начальная площадь поперечного сечения образца;
Fк – площадь поперечного сечения образца в месте разрушения.
Твердость – это сопротивление материала проникновению в его поверхность стандартного тела (индентора). О твердости судят либо по глубине проникновения индентора, либо по величине отпечатка от вдавливания. Во всех случаях происходит пластическая деформация материала. Чем больше сопротивление материала пластической деформации, тем выше твердость.
Наибольшее распространение получили методы определения твердости Бринелля, Роквелла, Виккерса и микротвердости.
Схемы испытаний представлены на Рисунке 4.
Рисунок 4. Схема определения твердости материала
по Бринеллю (а), по Роквеллу (б), по Виккерсу (в).
Твердость по Бринеллю определяют на твердомере Бринелля. В качестве индентора используется стальной закаленный шарик диаметром D 2,5; 5; 10 мм, в зависимости от толщины изделия.
Полученный отпечаток измеряется в двух направлениях при помощи лупы Бринелля. Твердость определяется как отношение приложенной нагрузки P к сферической поверхности отпечатка.
Метод Роквелла основан на вдавливании в поверхность под определенной нагрузкой наконечника в виде шарика или алмазного конуса. Для мягких материалов (до НВ 230) используется стальной шарик диаметром 1/16” (1,6 мм), для более твердых материалов – конус алмазный.
Твердость рассчитывается как отношение приложенной нагрузки P к площади поверхности отпечатка.
Нагрузка P составляет 50…1000 Н. Диагональ отпечатка d измеряется при помощи микроскопа, установленного на приборе.
Преимущество данного способа в том, что можно измерять твердость любых материалов, тонких изделий, поверхностных слоёв. Метод обеспечивает высокую точность при высокой чувствительности.
Способ микротвердости – используется для определения твердости отдельных структурных составляющих и фаз сплава, очень тонких поверхностных слоев (сотые доли миллиметра). Метод аналогичен способу Виккерса. Индентор – пирамида меньших размеров, нагрузки при вдавливании P составляют 5…500 Н.
Ударная вязкость характеризует надежность материала, его способность сопротивляться хрупкому разрушению. Испытания на ударную вязкость производят на маятниковых копрах. Испытуемые образцы имеют надрезы определенной формы и размеров.
Образец устанавливают на опорах копра надрезом в сторону, противоположную удару ножа маятника, который поднимают на определенную высоту.
Характеристика конструкционных материалов: виды, свойства
Мир разнообразных конструкций — промышленных, строительных, бытовых — разнообразен и многогранен, но он немыслим без материалов, из которых эти конструкции создаются. Конструкционные материалы содержат небольшое количество неизбежных примесей, образовавшихся естественным путём, причём основная часть примесей присутствует там намеренно.
Что такое конструкционные материалы?
Они отвечают трём требованиям – имеют определённую структуру и уровень свойств, а также пригодны для изготовления каких-либо изделий. Вещества, имеющие жидкую или пастообразную консистенцию, в эту группу не входят.
Большинство материалов для конструкций производятся искусственным способом из специально обработанных или подготовленных составляющих. Некоторые материалы являются веществами природного происхождения, основные свойства которых при обычной обработке не изменяются.
Разновидности конструкционных материалов
Основные конструкционные материалы подразделяют на металлические и неметаллические. Первая группа включает в себя чёрные (сталь, чугун) и цветные металлы и сплавы. Вторая более разнообразна: туда входят:
К отдельной группе относят химические композиты, в структуре которых одновременно присутствуют атомы металлов и неметаллов. Достижения современного материаловедения ежегодно приводят к созданию принципиально новых типов конструкционных материалов. Свойства композитов зависят от устойчивости соединения нескольких природных или искусственных веществ, которые получены в определённых условиях. Каждый из конструкционных материалов имеет определённые свойства, соответственно которым устанавливаются области его рационального применения.
Из чёрных металлов и сплавов главнейшее значение имеет сталь и её сплав с графитом – чугун. В качестве цветных металлов наибольшее распространение получили алюминий, медь, никель, титан и их сплавы. Они востребованы практически во всех отраслях промышленного производства, аграрном деле, строительстве, связи.
Типовым представителем механических композитов считается бетон, состоящий из смеси цемента, таких заполнителей, как песок, гравий или щебень, а также воды. Параметры бетона зависят от соотношений, используемых при расчете смеси. Поэтому поставщики бетона обычно предоставляют свойства материала и результаты испытаний для каждого конкретного случая.
Древесина считается конструкционным материалом, если потребительские свойства позволяют использовать её для производства компактной, долговечной продукции. Например, деревья-кустарники, хотя и имеют структуру древесины, могут использоваться только в качестве сырья для лесохимической или целлюлозно-бумажной промышленности.
Природные камни – граниты, базальт, кварц, представляют собой вещества магматического происхождения, образовавшиеся много тысячелетий тому назад вследствие извержения пород из недр Земли с их последующим застыванием. Возможна механическая (резание, шлифовка) или термохимическая (литьё) обработка природного камня.
Пластмассы – обширный класс искусственных веществ, которые создаются в результате контролируемого прохождения химических реакций. Номенклатура применяемых пластиков обширна и ежегодно пополняется новыми представителями.
Рассмотрим классификацию конструкционных материалов более подробно.
Металлические
Включают материалы, полученные переработкой руд чёрных и цветных металлов. Самородные структуры – золото, железо, свинец – в первичном виде не используются, поскольку не обладают теми потребительскими характеристиками, которые необходимы для долговечного применения.
Ведущее место среди металлов принадлежит стали – сплаву железа с не более чем 2% углерода. Особенностями стали являются:
Большинство металлических материалов может проявлять интерметаллидные свойства, образуя новые многокомпонентные соединения.
Поскольку все виды конструкционных материалов тверды, прочны и сохраняют свою форму при повышенных температурах (исключение составляют только олово и свинец, которые используются в качестве припоев), то основные области их применения – строительство, промышленность, средства связи, медицина.
Неметаллические
Получаются как природным, так и искусственным способом. Например, образование изделий из камня – это производство, основанное на переработке естественных заготовок. Остальные виды – керамика, дерево, пластик – получены в результате процессов с искусственно полученными веществами (например, с цементом для бетона), либо с природными компонентами (в частности, для изготовления керамики используют глину).
Процессы, которые необходимы для получения неметаллов:
Конечные показатели материалов органического происхождения могут сильно отличаться от свойств исходного сырья, в то время как продукты из неорганических компонентов в целом сохраняют свои эксплуатационные показатели.
Композиционные
Композиты образуются только искусственными способами, для чего применяются механические (измельчение, дробление, резка), химические, термические и комбинированные операции.
В число последних входят:
Нагрев и охлаждение используются для облегчения последующего формоизменения, уплотнение (прессование) – для преобразования заготовок в конечную продукцию, растворение – для ускорения обработки компонентов.
Для получения продукции, основой которой являются высокомолекулярные органические вещества, используют управляемые химические реакции, а для создания композитных конструкционных материалов с особыми свойствами — методы с применением высоких энергий. В результате направленного энергетического воздействия, например, лазерного луча или плазмы, исходная структура веществ необратимо изменяется. В результате образуется продукция, свойства которой в природном виде воспроизвести невозможно. Это направление материаловедения за последние годы развивается наиболее интенсивно, поскольку техника и потребности современного общества требуют материалов, которые обладали бы сочетанием нескольких противоречивых характеристик: например, высокой прочностью при малом весе.
Свойства конструкционных материалов
Их подразделяют на три группы – механические, физические и эксплуатационные.
Физические свойства конструкционных материалов — это параметры, которые можно измерить. Механические свойства считаются показателем поведения материала при различных условиях его нагружения. Эксплуатационные свойства определяют потребительскую ценность материала, например, долговечность и износостойкость.
Обычно все виды свойств рассматривают совместно.
Механические свойства
Определяются химическим составом и внутренней структурой материала, например размером зерна или направлением волокон. На уровень этих свойств влияют условия обработки, особенно, если обработка сопровождается перестройкой внутренней структуры. Уровень механических свойств зависит от условий применения.
Многие механические свойства взаимозависимы: высокие характеристики в одной категории могут сочетаться с более низкими характеристиками в другой. Например, более высокая прочность может быть достигнута за счет более низкой пластичности. Таким образом, верное понимание среды, в которой работает изделие, приводит к выбору оптимального материала.
Основные механические свойства:
Физические свойства
Наряду с механическими определяют способность материала удовлетворять производственным требованиям, однако в большинстве случаев мало изменяются от условий внешней обработки.
Основные физические свойства:
Физические свойства могут измеряться непосредственно. Для каждого вида материала разработаны стандартные методики оценки, поэтому результат определяют узкие диапазоны значений. Выбор происходит обычно уже по заданным значениям физических параметров.
Технологические свойства
Используются для определения способности материала к обработке. Включают в себя пластичность и жёсткость, причём численные нормируемые параметры здесь отсутствуют. Технологические свойства конкретизируются для определённых условий обработки и устанавливаются исключительно по результатам испытаний на специализированном лабораторном оборудовании.
Эксплуатационные свойства
Необходимы для оценки долговечности/износотойкости изделия, которое изготовлено из данного конструкционного материала. Износостойкость — это мера способности материала противостоять контактному трению, которое может принимать различные формы:
Управление фактическими эксплуатационными показателями входит в число обязательных этапов конструирования детали или узла.
Химические свойства
Более значимы для материалов, состав которых может изменяться под влиянием внешних условий. К таким свойствам относят:
Стабильность химических свойств имеет решающее значение при выборе типа композитов.
Свойства конструкционных материалов
материал предоставил СИДОРОВ Александр Владимирович
Механические свойства определяются по результатам механических испытаний, при которых материалы подвергаются воздействию внешних (статических, динамических, циклических) сил, вызывающих напряжение и деформацию.
Напряжение – величина нагрузки, отнесённая к единице площади поперечного сечения испытуемого образца.
Деформация – изменение формы и размеров твёрдого тела под влиянием внешних сил. Различают деформации растяжения, сжатия, изгиба, кручения, среза.
Прочность – способность материала сопротивляться разрушению под действием нагрузок. Оценивается пределом прочности и пределом текучести, а также пределом прочности материала, отнесённым к его плотности – удельной прочностью.
Предел прочности (временное сопротивление разрушению) – напряжение, соответствующее наибольшей нагрузке, предшествующей разрушению образца (рисунок 1, точка Г).
Рисунок 1 – Диаграмма растяжения
Предел текучести – наименьшее напряжение, при котором образец деформируется без заметного увеличения нагрузки (рисунок 1, точка В).
Упругость – способность материала восстанавливать первоначальную форму и размеры после прекращения действия нагрузки. Оценивается пределом пропорциональности и пределом упругости.
Предел пропорциональности – напряжение, выше которого нарушается пропорциональность между прилагаемым напряжением и деформацией образца (рисунок 1, точка А).
Предел упругости – напряжение, соответствующее нагрузке, при которой остаточная деформация достигает 0,05% от расчётной длины образца (рисунок 1, точка Б).
Пластичность – способность материала не разрушаясь принимать форму и размеры под действием внешних сил. Характеризуется относительным удлинением и относительным сужением.
Относительное удлинение – отношение приращения длины образца после разрыва к его первоначальной длине, выраженное в процентах.
Относительное сужение – отношение разности начальной и минимальной площади поперечного сечения образца после разрыва к начальной площади поперечного сечения, выраженное в процентах.
Усталость – процесс постепенного накопления повреждений под действием повторно-переменных напряжений, приводящий к образованию трещин и разрушению. Оценивается пределом выносливости.
Предел выносливости – максимальное напряжение, которое может выдержать материал без разрушения в течение заданного числа циклов нагружения.
Твёрдость – способность материала сопротивляться проникновению в него другого, более твёрдого тела. Твёрдость определяют следующими способами:
Ударная вязкость – способность материала сопротивляться динамическим нагрузкам. Определяется как отношение затраченной на излом образца работы к площади его поперечного сечения.
Хладоломкость – явление снижения ударной вязкости материалов при низких температурах.
Циклическая вязкость – способность материалов поглощать энергию при повторно-переменных нагрузках.
Технологические свойства характеризуют способность материалов подвергаться обработке в холодном и горячем состоянии.
Литейные свойства – способность материалов образовывать целостные бездефектные отливки:
Ковкость – способность материала обрабатываться давлением без признаков разрушения.
Свариваемость – способность материалов образовывать неразъёмное соединение, свойства которого близки к свойствам основного материала.
Обрабатываемость резанием – способность материала подвергаться механической обработкой до получения чистой и гладкой поверхности.
Эксплуатационные свойства определяются по характеру работы материала в тех или иных условиях (хладностойкость, жаропрочность, антифрикционность и др.).
Износостойкость – свойство материала оказывать сопротивление постепенному изменению размеров и формы тела вследствие разрушения поверхностного слоя изделия при трении.
Физические свойства – цвет, плотность, температура плавления, теплопроводность, тепловое расширение, теплоёмкость, электропроводность и электросопротивление, магнитные свойства и пр.
Химические свойства характеризуют способность материалов сопротивляться вступлению в соединение с другими веществами (кислородом воздуха, растворами кислот, щелочей и др.).
Коррозия – химическое разрушение материалов под воздействием на их поверхность внешней агрессивной среды.
Жаростойкость (окалиностойкость) – стойкость к окислению при сильном нагреве.
Технология. 5 класс
Конспект урока
Технология, 5 класс
Урок 12. Свойства конструкционных материалов
Перечень вопросов, рассматриваемых на уроке:
Прочность – это способность материала противостоять разрушению.
Твёрдость (жёсткость) – это способность материала сопротивляться деформациям.
Деформация – это изменение формы какого-нибудь предмета под действием внешних сил.
Упругость – это свойство материала деформироваться (изменять форму) под действием каких-либо сил, а потом восстанавливаться после того, как эти силы перестают действовать.
Хрупкость – это свойство материала разрушаться при небольшой деформации под действием внешней силы или от удара.
Основная и дополнительная литература по теме урока:
Теоретический материал для самостоятельного изучения
Почему двигатель автомобиля не изготавливают из древесины или пластмассы, ведь тогда двигатель был бы легче? Почему одежду не делают из бумаги, ведь загрязнившееся бумажное изделие не надо стирать, а можно просто выбросить? Почему воины в Средние века носили рубахи-кольчуги, сделанные из стальных колец, а не из толстых и прочных нитей? Потому что при конструировании и создании необходимых людям материальных благ учитываются свойства используемых для их производства материалов, так как каждый материал обладает разными свойствами. Для изготовления различных изделий подбирают материалы с разными свойствами. Важнейшими свойствами для большинства конструкционных материалов являются механические свойства: прочность, плотность, твёрдость, упругость, хрупкость.
При изготовлении тех или иных изделий следует учитывать и другие свойства материалов. Например, для электрических изделий важным свойством является их способность проводить электрический ток. Для других изделий важна стойкость материала к огню и способность не передавать тепло.
Примеры и разбор решения заданий тренировочного модуля
Задание 1. Разделите материалы по соответствующим категориям.
Правильный вариант ответа:
Подсказка: Твёрдость определяет способность материала сопротивляться деформациям. Хрупкость – это свойство материала разрушаться при небольшой деформации под действием внешней силы или от удара.
Задание 2. Подчеркните определение цвета материала.
Правильный вариант ответа:
Подсказка: Вспомните физические свойства материалов.
Основные свойства конструкционных материалов
В процессе проектирования изделия выбор материала осуществляют с учётом его комплекса свойств, которые, прежде всего, должны удовлетворять необходимым требованиям к эксплуатации изделия. Если назначение изделия и условия его эксплуатации не предъявляют очень жёстких требований к материалу, т.е. имеется возможность более или менее широкого выбора, то материал следует выбирать с учётом упрощения и удешевления производства изделия. При возможности следует также учитывать упрощение восстановления изделия. Например, при изготовлении детали наружной обшивки корпуса космического корабля с учётом ответственности назначения требования могут быть исключительно жёсткими и диктовать однозначный выбор материала и очень сложную и дорогостоящую технологию изготовления этой детали. Здесь попытка сэкономить на материале и процессе изготовления детали может привести к колоссальным людским, материальным и финансовым потерям в результате крушения космического корабля. Если же разрабатываются технологии изготовления гвоздей для тарных ящиков или колпачков для шариковых ручек, то тут возможность выбора разнообразных материалов будет несравненно более широкой.
Основные свойства конструкционных материалов делят на пять групп: механические, физические, химические, технологические и эксплуатационные.
Рассмотрим механические свойства материалов, к которым относят прочность, жёсткость и пластичность.
Напомним базовые механические понятия.
Напряжение – сила, отнесённая к площади, на которую эта сила действует.
Остаточное напряжение – напряжение, которое остаётся в теле или его части после полного снятия воздействия. Остаточные напряжения возникают в результате неоднородной пластической деформации при обработке давлением или резанием, а также из-за неравномерного охлаждения и затвердевания при литье и сварке. Иногда эти напряжения называют внутренними или дополнительными напряжениями.
Концентрация напряжений – значительное увеличение напряжений в местах резкого изменения формы тела, называемых концентраторами напряжений (отверстий, надрезов, выточек, пазов, уступов, углов, дефектов поверхности, прессовых посадок).
Деформация – изменение размеров или формы тела. Различают силовую деформацию, температурную деформацию и деформацию в результате фазовых превращений.
Упругая деформация – деформация, исчезающая после снятия нагрузки.
Пластическая (или остаточная) деформация – деформация, остающаяся после снятия нагрузки.
Прочность – способность материала сопротивляться разрушению. Прочность зависит не только от самого материала, но и от вида напряжённого состояния (например, растяжение или сжатие), а также условий нагружения (например, температуры, скорости нагружения, переменности во времени).
Жёсткость – способность материала сопротивляться деформациям.
Пластичность – способность материала получать остаточные деформации, не разрушаясь.
Хрупкость – способность материала разрушаться без образования заметных остаточных деформаций. Это свойство является противоположным свойству пластичности.
Теперь укажем механические характеристики материалов, которые получают из различных видов испытаний. Основным и наиболее распространённым стандартным испытанием является испытание на растяжение, цилиндрический образец для которого показан на рис. 1.1-а. Для испытания листовых материалов используют плоские образцы (рис. 1.1-б). Последнее время всё большее распространение получает испытание цилиндрических образцов на сжатие, которое позволяет исследовать поведение материала при значительно бόльших деформациях, чем растяжение, и значительно ближе по своему характеру к напряжённому состоянию многих формоизменяющих операций, например, операций резания или большинства операций ковки и объёмной штамповки. Образцы для испытания на сжатие имеют более простую форму и обычно значительно меньше по размерам, чем те, которые требуются для испытания на растяжение.
а) б) Рис. 1.1. Образцы для испытания на растяжение: а – цилиндрический; б – плоский | 0,3 0,5 Рис. 1.2.Цилиндрический образец с торцовыми выточками для испытания на сжатие |
Основной сложностью испытания на сжатие является устранение трения, возникающего на поверхностях контакта торцов образца со сжимающими плитами. Трение искажает цилиндрическую форму образца, делая её бочкообразной, а также вносит добавку в измеряемую по ходу испытания силу, которая уже не характеризует только прочностные свойства самого материала. Для устранения трения применяют специальные образцы с выточками на торцах (рис. 1.2), заполняемыми смазочным материалом – стеарином или парафином, капающим внутрь выточки с зажжённой свечи. Испытание проводят после застывания стеарина и удаления его излишков, выступающих выше буртиков, типовые размеры которых для образцов диаметром до 20 мм показаны на рис. 1.2. Эксперименты показывают, что таким способом трение полностью устраняется в пределах сжатия до высоты, втрое меньшей первоначальной, т.е. до относительной деформации порядка 70% (при растяжении в момент разрушения образца обычно достигается значительно меньшая относительная деформация 10-30%).
|
По результатам испытаний на растяжение или сжатие, которые, при необходимости, следует проводить для разных температур и скоростей деформации, можно получить два вида диаграмм зависимости напряжений s от деформаций e: условную диаграмму, напряжения которой определяются делением силы на начальную площадь поперечного сечения образца, и истинную диаграмму, построенную путём деления значений силы не на начальную площадь, а на площадь поперечного сечения, которую имел образец в момент измерения силы. Истинные диаграммы (рис. 1.3) уже не имеют горизонтальной площадки текучести и характерного максимума при значениях деформаций, соответствующих пределу прочности на условных диаграммах.
Напряжение текучести ss – напряжение, вызывающее в условиях линейного напряжённого состояния пластическую деформацию при данной величине деформации. Напряжение текучести является характеристикой истинной диаграммы и у большинства материалов изменяется при увеличении деформации материала, то есть является переменной величиной, которую следует отличать от постоянной величины, называемой пределом текучести.
Предел текучести sт– напряжение, при котором возникают пластические деформации на начальной стадии деформирования. Предел текучести представляет собой начальное напряжение текучести. Поскольку в начальный момент пластической деформации исходная площадь поперечного сечения изменяется незначительно, с достаточной точностью можно считать, что предел текучести является одинаковым на условной и истинной диаграммах.
Упрочнение (наклёп, нагартовка) – увеличение напряжения текучести материала при увеличении деформации. Получивший предварительное упрочнение материал обладает бόльшим пределом текучести, но меньшей пластичностью, чем неупрочнённый.
Кривая упрочнения – зависимость напряжения текучести материала от деформации. При испытаниях на растяжение или сжатие кривая упрочнения соответствует истинным диаграммам испытаний.
|
Предел прочности (временное сопротивление) sв– отношение наибольшей силы, которую способен выдержать образец, к его начальной площади поперечного сечения. Т.е. предел прочности – это характеристика условной диаграммы растяжения. Важно заметить, что предел прочности в большинстве случаев не является напряжением, при котором разрушается материал. Если отнести силу, соответствующую моменту разрушения образца к действительной площади в месте разрушения, можно обнаружить, что напряжение разрушения значительно больше (для пластичных материалов примерно в два раза) предела прочности. Одинаковые пределы прочности двух разных материалов (рис. 1.4) вовсе не означают, что один материал столь же прочен, как и другой. Равенство этих пределов означает лишь то, что наибольшая сила, соответствующая моменту начала образования шейки, была для обоих материалов одинаковой, но с учётом того, что материал 2 получил в данный момент деформацию e2, существенно превышающую e1, ясно, что он имел значительно меньшую истинную площадь поперечного сечения, т.е. в момент образования шейки выдерживал значительно большее напряжение, чем материал 1. Кроме того, при сжатии предел прочности можно с достаточной объективностью определять лишь у весьма хрупких материалов, разрушение которых происходит в начальный момент, т.е. без заметного изменения площади поперечного сечения. Таким образом, в целом предел прочности является весьма условной величиной, которая вошла в практику для сравнительной оценки прочностных свойств материала лишь в силу удобства и простоты определения. В достаточно точных научных расчётах, использующих формулы механики деформируемого твёрдого тела, предел прочности не используется, а его применение всегда означает очень упрощённый учёт прочностных свойств материала. Но в упрощённом понимании прочность характеризуют именно пределы прочности и текучести (применение предела текучести для характеристики прочности обусловлено тем, что в большинстве конструкций пластические деформации являются недопустимыми).
Разновидностью статических нагрузок являются периодически изменяющиеся во времени или циклические нагрузки, приводящие к усталостному разрушению. Способность материалов сопротивляться разрушению под действием циклических нагрузок называется усталостной прочностью или выносливостью. Характеристикой усталостной прочности при наиболее опасном симметричном цикле является предел выносливости s–1 – напряжение, при котором материал выдерживает либо неограниченное число циклов, либо регламентированное число циклов (обычно 10 8 циклов).
При статических нагрузках, особенно, в условиях высоких температур, наблюдается явление ползучести, проявляющееся в самопроизвольном изменении с течением времени деформаций и напряжений в статически нагруженной детали. Предел ползучести sпл – напряжение, при котором деформация ползучести материала за заданный промежуток времени достигает заданной величины. Заданный промежуток времени обычно принимают равным сроку службы изделия, а деформацию ползучести выбирают из условий нормальной эксплуатации изделия.
Жёсткость материала в пределах упругости характеризуется входящим в закон Гука модулем упругости E. Чем больше модуль упругости, тем жёстче материал, т.е. тем меньше он деформируется при той же самой величине напряжения. Например, если державку режущей пластины токарного резца вместо стали выполнить из латуни, то она может быть не менее прочной (по величине предела прочности или текучести многие латуни не уступают сталям). Однако с учётом того, что модуль упругости латуни (E=1,2×10 5 МПа) почти в два раза меньше модуля упругости стали (E=2×10 5 МПа), резец с латунной державкой тех же размеров будет прогибаться под действием сил резания вдвое больше, чем стальной, что значительно ухудшит точность обработки. Таким образом, в данном случае латунь устраивает нас по прочности, но не устраивает по жёсткости.
Пластичность характеризуется относительным удлинением при разрыве
, (1.1)
где l0 и l – начальная и конечная длины образца, и относительным сужением при разрыве
, (1.2)
где S0 и S – начальная и минимальная после разрыва площади поперечного сечения образца.
Величина d существенно зависит от отношения длины образца l0 к его диаметру d0. Поэтому в справочниках указывается, на каком образце определялась величина d. Например, d5 означает, что удлинение было определено на пятикратном образце, а d10 – на десятикратном. Величина y практически не зависит от указанного отношения и поэтому характеризует пластичность более точно.
Нагружение, приводящее к появлению значительных массовых сил, определяемых произведением массы рассматриваемого объема на его ускорение, называется динамическим (частным случаем динамического нагружения является, например, перегрузка космонавта и элементов ракеты при движении её с ускорением, а также ударное нагружение). Массовые силы считаются значительными, если они соизмеримы с прочими силами, действующими на рассматриваемое тело. Нагружение называется скоростным, если пластические деформации не успевают произойти полностью за время изменения нагрузки, т.е. если скорость протекания пластических деформаций является недостаточной для их полного завершения в процессе изменения нагрузки. В этом случае эксперименты показывают значительное влияние увеличения скорости деформирования на механические характеристики материала. Например, при ударном растяжении (одновременно являющимся и динамическим, и скоростным) предел текучести повышается на 20-70%, а предел прочности – на 10-30% по сравнению со статическим растяжением. Пластичность с ростом скорости нагружения резко убывает, и даже у пластичных материалов начинает наблюдаться склонность к хрупкому разрушению. Поскольку для построения диаграммы ударного растяжения требуются очень сложные специальные машины, обычно применяют упрощённый способ оценки свойств материала в условиях ударной нагрузки, называемый испытанием на ударную вязкость ан, под которой понимается отношение работы, затраченной на разрушение образца с надрезом специальным маятниковым копром (рис. 1.5), к площади прямоугольного поперечного сечения образца в месте надреза. Чем больше ударная вязкость, тем лучше материал сопротивляется удару (тем лучше, например, броня танка сопротивляется пробиванию снарядом или, скажем, наковальня, не трескаясь, выдерживает удары молота).
|
Рис. 1.5. Схема испытания на ударную вязкость |
Так как изготовление и испытание образцов на растяжение или сжатие не только достаточно трудоёмко и требует много времени, но, к тому же, вынуждает портить заготовки или изделия, из которых вырезают эти образцы, то на практике часто прибегают к простой и быстрой сравнительной оценке прочностных свойств материала с помощью пробы на твёрдость, обычно не требующей порчи исследуемых объектов.
а) б) в) Рис. 1.6.Схемы определения твёрдости: а – по Бринеллю; б – по Роквеллу; в – по Виккерсу Твёрдость – способность материала сопротивляться вдавливанию в него постороннего тела. При измерении твёрдости специальные наконечники вдавливают в материал и судят о твёрдости по обмеру полученного отпечатка. Значение твёрдости и её размерность для одного и того же материала зависят от метода измерения. Наибольшее распространение получили метод Бринелля (твёрдость обозначают НВ), в котором в испытываемую поверхность вдавливается высокопрочный стальной шарик (рис. 1.6-а), обычно используемый для более твёрдых материалов метод Роквелла (три шкалы, используемые в порядке возрастания твёрдости: HRB, HRС, HRА), в котором вдавливается алмазный конус (рис. 1.6-б), и применяемый для материалов малой толщины и тонких поверхностных слоёв высокой твёрдости метод Виккерса (HV), в котором вдавливается четырёхгранная алмазная пирамида с квадратным основанием (рис. 1.6-в). Специальные экспериментальные таблицы, графики или зависимости позволяют по значениям твёрдости приближённо определить предел прочности или предел текучести материала. Для определения твёрдости изделий очень мелких размеров или твёрдости отдельных составляющих структуры сплавов измеряют микротвёрдость (H), вдавливая пирамиду Виккерса под малой нагрузкой. К основным физическим свойствам материалов относятся плотность, температура плавления, теплопроводность, теплоёмкость, коэффициент температурного расширения, электропроводность, магнитные свойства. Основным химическим свойством конструкционных материалов является способность к химическому взаимодействию с конкретными контактирующими материалами и окружающими средами в процессе обработки и эксплуатации. Способность материала подвергаться различным методам формообразующей обработки определяется его технологическими свойствами. Перечислим эти свойства. Литейность – способность расплавленного материала заполнять литейную форму с малой величиной усадки и незначительным образованием литейных дефектов. Формоизменяемость – способность материала при обработке давлением приобретать требуемую форму без разрушения и с наименьшим сопротивлением. Свариваемость – способность материала образовывать при сварке надёжные неразъёмные соединения. Срезаемость – способность материала поддаваться обработке резанием. Перечислим основные эксплуатационные свойства материала. Износостойкость – сопротивление материала уносу своих поверхностных частиц трущимся о них посторонним материалом. Коррозионная стойкость – сопротивление материала разрушительному действию окружающей среды: кислорода, воды, агрессивных кислотных и щелочных сред. Хладноломкость – возрастание хрупкости материала при понижении температуры. Хладостойкость – сопротивление материала возрастанию хрупкости при температурах ниже 0°С. Это свойство противоположно хладноломкости. Жаропрочность – сопротивление материала деформации и разрушению при высоких температурах. Жаростойкость – сопротивление материала окислению в газовой среде при высоких температурах. Жаростойкость иначе называется окалиностойкостью (окалина – продукт окисления, образующийся при повышенной температуре на поверхности стали и некоторых других сплавов при взаимодействии со средой, содержащей кислород). Теплостойкость – устойчивость материала против отпуска при нагреве в процессе работы. Антифрикционность – свойство материала обеспечивать малое контактное трение.
|