Что такое подмножество правильных дробей и неправильных дробей

Правильные и неправильные дроби

Обыкновенные дроби делятся на правильные и неправильные.

Правильные дроби

Правильная дробь — это обыкновенная дробь, у которой числитель меньше знаменателя.

Чтобы узнать является ли дробь правильной, надо сравнить её члены между собой. Члены дроби сравниваются в соответствии с правилом сравнения натуральных чисел.

Пример. Рассмотрим дробь:

у которой 7 — это числитель, а 8 — знаменатель. Сравним числитель со знаменателем:

7 Пример 1. Рассмотрим дробь:

у которой 8 — это числитель, а 7 — знаменатель. Сравним числитель со знаменателем:

Так как числитель больше знаменателя, значит данная дробь является неправильной.

Пример 2. Рассмотрим дробь:

Сравним числитель со знаменателем:

Так как числитель равен знаменателю, значит данная дробь является неправильной.

Любая неправильная дробь больше единицы или равна ей:

Что такое подмножество правильных дробей и неправильных дробей. Смотреть фото Что такое подмножество правильных дробей и неправильных дробей. Смотреть картинку Что такое подмножество правильных дробей и неправильных дробей. Картинка про Что такое подмножество правильных дробей и неправильных дробей. Фото Что такое подмножество правильных дробей и неправильных дробей

Обратите внимание, что любое натуральное число можно представить в виде неправильной дроби, следующим образом:

Что такое подмножество правильных дробей и неправильных дробей. Смотреть фото Что такое подмножество правильных дробей и неправильных дробей. Смотреть картинку Что такое подмножество правильных дробей и неправильных дробей. Картинка про Что такое подмножество правильных дробей и неправильных дробей. Фото Что такое подмножество правильных дробей и неправильных дробей

Дробь с числителем p и знаменателем 1 – это другая форма записи натурального числа p: Что такое подмножество правильных дробей и неправильных дробей. Смотреть фото Что такое подмножество правильных дробей и неправильных дробей. Смотреть картинку Что такое подмножество правильных дробей и неправильных дробей. Картинка про Что такое подмножество правильных дробей и неправильных дробей. Фото Что такое подмножество правильных дробей и неправильных дробей.

Число 0 принято считать равным дроби вида Что такое подмножество правильных дробей и неправильных дробей. Смотреть фото Что такое подмножество правильных дробей и неправильных дробей. Смотреть картинку Что такое подмножество правильных дробей и неправильных дробей. Картинка про Что такое подмножество правильных дробей и неправильных дробей. Фото Что такое подмножество правильных дробей и неправильных дробей, где q — любое натуральное число:

Что такое подмножество правильных дробей и неправильных дробей. Смотреть фото Что такое подмножество правильных дробей и неправильных дробей. Смотреть картинку Что такое подмножество правильных дробей и неправильных дробей. Картинка про Что такое подмножество правильных дробей и неправильных дробей. Фото Что такое подмножество правильных дробей и неправильных дробей

Любую неправильную дробь, у которой числитель больше знаменателя можно представить в виде смешанного числа.

Сравнение правильных и неправильных дробей

Любая неправильная обыкновенная дробь больше правильной, так как правильная дробь всегда меньше единицы, а неправильная больше единицы или равна ей.

Источник

Правильные и неправильные дроби

Вы будете перенаправлены на Автор24

Обыкновенные дроби делятся на \textit <правильные>и \textit <неправильные>дроби. Такое разделение основано на сравнении числителя и знаменателя.

Правильные дроби

Существует определение правильной дроби, которое базируется на сравнении дроби с единицей.

Неправильные дроби

Дадим определение неправильной дроби, которое базируется на ее сравнении с единицей.

Готовые работы на аналогичную тему

Рассмотрим более подробно понятие неправильной дроби.

Рассмотрим далее неправильные дроби:

При работе с неправильными дробями прослеживается тесная связь между ними и смешанными числами.

Решение.

Разделим числитель на знаменатель с остатком:

Чтобы записать смешанное число в виде неправильной дроби, необходимо знаменатель умножить на целую часть числа, к произведению, которое получилось, прибавить числитель дробной части и записать полученную сумму в числитель дроби. Знаменатель неправильной дроби будет равен знаменателю дробной части смешанного числа.

Решение.

Сложение смешанного числа и правильной дроби

Решение.

Воспользуемся формулой сложения смешанного числа и правильной дроби:

Сложение смешанного числа и неправильной дроби

Сложение неправильной дроби и смешанного числа сводят к сложению двух смешанных чисел, для чего достаточно выделить целую часть из неправильной дроби.

Решение.

Далее сложение смешанного числа и неправильной дроби сводится к сложению двух смешанных чисел:

Получи деньги за свои студенческие работы

Курсовые, рефераты или другие работы

Автор этой статьи Дата последнего обновления статьи: 10 06 2021

Источник

Дроби

Что такое дробь

Дроби нужны для обозначения нецелых количеств. Они образуются как результат деления натуральных чисел, когда делимое не кратно делителю.

Дробная черта равносильна знаку деления. То есть \(4:6=\frac46\) (четыре шестых), \(7:2=\frac72\) (семь вторых). Числитель дроби играет роль делимого, а знаменатель — делителя.

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.

Знаменатель дроби не может быть нулем.

Основные свойства дробей

Несократимой называют дробь, числитель и знаменатель которой взаимно просты, то есть не имеют общих делителей, кроме 1 (-1).

Существует два вида дробей: правильные и неправильные.

Неправильные дроби всегда больше правильных: \(\frac <39>

Правильные дроби

Правильная дробь — это обыкновенная дробь, числитель которой меньше знаменателя.

Правильная дробь называется так, поскольку выражает «правильную» часть единицы, то есть часть, которая меньше целого: \( \frac25

Таким образом, отличить правильную дробь от неправильной можно при сравнении дробей с единицей. Это различие не влияет на арифметические действия, но важно при сравнении дробей.

Смешанные дроби

Неправильные дроби не принято оставлять в результате вычислений. Лучше преобразовывать их в смешанные числа. Любую неправильную дробь можно представить в виде смешанного числа.

Смешанное число — это число, содержащее целую и дробную часть.

Для составления смешанной дроби необходимо:

Записать неправильную дробь \(\frac<18>4\) в виде смешанной.

Что такое подмножество правильных дробей и неправильных дробей. Смотреть фото Что такое подмножество правильных дробей и неправильных дробей. Смотреть картинку Что такое подмножество правильных дробей и неправильных дробей. Картинка про Что такое подмножество правильных дробей и неправильных дробей. Фото Что такое подмножество правильных дробей и неправильных дробей

Тогда искомая смешанная дробь \(\frac<18>4=4\frac24.\) Эту дробь можно сократить, поделив числитель и знаменатель дробной части на общий делитель 2:

Смешанное число можно записать в виде неправильной дроби. Для этого необходимо целую часть умножить на знаменатель дробной части. К полученному числу нужно прибавить числитель дробной части. Эту сумму записать в числитель, а знаменатель дробной части оставить без изменений.

Смешанное число \(6\frac25\) записать в виде неправильной дроби.

Как перевести правильную дробь в неправильную

Перевести правильную дробь в неправильную или наоборот невозможно. Это разные категории чисел.

Любое натуральное число можно представить в виде неправильной дроби: \(2=\frac21.\)

Дробь с числителем p и знаменателем 1 — это другая форма записи натурального числа p. Это правило можно представить в виде формулы: \(p=\frac p1.\)

Действия с дробями, как решать примеры

Приведение к общему знаменателю

Чтобы решать большинство примеров с дробями, необходимо приводить их к общему знаменателю. Чтобы привести дроби \(\frac ab\) и \(\frac cd\) к общему знаменателю, необходимо:

Сравнение

Чтобы сравнить обыкновенные дроби, следует привести их к общему знаменателю и сравнить числители. Дробь с большим числителем больше.

\(\frac34>\frac13,\) поскольку \(\frac9<12>>\frac4<12>.\)

Если сравниваются смешанные числа, в первую очередь необходимо смотреть на целую часть. Больше то число, целая часть которого больше.

К примеру, \(8\frac16>5\frac23.\)

Если целые части смешанных чисел равны, то сравнивают дробные части по правилу сравнения обыкновенных дробей. Число с наибольшей дробной частью будет больше: \(5\frac23>5\frac13.\)

Сложение и вычитание

Чтобы сложить обыкновенные дроби, необходимо привести их к общему знаменателю, сложить числители, а знаменатели оставить без изменений. При необходимости привести дробь в вид смешанного числа.

При сложении смешанных чисел целые и дробные части складываются отдельно.

Чтобы вычесть одну дробь из другой, также необходимо привести их к общему знаменателю, после чего вычесть числители, а знаменатели оставить без изменений.

Умножение и деление

Чтобы умножить обыкновенные дроби, необходимо перемножить их числители и знаменатели.

\(\frac ab\cdot\frac cd=\frac\)

Умножить дробь \(\frac35\) на \(\frac23.\)

При умножении дроби на натуральное число, нужно умножить числитель на это число, а знаменатель оставить тем же. Так происходит, поскольку любое натуральное число можно представить в виде \(p=\frac p1.\)

\(\frac ab\cdot p=\frac ab\cdot\frac p1=\fracb.\)

Чтобы умножить смешанные числа, необходимо сперва представить их в виде обыкновенных дробей и лишь затем совершать действие.

Чтобы поделить одну дробь на другую, нужно умножить первую дробь на дробь, обратную второй. При этом оба знаменателя и числитель второй дроби не должны быть равны нулю.

\(\frac ab:\frac cd=\frac ab\cdot\frac dc=\frac.\)

Поделить дробь \(\frac34\) на \(\frac23.\)

При делении смешанных чисел, как и при умножении, их необходимо сперва привести к виду обыкновенной дроби.

Источник

Что такое подмножество правильных дробей и неправильных дробей. Смотреть фото Что такое подмножество правильных дробей и неправильных дробей. Смотреть картинку Что такое подмножество правильных дробей и неправильных дробей. Картинка про Что такое подмножество правильных дробей и неправильных дробей. Фото Что такое подмножество правильных дробей и неправильных дробей

Общие сведения

Слово «дробь» в обиход ввёл математик средневековой Европы Фибоначчи. На Руси под этим понятием понимались доли чисел. В дословном переводе на русский с арабского термин обозначает «ломать» или «раздроблять». Вид записи выражения, который применяется и сегодня, предложили арабы. Но фундамент теории заложили греческие и индийские учёные.

В математике под дробным отношением понимают число, образованное из некоторой части единицы. Простыми словами это можно объяснить на наглядном примере. Пусть на столе лежит две круглые пиццы. Каждую из них разрезали на восемь равных частей. Всего получилось шестнадцать долей. Через какое-то время было съедено одиннадцать кусков. Соответственно на столе осталось пять. В математической записи такое действие будет выглядеть как 11 / 8.

Что такое подмножество правильных дробей и неправильных дробей. Смотреть фото Что такое подмножество правильных дробей и неправильных дробей. Смотреть картинку Что такое подмножество правильных дробей и неправильных дробей. Картинка про Что такое подмножество правильных дробей и неправильных дробей. Фото Что такое подмножество правильных дробей и неправильных дробей

Число, стоящее в верхней части выражения, называют делимым или числителем, а в нижней делителем или знаменателем. В зависимости от их числового значения все дроби разделяют на три класса:

Кроме этого, выделяют ещё одну группу выражений. Дроби, относящиеся к ней, называют десятичными. Это такие отношения, у которых знаменатель — это десятичное число, стоящее в любой натуральной степени. Для записи десятичных выражений используют не дробную черту, а запятую. Например, 12 / 10 = 1,2.

Суть отношения

Обыкновенная дробь может быть правильной или неправильной. Например, 19 / 21 — правильное выражение, так как результат деления будет меньше единицы. В то же время обыкновенные числа 32 / 6 и 90 / 90 — неправильные, так как ответ, получаемый при делении, будет больше единицы в первом случае и равен ей во втором.

Чтобы разобраться, почему же дробные выражения, у которых числитель превосходит или равняется знаменателю называют «неправильными» можно порассуждать следующим образом.

Пусть имеется неправильная дробь 10 / 10. Эта запись обозначает, что взято десять долей чего-то состоящего из такого же числа частей. Иными словами, из имеющихся десяти долей можно сложить целый предмет. Неправильное выражение вида 10 / 10, по сути, означает целый предмет. Значит, можно записать, что 10 / 10 =1. Следовательно, такое отношение можно заменить натуральным числом.

Теперь можно рассмотреть неправильные отношения 7 / 3 и 12 / 4. Совершенно очевидно, что из этих семи третьих долей легко составляется два целых числа. Одно из них будет содержать три части. Значит, для оставшихся двух долей понадобится шесть частей: 3 + 3 = 6. При этом останется ещё одна доля — третья. Таким образом, выражение семь третьих означает две целые части и ещё одну третью от них. Аналогично из двенадцати четвёртых можно сформировать три целых числа по четыре доли в каждом. То есть дробное отношение 12 / 4 означает, по сути, три целых предмета.

Что такое подмножество правильных дробей и неправильных дробей. Смотреть фото Что такое подмножество правильных дробей и неправильных дробей. Смотреть картинку Что такое подмножество правильных дробей и неправильных дробей. Картинка про Что такое подмножество правильных дробей и неправильных дробей. Фото Что такое подмножество правильных дробей и неправильных дробей

Если провести анализ полученных результатов, то можно сделать вывод о том, что неправильные дроби, могут быть представлены в двух видах:

Особенный интерес вызывает представление неправильной дроби в виде суммы натурального числа и правильной части. Это действие называется выделением целой доли из неправильного отношения. Причём такая операция может быть выполнена и в обратном направлении — трансформация выражения в смешанное.

Превращение дробей

По смыслу неправильные выражения представляют собой целую и дробную часть, записанную в виде отношения. Поэтому любую смешанную дробь можно превратить в правильную, и наоборот. Деление целого числа на такое же можно объяснить так. Пусть нужно разделить четыре на пять. Значит, единицу понадобится разделить на пять равных частей, то есть 1 / 5. Четыре же единицы дадут 1 / 5 + 1/ 5 + 1 / 5 + 1 / 5 = 4 / 5. В этом случае получается правильное выражение. Но бывает, что числитель количественно превышает знаменатель. Значит, для более понятной формы записи нужно из такого выражения выделить целую часть.

Что такое подмножество правильных дробей и неправильных дробей. Смотреть фото Что такое подмножество правильных дробей и неправильных дробей. Смотреть картинку Что такое подмножество правильных дробей и неправильных дробей. Картинка про Что такое подмножество правильных дробей и неправильных дробей. Фото Что такое подмножество правильных дробей и неправильных дробей

Например, нужно преобразовать число 25 / 8. Это действие подразумевает нахождение целых единиц, содержащихся в выражении. Рассуждать нужно следующим образом. Одна единица может быть представлена как 8 / 8, две — 16 / 8, три — 24 / 8. Значит, число состоит из трёх единиц и оставшейся 1 / 8 части. Поэтому записать его можно так: 3 (1 / 8).

Такого вида преобразования часто приходится выполнять при решении примеров с дробями в 5 классе. Поэтому понять принцип превращения лучше всего на конкретное задание. При этом можно использовать следующий алгоритм:

Что такое подмножество правильных дробей и неправильных дробей. Смотреть фото Что такое подмножество правильных дробей и неправильных дробей. Смотреть картинку Что такое подмножество правильных дробей и неправильных дробей. Картинка про Что такое подмножество правильных дробей и неправильных дробей. Фото Что такое подмножество правильных дробей и неправильных дробей

Итак, пусть имеется выражение 3 (5 / 7). Так как фактически это сумма трёх и пяти седьмых, то следуя алгоритму, можно решение расписать так: 3 + 5 / 7 = (3 * 7 + 5) / 7 = (21 + 5) / 7 = 26 / 7. Аналогичный результат мог быть получен при простом сложении двух частей смешанного числа: 3 / 1 + 5 / 7 = (3 * 7) / 1 * 7 + 5 / 7 = 21 / 7 + 5 / 7 = (21 + 5) / 7 = 26 / 7. Первый вариант, конечно же, более удобен. Его можно выразить формулой: a (c / d) = (a * d + c) / d.

Эту выражение нужно обязательно запомнить, так как его придётся довольно часто использовать при решении задач различной сложности.

Выполнение действий

Отличие неправильной дроби от правильной заключается в том, что первая равна или больше единицы, а вторая меньше её. Поэтому правило выполнения арифметических действий одинаковое для этих двух групп. Для того чтобы ребёнок понял, как правильно решать простые и сложные задания объяснение в 5 классе неправильных дробей и действий над ними начинают с повторения правила разложения числа на простые множители.

Что такое подмножество правильных дробей и неправильных дробей. Смотреть фото Что такое подмножество правильных дробей и неправильных дробей. Смотреть картинку Что такое подмножество правильных дробей и неправильных дробей. Картинка про Что такое подмножество правильных дробей и неправильных дробей. Фото Что такое подмножество правильных дробей и неправильных дробей

Выполняется оно за несколько шагов. Вначале ищут минимальную величину, на которую можно разделить исходное без остатка. Далее, находят результат деления и повторяют действие, но уже для полученного числа. Операцию повторяют до тех пор, пока в ответе не получится единица.

Разложение на простые множители используется при поиске наименьшего знаменателя при сложении или вычитании неправильных дробей с разными делителями. Существует алгоритм, придерживаясь которого можно выполнить любое арифметическое действие над двумя и более дробными выражениями. Он заключается в следующем:

Например, 4 / 3 + 9 / 7 = (7 * 4) / 21 + (3 * 9) / 21 = 28 / 21 + 27 / 21 = (28 + 27) / 21 = 55 / 21 = 2 (13 / 21) и 56 / 9 — 6 / 9 = (56 — 6) / 9 = 50 / 9 = 5 (5 / 9).

Что такое подмножество правильных дробей и неправильных дробей. Смотреть фото Что такое подмножество правильных дробей и неправильных дробей. Смотреть картинку Что такое подмножество правильных дробей и неправильных дробей. Картинка про Что такое подмножество правильных дробей и неправильных дробей. Фото Что такое подмножество правильных дробей и неправильных дробей

Неправильные выражения можно не только складывать, но и вычитать. Для того чтобы их перемножить следует отдельно найти произведение делимых и делителей. Затем в числитель записать первый результат, а в знаменатель второй. То есть действие нужно выполнять по формуле: f / n * s / m = (f * s) / (n * m). Выполнить деление также просто. Для этого действия в вычитаемом выражении меняется местами аргументы и выполняется умножение: (f / n) / (s / m) = (f * m) / (n * s).

Источник

Правильные и неправильные дроби.

Виды дробей.

Как вы уже заметили дроби бывают разные. Например, \(\frac<1><2>, \frac<3><5>, \frac<5><7>, \frac<7><7>, \frac<13><5>, …\)

Делятся дроби на два вида правильные дроби и неправильные дроби.

В правильной дроби числитель меньше знаменателя, например, \(\frac<1><2>, \frac<3><5>, \frac<5><7>, …\)

В неправильной дроби числитель больше или равен знаменателю, например, \(\frac<7><7>, \frac<9><4>, \frac<13><5>, …\)

Правильная дробь всегда меньше единицы. Рассмотрим пример:

Единицу мы можем представить как дробь \(1 = \frac<3><3>\)

Знаменатели одинаковые равны числу 3, далее сравниваем числители.

Вопросы по теме “Правильные или неправильные дроби”:
Может ли правильная дробь быть больше 1?
Ответ: нет.

Может ли правильная дробь равна 1?
Ответ: нет.

Может ли неправильная дробь меньше 1?
Ответ: нет.

Пример №1:
Напишите:
а) все правильные дроби со знаменателем 8;
б) все неправильные дроби с числителем 4.

Решение:
а) У правильных дробей знаменатель больше числителя. Нам нужно в числитель поставить числа меньшие 8.
\(\frac<1><8>, \frac<2><8>, \frac<3><8>, \frac<4><8>, \frac<5><8>, \frac<6><8>, \frac<7><8>.\)

б) В неправильной дроби числитель больше знаменателя. Нам нужно в знаменатель поставить числа меньшие 4.
\(\frac<4><4>, \frac<4><3>, \frac<4><2>, \frac<4><1>.\)

Пример №2:
При каких значениях b дробь:
а) \(\frac<12>\) будет правильной;
б) \(\frac<9>\) будет не правильной.

Решение:
а) b может принимать значения 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11.
б) b может принимать значения 1, 2, 3, 4, 5, 6, 7, 8, 9.

Задача №1:
Сколько минут в часе? Какую часть часа составляет 11 мин.?

Ответ: В часе 60 минут. Три минуты составят \(\frac<11><60>\) часа.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *