Что такое подмножество чисел
Множества
Множество — это совокупность любых объектов. Множества обозначают большими буквами латинского алфавита — от A до Z.
Основные числовые множества: множество натуральных чисел и множество целых чисел, всегда обозначаются одними и теми же буквами:
N — множество натуральных чисел,
Z — множество целых чисел.
Множества делятся на конечные и бесконечные. Конечное множество — множество, содержащее определённое (конечное) количество элементов. Бесконечное множество — множество, содержащее бесконечно много элементов. К бесконечным множествам можно отнести множества натуральных и целых чисел.
Для определения множества используются фигурные скобки, в которых через запятую перечисляются элементы. Например, запись
означает, что множество L состоит из четырёх чётных чисел.
Термин множество употребляется независимо от того, сколько элементов оно содержит. Множества не содержащие ни одного элемента называются пустыми.
Подмножество
Подмножество — это множество, все элементы которого, являются частью другого множества.
Визуально продемонстрировать отношение множества и входящего в него подмножества можно с помощью кругов Эйлера. Круги Эйлера — это геометрические схемы, помогающие визуализировать отношения различных объектов, в нашем случае, множеств.
Рассмотрим два множества:
Каждый элемент множества L принадлежит и множеству M, значит, множество L является подмножеством множества M. Такое соотношение множеств обозначают знаком ⊂ :
Рассмотрим два множества:
Так как оба множества состоят из одних и тех же элементов, то L = M.
Пересечение и объединение множеств
Из данного примера следует, что пересечением множеств называется множество, которое содержит только те элементы, которые встречаются во всех пересекающихся множествах.
При объединении равных множеств объединение будет равно любому из данных множеств:
Как найти все подмножества множеств
На простом примере напомним, что называется подмножеством, какие бывают подмножества (собственные и несобственные), формулу нахождения числа всех подмножеств, а также калькулятор, который выдает множество всех подмножеств.
Пример 1. Дано множество А = <а, с, р, о>. Выпишите все подмножества
данного множества.
Решение:
Несобственные: <а, с, р, о>, Ø.
Всего: 16 подмножеств.
Пояснение. Множество A является подмножеством множества B если каждый элемент множества A содержится также в B.
• пустое множество ∅ является подмножеством любого множества, называется несобственным;
• любое множество является подмножеством самого себя, также называется несобственным;
• У любого n-элементного множества ровно 2 n подмножеств.
Последнее утверждение является формулой для нахождения числа всех подмножеств без перечисления каждого.
Для математиков сформулируем теорему и приведем строгое доказательство.
1. Для n = 1 (база индукции) (и даже для n = 2, 3) теорема доказана.
Следовательно, всех подмножеств множества B: 2 k + 2 k = 2 ⋅ 2 k = 2 k+1 штук.
Теорема доказана.
В примере 1 множество А = состоит из четырех элементов, n=4, следовательно, число всех подмножеств равно 2 4 =16.
Если вам необходимо выписать все подмножества, или составить программу для написания множества всех подмножеств, то имеется алгоритма для решения: представлять возможные комбинации в виде двоичных чисел. Поясним на примере.
Калькулятор множества всех подмножеств.
Подмножество
Смотреть что такое «Подмножество» в других словарях:
подмножество — совокупность; множество Словарь русских синонимов. подмножество сущ., кол во синонимов: 1 • множество (88) Словарь синонимов ASIS. В.Н. Тришин … Словарь синонимов
ПОДМНОЖЕСТВО — нем. Teilgesamtheit. Множество, каждый элемент к рого является элементом другого множества. Antinazi. Энциклопедия социологии, 2009 … Энциклопедия социологии
Подмножество — [subset] см. Множество … Экономико-математический словарь
подмножество — — [http://www.rfcmd.ru/glossword/1.8/index.php?a=index&d=4609] Тематики защита информации EN subset … Справочник технического переводчика
Подмножество — В этой статье не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена. Вы можете … Википедия
подмножество — а; ср. Матем. Множество элементов, каждый из которых принадлежит другому, более крупному, большому множеству. * * * подмножество понятие теории множеств. Подмножество множества А множество В (обозначается ), каждый элемент которого принадлежит А … Энциклопедический словарь
подмножество — ▲ множество ↑ частичный подмножество множество, являющееся частью большего множества. под. (подсистема). подгруппа. | фракция. сочетание целое подмножество (матем). сочетать. ▼ вид ↓ выделять (из прочих) с … Идеографический словарь русского языка
ПОДМНОЖЕСТВО — понятие теории множеств. П. множества А множество В (обозначается В с Л), каждый элемент к рого принадлежит А. Напр., множество всех чётных чисел является П. множества всех целых чисел … Естествознание. Энциклопедический словарь
подмножество — подмн ожество, а … Русский орфографический словарь
§1. Множества и операции над ними
Объяснение и обоснование
В курсах алгебры и алгебры и начал математического анализа чаще всего рассматривают множества, элементами которых являются числа, и поэтому их называют числовыми множествами.
Как правило, множества обозначают прописными буквами латинского алфавита. Например, если множество М состоит из чисел 1; 2; 3, то его обозначают так: М = <1; 2; 3>. Тот факт, что число 2 входит в это множество (является элементом данного множества М), записывается с помощью специального значка ∈ следующим образом: 2 ∈ М; а то, что число 5 не входит в это множество (не является элементом данного множества), записывается так: 5 ∉ М.
Можно рассматривать также множество, не содержащее ни одного элемента, — пустое множество.
Например: множество простых делителей числа 1 — пустое множество.
Для некоторых множеств существуют специальные обозначения. Так, пустое множество обозначается символом ∅, множество всех натуральных чисел — буквой N, множество всех целых чисел — буквой Z, множество всех рациональных чисел — буквой Q, а множество всех действительных чисел — буквой R.
Множества бывают конечными и бесконечными в зависимости от того, какое количество элементов они содержат. Так, множества А = <7>и M = <1; 2; 3>— конечные, потому что содержат конечное число элементов, а множества N, Z, Q, R — бесконечные.
Множества задают или с помощью перечисления их элементов (это можно сделать только для конечных множеств), или с помощью описания, когда задается правило (характеристическое свойство), которое позволяет определить, принадлежит или нет данный объект рассматриваемому множеству. Например, А = <–1; 0; 1>(множество задано перечислением элементов), B — множество всех четных целых чисел (множество задано характеристическим свойством всех элементов множества). Последнее множество иногда записывают так: B = или так: B = ∈ Z> — здесь после вертикальной черточки записано характеристическое свойство*.
В общем виде запись множества с помощью характеристического свойства можно обозначить так: A =
Два множества называются равными, если каждый элемент первого множества является элементом второго множества и, наоборот, каждый элемент второго множества является элементом первого множества.
Из приведенного определения равенства множеств следует, что в множестве одинаковые элементы не различаются. Действительно, например, <1; 2; 2>= <1; 2>, поскольку каждый элемент первого множества (1 или 2) является элементом второго множества и, наоборот, каждый элемент второго множества (1 или 2) является элементом первого. Поэтому, записывая множество, чаще всего каждый его элемент записывают только один раз.
Если каждый элемент множества A является элементом множества B, то говорят, что множество A является подмножеством множества B.
Это записывают следующим образом: A ⊂ B.
Например, <1; 2>⊂ <0; 1; 2; 3>, N ⊂ Z (поскольку любое натуральное число — целое), Z ⊂ Q (поскольку любое целое число — рациональное), Q ⊂ R (поскольку любое рациональное число — действительное).
Полагают, что всегда ∅ ⊆ A, то есть пустое множество является подмножеством любого множества.
Иногда вместо записи A ⊂ B используется также запись A ⊆ B.
Сопоставим определение равенства множеств с определением подмножества. Если множества А и В равны, то: 1) каждый элемент множества А является элементом множества В, следовательно, А — подмножество В (A ⊆ B); 2) каждый элемент множества В является элементом множества А, следовательно, В — подмножество А (B ⊆ A). Таким образом,
два множества равны тогда и только тогда, когда каждое из них является подмножеством другого.
Иногда соотношения между множествами удобно иллюстрировать с помощью кругов (которые часто называют кругами Эйлера–Венна). Например, рисунок 1 иллюстрирует определение подмножества, а рисунок 2 — отношения между множествами N, Z, Q, R.
Калькулятор определения подмножества из множества
Подмножество множества A — это такой набор B, все члены которого принадлежат A. Существует знакомое всем с детства множество натуральных чисел N, а наборы четных E и нечетных O элементов являются подмножествами N.
Теория множеств
Проблема отображения бесконечности действительных чисел волновала математиков с самой древности. Натуральные числа люди использовали при счете, рациональные, то есть дроби – при операциях с частями целого, а действительные числа нашли свое применение в измерениях. Первым действительным и иррациональным числом, о котором узнали древние математики, было число, отображающее длину диагонали квадрата. Затем появилось Пи (отношение диаметра круга к его окружности), позднее и другие числа.
При измерении длины стороны фигуры или ее диагонали мы можем постоянно повышать точность измерений и получать все новые и новые числа. Например, диагональ единичного квадрата равна корню из двух. Мы можем выразить ее длину как 1,4 или 1,41 или 1,4142 или 1,41421356237. И это все разные действительные числа. Можно ли создать список всех действительных чисел от 0 до 1? Нет, так как каждый раз будет находиться еще одно число, отличное от всех, представленных в этом списке.
Именно с этой проблемой работал Георг Кантор, который создал наивную теорию множеств. Наивной его теория стала в результате образования нескольких логических парадоксов, которые были успешно решены при трансформации канторовской теории в аксиоматическую теорию множеств.
Подмножество
Давайте начнем с самого простого – множество натуральных чисел. Это бесконечная последовательность целых положительных чисел, которые мы используем при счете предметов. В отличие от измерений, мы не можем повышать точность счета. Если мы видим 5 яблок, то точнее мы выразить их количество никак не сможем. Кроме того, мы без проблем можем перечислить все натуральные числа в диапазоне от 1 до 10. Все натуральные числа могут быть как четными, так и нечетными, следовательно, натуральное множество содержит в себе четное и нечетное подмножества.
Целые числа – это продолжение натуральной последовательности в отрицательную область. К целым относится ноль, все натуральные числа, а также противоположные натуральным, то есть со знаком минус. Очевидно, что натуральное множество является подмножеством целых чисел.
Рациональное множество – это набор всех дробных чисел, которые возможно представить в виде обыкновенной дроби. В виде дроби мы можем выразить 0,25 – 1/4, 0,5 – 1/2, 1 – 1/1. В качестве дроби легко записать любое целое или натуральное число, например: 5/5 или 50/50. Таким образом, рациональное множество содержит два подмножества – наборы целых и натуральных чисел.
Действительное множество – это все числа на числовой оси. К ним относятся натуральные, целые, рациональные и иррациональные числа, которые формируют соответствующие подмножества во множестве действительных чисел. Множество действительных чисел – это самое мощное множество, которое стремится в бесконечность. Кроме того, пустое множество, которое не содержит ни одного элемента, является подмножеством любого выбранного набора чисел. Но и это еще не все. Каждое множество является подмножеством самого себя.
Мы перечислили глобальные примеры подмножеств, однако на практике нам может потребовать определить является ли один набор чисел подмножеством другого набора? К примеру, если у нас есть пара значений <3, 11>, то является ли она подмножеством набора <1, 3, 5, 7, 11, 13>? Очевидно, что ответ положительный, так как и 3, и 11 встречаются во множестве <1, 3, 5, 7, 11, 13>. Однако это верно только для множеств с неразличимыми элементами, то есть для обычного набора чисел. Если же важен порядковый номер элементов множества, то результат противоположный и <3, 11>не является подмножеством <1, 3, 5, 7, 11, 13>.
Наш калькулятор определения подмножеств позволяет выяснить, является набор чисел B подмножеством набора A. Программа использует алгоритм для надежно различимых элементов множества, для которых важен порядок расположения членов.
Пример определения подмножества
Выше мы выяснили, что четное множество – это подмножество натурального ряда. Для неразличимых элементов объект B = <2, 4, 6>является подмножеством набора A = <1, 2, 3, 4, 5, 6>. Однако представим, что это база данных, и n-ному элементу множества соответствует свое значение. Выходит, что первый член объекта B имеет значение 2, а первый элемент набора A равен 1. Второй элемент множества B равен 4, а второй элемент объекта A = 2. По такой логике это совершенно разные объекты, следовательно, множество B не является подмножеством набора A.
Заключение
Множество – это набор математических объектов, каждый из которых обладает определенным свойством. Каждое множество имеет минимум два подмножества: пустое и свое собственное. Для поиска других подмножеств используйте наш калькулятор, который позволяет определить принадлежность одного набора чисел к другому.