Что такое подмножество в алгебре

Множества

Множество — это совокупность любых объектов. Множества обозначают большими буквами латинского алфавита — от A до Z.

Основные числовые множества: множество натуральных чисел и множество целых чисел, всегда обозначаются одними и теми же буквами:

N — множество натуральных чисел,

Z — множество целых чисел.

Множества делятся на конечные и бесконечные. Конечное множество — множество, содержащее определённое (конечное) количество элементов. Бесконечное множество — множество, содержащее бесконечно много элементов. К бесконечным множествам можно отнести множества натуральных и целых чисел.

Для определения множества используются фигурные скобки, в которых через запятую перечисляются элементы. Например, запись

означает, что множество L состоит из четырёх чётных чисел.

Термин множество употребляется независимо от того, сколько элементов оно содержит. Множества не содержащие ни одного элемента называются пустыми.

Подмножество

Подмножество — это множество, все элементы которого, являются частью другого множества.

Визуально продемонстрировать отношение множества и входящего в него подмножества можно с помощью кругов Эйлера. Круги Эйлера — это геометрические схемы, помогающие визуализировать отношения различных объектов, в нашем случае, множеств.

Рассмотрим два множества:

Что такое подмножество в алгебре. Смотреть фото Что такое подмножество в алгебре. Смотреть картинку Что такое подмножество в алгебре. Картинка про Что такое подмножество в алгебре. Фото Что такое подмножество в алгебре

Каждый элемент множества L принадлежит и множеству M, значит, множество L является подмножеством множества M. Такое соотношение множеств обозначают знаком ⊂ :

Рассмотрим два множества:

Так как оба множества состоят из одних и тех же элементов, то L = M.

Пересечение и объединение множеств

Что такое подмножество в алгебре. Смотреть фото Что такое подмножество в алгебре. Смотреть картинку Что такое подмножество в алгебре. Картинка про Что такое подмножество в алгебре. Фото Что такое подмножество в алгебре

Из данного примера следует, что пересечением множеств называется множество, которое содержит только те элементы, которые встречаются во всех пересекающихся множествах.

Что такое подмножество в алгебре. Смотреть фото Что такое подмножество в алгебре. Смотреть картинку Что такое подмножество в алгебре. Картинка про Что такое подмножество в алгебре. Фото Что такое подмножество в алгебре

При объединении равных множеств объединение будет равно любому из данных множеств:

Источник

Множество и его элементы. Подмножества

Понятие множества

Что такое «множество», мы понимаем интуитивно. В этом смысле это понятие первично, так же как «точка» или «плоскость».

Создатель теории множеств Г.Кантор описывал множество как «многое, мыслимое нами как единое».

Приведём примеры множеств:

Множество людей в салоне самолёта

Множество деревьев в парке

Что такое подмножество в алгебре. Смотреть фото Что такое подмножество в алгебре. Смотреть картинку Что такое подмножество в алгебре. Картинка про Что такое подмножество в алгебре. Фото Что такое подмножество в алгебре

Что такое подмножество в алгебре. Смотреть фото Что такое подмножество в алгебре. Смотреть картинку Что такое подмножество в алгебре. Картинка про Что такое подмножество в алгебре. Фото Что такое подмножество в алгебре

Множество планет Солнечной системы

Множество электронов в атоме

Что такое подмножество в алгебре. Смотреть фото Что такое подмножество в алгебре. Смотреть картинку Что такое подмножество в алгебре. Картинка про Что такое подмножество в алгебре. Фото Что такое подмножество в алгебре

Что такое подмножество в алгебре. Смотреть фото Что такое подмножество в алгебре. Смотреть картинку Что такое подмножество в алгебре. Картинка про Что такое подмножество в алгебре. Фото Что такое подмножество в алгебре

Множество натуральных чисел

Множество «синих-синих презелёных красных шаров»

Конечное, бесконечное и пустое множества

Людей в салоне самолёта легко посчитать, это множество конечно.

С деревьями в парке, планетами и электронами – сложней. Скорее всего, мы не сможем назвать точное количество элементов этих множеств в данный момент времени. Однако, и эти множества конечны.

Натуральное число – это идеальный объект, абстракция. Множество натуральных чисел бесконечно. Как оказалось, человек может оперировать и абстракциями, и бесконечностями.

Можно себе представить даже то, «чего на свете вообще не может быть». Поскольку таких объектов нет, их множество будет пустым. Пустое множество является частью любого другого множества.

Помидоры на грядке

Числа (натуральные, рациональные, действительные и т.д.)

Количество рациональных чисел на отрезке [0;1]

Полосатые летающие слоны

Все точки пересечения двух параллельных прямых на плоскости

Способы задания множеств

1) Перечисление – в списке задаются все элементы множества.

Множество всех континентов Земли:

Множество букв слова «математика»:

Множество натуральных чисел меньших 5:

2) Характеристическое свойство – указывается особенность элементов множества.

D = – множество всех материков планеты Земля

3) Графическое изображение – визуальное моделирование с помощью различных диаграмм (круги Эйлера, интервалы, графики и т.п.)

Подмножества

Говорят, что B содержит A, или B покрывает A.

Пустое множество является подмножеством любого множества.

Что такое подмножество в алгебре. Смотреть фото Что такое подмножество в алгебре. Смотреть картинку Что такое подмножество в алгебре. Картинка про Что такое подмножество в алгебре. Фото Что такое подмножество в алгебре

Множество людей является подмножеством приматов, живущих на Земле.

Множество квадратов является подмножеством прямоугольников.

Множество всех подмножеств данного множества A называют булеаном или степенью множества A.

Примеры

Пример 1. Запишите данное множество с помощью перечисления элементов:

Задано множество целых чисел, квадрат которых меньше 5. Перечисляем:

Задано множество целых чисел, модуль которых не больше 3. Перечисляем:

Задано множество рациональных чисел, являющихся корнями уравнения

(x-1)(2x+5) = 0. Перечисляем:

Пример 2. Запишите данное множество с помощью характеристического свойства:

а) Множество всех натуральных чисел меньше 10

б) Множество всех действительных чисел, кроме 0

в) Множество всех точек с целыми координатами, принадлежащих прямой y = 2x+1

Пример 3. Изобразите на графике в координатной плоскости данное множество:

Задано конечное множество точек, которое можно представить перечислением:

Что такое подмножество в алгебре. Смотреть фото Что такое подмножество в алгебре. Смотреть картинку Что такое подмножество в алгебре. Картинка про Что такое подмножество в алгебре. Фото Что такое подмножество в алгебре

Что такое подмножество в алгебре. Смотреть фото Что такое подмножество в алгебре. Смотреть картинку Что такое подмножество в алгебре. Картинка про Что такое подмножество в алгебре. Фото Что такое подмножество в алгебре

Пример 4. Укажите и запишите с помощью перечисления одно из непустых конечных подмножеств для данного множества:

Источник

Подмножество

Смотреть что такое «Подмножество» в других словарях:

подмножество — совокупность; множество Словарь русских синонимов. подмножество сущ., кол во синонимов: 1 • множество (88) Словарь синонимов ASIS. В.Н. Тришин … Словарь синонимов

ПОДМНОЖЕСТВО — нем. Teilgesamtheit. Множество, каждый элемент к рого является элементом другого множества. Antinazi. Энциклопедия социологии, 2009 … Энциклопедия социологии

Подмножество — [subset] см. Множество … Экономико-математический словарь

подмножество — — [http://www.rfcmd.ru/glossword/1.8/index.php?a=index&d=4609] Тематики защита информации EN subset … Справочник технического переводчика

Подмножество — В этой статье не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена. Вы можете … Википедия

подмножество — а; ср. Матем. Множество элементов, каждый из которых принадлежит другому, более крупному, большому множеству. * * * подмножество понятие теории множеств. Подмножество множества А множество В (обозначается ), каждый элемент которого принадлежит А … Энциклопедический словарь

подмножество — ▲ множество ↑ частичный подмножество множество, являющееся частью большего множества. под. (подсистема). подгруппа. | фракция. сочетание целое подмножество (матем). сочетать. ▼ вид ↓ выделять (из прочих) с … Идеографический словарь русского языка

ПОДМНОЖЕСТВО — понятие теории множеств. П. множества А множество В (обозначается В с Л), каждый элемент к рого принадлежит А. Напр., множество всех чётных чисел является П. множества всех целых чисел … Естествознание. Энциклопедический словарь

подмножество — подмн ожество, а … Русский орфографический словарь

Источник

Что такое подмножество в алгебре

Ключевые слова конспекта: множества, операции над множествами, подмножество, пересечение множеств, объединение множеств, элемент множества, числовые множества, обозначение некоторых числовых множеств.

В жизни часто приходится встречаться с различными совокупностями объектов, объединёнными в одно целое по некоторому признаку. Для обозначения этих совокупностей используются различные слова. Например, говорят: «стадо коров», «букет цветов», «команда футболистов» и т. д.

В математике в целях единообразия для обозначения совокупностей употребляется единый термин — множество. Например, говорят: множество чётных чисел, множество двузначных чисел, множество правильных дробей со знаменателем 5.

Термин «множество» употребляется и тогда, когда речь идёт о нечисловых множествах. Например, говорят о множестве диагоналей многоугольника, о множестве точек координатной плоскости, о множестве прямых, проходящих через данную точку.

Объекты или предметы, составляющие множество, называют элементами множества. Например, число 89 — элемент мнoжества двузначных чисел; точка В — элемент мнoжества вершин многоугольника ABCDE.

Множeства бывают конечные и бесконечные. Например, множество двузначных чисел — конечное множество (оно содержит 90 элементов), а множество чётных чисел — бесконечное множество.

Конечное мнoжество может содержать миллиард элементов, 2 элемента, 1 элемент или даже не содержать ни одного элемента.

Пустое множeство — это мнoжество, не содержащее ни одного элемента. Для обозначения пустого мнoжества ввели специальный знак ∅.

Конечные множeства обычно записывают с помощью фигурных скобок. Например, множество вершин пятиугольника ABCDE можно записать так: , а множество двузначных чисел, кратных 15, так: . В таких случаях говорят, что множество задано перечислением его элементов.

Множeства принято обозначать большими буквами латинского алфавита. Например, рассмотренные выше множества вершин пятиугольника и двузначных чисел, кратных 15, можно обозначить соответственно буквами К и L и записать так: К = <А, В, С, D, Е>; L = <15, 30, 45, 60, 75, 90>.

Для основных числовых множеств введены специальные обозначения: множество натуральных чисел обозначают буквой N (от латинского слова natural — «естественный»), множество целых чисел — буквой Z (от немецкого слова zahl — «число»), множество рациональных чисел — буквой Q (от латинского слова quotient — «отношение»).

В тех случаях, когда задание множества перечислением элементов невозможно (как для бесконечного множества) или громоздко (как для конечного мнoжества с большим числом элементов), множество задают описанием, указав его характеристическое свойство, т. е. свойство, которым обладают все элементы этого множeства и не обладают никакие другие объекты.

Это конспект по математике на тему «Множества. Операции над множествами». Выберите дальнейшие действия:

Источник

§1. Множества и операции над ними

Что такое подмножество в алгебре. Смотреть фото Что такое подмножество в алгебре. Смотреть картинку Что такое подмножество в алгебре. Картинка про Что такое подмножество в алгебре. Фото Что такое подмножество в алгебре

Что такое подмножество в алгебре. Смотреть фото Что такое подмножество в алгебре. Смотреть картинку Что такое подмножество в алгебре. Картинка про Что такое подмножество в алгебре. Фото Что такое подмножество в алгебре

Объяснение и обоснование

В курсах алгебры и алгебры и начал математического анализа чаще всего рассматривают множества, элементами которых являются числа, и поэтому их называют числовыми множествами.

Как правило, множества обозначают прописными буквами латинского алфавита. Например, если множество М состоит из чисел 1; 2; 3, то его обозначают так: М = <1; 2; 3>. Тот факт, что число 2 входит в это множество (является элементом данного множества М), записывается с помощью специального значка ∈ следующим образом: 2 ∈ М; а то, что число 5 не входит в это множество (не является элементом данного множества), записывается так: 5 ∉ М.

Можно рассматривать также множество, не содержащее ни одного элемента, — пустое множество.

Например: множество простых делителей числа 1 — пустое множество.

Для некоторых множеств существуют специальные обозначения. Так, пустое множество обозначается символом ∅, множество всех натуральных чисел — буквой N, множество всех целых чисел — буквой Z, множество всех рациональных чисел — буквой Q, а множество всех действительных чисел — буквой R.

Множества бывают конечными и бесконечными в зависимости от того, какое количество элементов они содержат. Так, множества А = <7>и M = <1; 2; 3>— конечные, потому что содержат конечное число элементов, а множества N, Z, Q, R — бесконечные.

Множества задают или с помощью перечисления их элементов (это можно сделать только для конечных множеств), или с помощью описания, когда задается правило (характеристическое свойство), которое позволяет определить, принадлежит или нет данный объект рассматриваемому множеству. Например, А = <–1; 0; 1>(множество задано перечислением элементов), B — множество всех четных целых чисел (множество задано характеристическим свойством всех элементов множества). Последнее множество иногда записывают так: B = или так: B = Z> — здесь после вертикальной черточки записано характеристическое свойство*.

В общем виде запись множества с помощью характеристического свойства можно обозначить так: A = , где P (x) — характеристическое свойство. Например, = < –1, 1>, R и x2 + 1 = 0> = .

Два множества называются равными, если каждый элемент первого множества является элементом второго множества и, наоборот, каждый элемент второго множества является элементом первого множества.

Из приведенного определения равенства множеств следует, что в множестве одинаковые элементы не различаются. Действительно, например, <1; 2; 2>= <1; 2>, поскольку каждый элемент первого множества (1 или 2) является элементом второго множества и, наоборот, каждый элемент второго множества (1 или 2) является элементом первого. Поэтому, записывая множество, чаще всего каждый его элемент записывают только один раз.

Если каждый элемент множества A является элементом множества B, то говорят, что множество A является подмножеством множества B.

Это записывают следующим образом: A ⊂ B.

Например, <1; 2>⊂ <0; 1; 2; 3>, N ⊂ Z (поскольку любое натуральное число — целое), Z ⊂ Q (поскольку любое целое число — рациональное), Q ⊂ R (поскольку любое рациональное число — действительное).

Полагают, что всегда ∅ ⊆ A, то есть пустое множество является подмножеством любого множества.

Иногда вместо записи A ⊂ B используется также запись A ⊆ B.

Сопоставим определение равенства множеств с определением подмножества. Если множества А и В равны, то: 1) каждый элемент множества А является элементом множества В, следовательно, А — подмножество В (A ⊆ B); 2) каждый элемент множества В является элементом множества А, следовательно, В — подмножество А (B ⊆ A). Таким образом,

два множества равны тогда и только тогда, когда каждое из них является подмножеством другого.

Что такое подмножество в алгебре. Смотреть фото Что такое подмножество в алгебре. Смотреть картинку Что такое подмножество в алгебре. Картинка про Что такое подмножество в алгебре. Фото Что такое подмножество в алгебре

Иногда соотношения между множествами удобно иллюстрировать с помощью кругов (которые часто называют кругами Эйлера–Венна). Например, рисунок 1 иллюстрирует определение подмножества, а рисунок 2 — отношения между множествами N, Z, Q, R.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *