Что такое поглотительная способность почвы

Что такое поглотительная способность почвы

Глава 6. ПОГЛОТИТЕЛЬНАЯ СПОСОБНОСТЬ ПОЧВ

Большинство процессов, протекающих в почве, связаны с перераспределением веществ между твердой, жидкой и газообразной фазами, составляющими почву. Главным процессом взаимодействия между фазами является сорбция – поглощение твердой фазой газов, паров и растворенных веществ из жидкой фазы. Способность почвы поглощать различные веществ была известна давно, но только в начале XX века К.К.Гедройц разработал учение о поглотительной способности почв. Поглотительные процессы в почве обусловлены преимущественно ее тонкодисперсной частью и особенно коллоидами.

§1. Почвенные коллоиды, происхождение, строение и классификация

К почвенным коллоидам относятся частицы диаметром + ). К ним относятся глинистые минералы, гумусовые кислоты, органо-минеральные коллоиды, кремниевая кислота. Ацитоиды обладают способностью к поглощению и обмену катионов.

2) базоиды – коллоиды, несущие положительный заряд (в потенциалопределяющем слое катионы) и имеющие в диффузном слое анионы (ОН – ). К ним относятся гидраты окисей железа и алюминия. Базоиды способны к обмену анионов.

3) амфолитоиды – коллоиды, имеющие переменный знак, зависящий от реакции среды: в кислой – «+» заряд, в щелочной – «–» заряд. К ним относятся белковые органические вещества.

Большая часть почвенных коллоидов имеет отрицательный заряд, и, следовательно, способность почвы к поглощению и обмену катионов значительно больше, чем к анионам. Поэтому, говоря о поглотительной способности почв, имеют в виду именно поглощение катионов.

Поскольку почвенные частицы имеют заряд, они способны притягивать дипольные молекулы воды из окружающего раствора, образуя гидратные пленки. Толщина этой пленки зависит от величины заряда и состава поглощенных катионов. В связи с этим различают гидрофильные коллоиды (кремнекислота, глинистые минералы, органические коллоиды и коллоиды, насыщенные К, Na, Li), удерживающие многослойные пленки воды, и гидрофобные – слабогидратированные коллоиды (гидрооксид железа, коллоиды, насыщенные двух- и трехвалентными катионами). Гидрофильные коллоиды имеют сродство к воде, способны сильно набухать и оставаться устойчивыми в коллоидном растворе. Гидрофобные набухают незначительно, сворачиваются и выпадают в осадок.

Почвенные коллоиды могут находиться в двух разных физических состояниях: 1) в состоянии коллоидного раствора, или золя; 2) в состоянии студенистого, аморфного или хлопьевидного осадка, или геля. Переход коллоидов из состояния золя в состояние геля называется коагуляцией, или слипанием (свертыванием) коллоидов. Причиной данного перехода является потеря гидратной оболочки и заряда в результате следующих процессов: замораживания, высушивания, действия электролитов, взаимной коагуляции и тиксотропии.

Коагуляция коллоидов происходит главным образом при их взаимодействии с электролитами (растворами солей, кислот и щелочей), которые в растворе распадаются на ионы с «+» или «–» зарядом. Коллоиды с «+» зарядом коагулируются анионами, с «–» зарядом – катионами. Коагулирующая способность катионов различна и зависит от их валентности и атомной массы. Одновалентные катионы коагулируют слабее двухвалентных, а двухвалентные – слабее трехвалентных.

По степени коагулирующей способности К.К.Гедройц расположил все катионы в следующем порядке:

Li + + + + 2 + + 2 + 2 + 3 + 3 +

Коагуляция может быть обратимой и необратимой, т.е. золь, перешедший в гель, снова может перейти в раствор либо его обратный переход затруднен или невозможен. Обратимая коагуляция вызывается одновалентными, необратимая – двух- и трехвалентными катионами. Под действием двух- и трехвалентных катионов почвенные частицы склеиваются в комочки, имеющие большую устойчивость и водопрочность, почва становится более структурной, улучшается ее физическое состояние.

Особым явлением представляется процесс тиксотропии коллоидов, чаще всего встречается в криогенных почвах и вызывает их плывунность. Коллоиды находятся в таких почвах в скоагулированном состоянии геля благодаря их своеобразной гексагональной ориентации. Гель не отделяется от дисперсной среды, а застудневает вместе с ней. Полученный гель может быть переведен в золь путем механического воздействия (встряхивания и др.), по прекращении которого с течением времени золь опять переходит в гель.

Пептизация – процесс, обратный коагуляции, когда коллоиды переходят из состояния геля в состояние золя. Пептизация коллоидов отрицательно воздействует на почвообразовательные процессы, поскольку обусловливает разрушение структуры и вымывание коллоидов из верхних горизонтов, что резко снижает их поглотительную способность, ухудшаются физические и химические свойства почвы.

§2. Виды поглотительной способности почв

Поглотительной способностью почв называют способность почвы поглощать твердые взвешенные частицы, целые молекулы веществ или их часть и удерживать их в себе. Носителем поглотительной способности почв является почвенный поглощающий комплекс (ППК) – вся совокупность почвенных компонентов, способных участвовать в процессах поглощения и обмена. Главную часть его составляют почвенные коллоиды.

К.К.Гедройц выделил пять видов поглотительной способности почв, каждый из которых играет определенную роль в почвообразовании и формировании свойств почвы: механическая, биологическая, химическая, физическая и физико-химическая, из которых две последние связаны с ППК.

Механическая поглотительная способность – способность почвы как всякого пористого тела задерживать взвешенные твердые частицы из фильтрующихся суспензий крупнее почвенных пор. Механическое поглощение напрямую зависит от гранулометрического состава и сложения почвы. Так, глинистые и суглинистые почвы способны поглощать даже тонкодисперсные частицы, а песчаные, имеющие крупнопористое сложение, взвешенные частицы поглощают значительно хуже. Механическая поглотительная способность возрастает с увеличением количества гумуса в почве. Благодаря ей, в почве удерживаются от выноса наиболее ценные с точки зрения плодородия элементы. Большое значение это имеет в областях с искусственным орошением или обильными осадками. Почва может также удерживать и частицы меньше диаметра пор благодаря наличию замкнутых и извилистых пор.

Биологическая поглотительная способность почвы обусловлена жизнедеятельностью растений и микроорганизмов почвы, которые поглощают из нее необходимые для жизни элементы и переводят их в органические соединения своего тела. В таком виде элементы питания не вымываются из почвы. Особенностью этого вида поглотительной способности является избирательность – растения и микроорганизмы поглощают необходимые им вещества строго в соответствии со своими потребностями. Благодаря этой избирательности почва систематически обогащается биологически ценными элементами, которые извлекаются из глубоких слоев, после отмирания живых организмов накапливаются в верхних горизонтах и используются следующими поколениями организмов. В естественных условиях почва чем старше, тем плодороднее. Однако избирательность может иметь и отрицательные последствия: при внесении удобрений в результате поглощения только некоторых ионов в почве возникают физиологическая кислотность и щелочность.

Особенно большое значение этот вид поглотительной способности имеет в отношении нитратов, так как они поглощаются и закрепляются только биологическим путем.

Химическая поглотительная способность – это способность почвы закреплять нерастворимые соединения, образующиеся в результате химических обменных реакций в почвенном растворе или при взаимодействии с твердой частью почвы. При взаимодействии с катионами кальция, алюминия, железа и других элементов растворимые в воде сульфаты, карбонаты, фосфаты образуют нерастворимые соединения. В таком виде вещества закрепляются и не вымываются из почвы:

Таким же образом могут закрепляться в почве и удобрения. Например, при внесении фосфатных удобрений (суперфосфат) в карбонатную почву он переходит в нерастворимый трифосфат кальция:

Физическая поглотительная способность – это способность почвы поглощать и удерживать в себе целые молекулы веществ на поверхности своих частиц. Она обусловлена силами молекулярного притяжения (из-за наличия свободной энергии у поверхностных молекул), за счет которых на поверхности коллоидных частиц адсорбируются вещества из раствора или газы, причем изменяется только концентрация веществ, но качественный состав не изменяется (поглощенное вещество не внедряется в твердую фазу почвы и не вступает в химическую реакцию, а накапливается на границе раздела фаз).

Способность адсорбции присуща всем телам природы. Чем сильнее степень раздробленности частиц, тем больше их общая поверхность, где сорбируются молекулы многих веществ.

Различают положительную и отрицательную адсорбцию. При нормальной (положительной) адсорбции к поверхности почвенных частиц притягиваются молекулы растворенного вещества, и концентрация раствора уменьшается. Таким путем поглощаются органические соединения, газы, щелочи, некоторые токсины. При отрицательной адсорбции на поверхности частиц закрепляются молекулы растворителя, и концентрация раствора увеличивается. Такому явлению подвержены неорганические кислоты и некоторые другие минеральные соединения. Так, нитраты почвой не поглощаются ни физическим, ни химическим путем, а только биологическим, поэтому вносить азотные удобрения необходимо только в период интенсивного роста растений, когда они наиболее нуждаются в азоте. Это предотвратит загрязнение водоемов нитратами.

Физико-химическая (обменная) поглотительная способность почв – это способность почвы поглощать из раствора различные катионы или анионы, отдавая в обмен эквивалентное количество ионов твердой фазы (из диффузного слоя мицеллы). Так как большинство почвенных коллоидов заряжены отрицательно, то и поглощаться будут из почвенного раствора в основном катионы, которые называются обменными. Эта поглотительная способность напрямую связана с ППК. В общем виде процесс обмена катионов можно представить следующим образом:

почва] Н + + КСl ↔почва] К + НСl.

К.К.Гедройц установил следующие законы обменной адсорбции:

● закон эквивалентности – процесс обмена катионов происходит в эквивалентных отношениях по законам химии;

● закон обратимости – реакция обмена катионов является обратимой, т.е. любой поглощенный катион при соответствующих условиях может снова перейти в раствор;

● закон концентрации – чем выше концентрация иона-вытеснителя в почвенном растворе, тем интенсивнее он будет поглощаться почвой и займет больший вес в составе поглощенных катионов (при постоянном объеме). В случае если концентрация раствора постоянна, количество катионов, вытесняемых из почвы в раствор, возрастает с увеличением объема последнего;

● закон скорости – реакции обменной адсорбции происходят быстро (равновесие устанавливается в течение нескольких минут);

● закон энергии – энергия адсорбционного поглощения почвой разных катионов неодинаковая и зависит от их валентности, а в пределах одной валентности – от атомной массы и ионного радиуса. Ряд энергии поглощения катионов в большинстве почв следующий (К.К.Гедройц):

Поглощение анионов идет всегда в обмен на ОН-группы почвенных коллоидов и зависит от природы аниона, реакции среды и состава коллоидов. Обмен анионов происходит в том случае, если в почве есть «+» заряженные коллоиды (гидроксиды полуторных оксидов) или «+» заряженные участки отрицательных коллоидов (минералы группы каолинита, вещества белковой природы). Поэтому в тех почвах, где много базоидов (дерново-подзолистые, красноземы), при уменьшении рН почвы или увеличении в почве содержания Fe и Al обмен анионов возрастает. В почвах, имеющих нейтральную или щелочную реакцию, обмен анионов выражен очень слабо.

§3. Состав поглощенных катионов, емкость катионного обмена и степень насыщенности почв основаниями

Почвенный поглотительный комплекс всегда насыщен катионами, но их состав и количество неодинаковы в разных почвах. Важнейшей характеристикой ППК и почвы в целом является емкость катионного обмена (емкость поглощения) (ЕКО) – общее количество поглощенных катионов, находящихся в почве и способных к обмену. Выражается в мг·экв/100 г почвы и обозначается Т (Е), зависит от типа почвы, минералогического состава, гранулометрического состава, количества гумуса и реакции среды. Чем больше в почве глинистых минералов и гумуса, чем ближе к нейтральной реакция почвы, тем больше ЕКО. Песчаные малогумусные почвы имеют самую низкую емкость поглощения – 1 – 5, супесчаные – 7 – 8, суглинистые – 15 – 18, глинистые – 25 – 30 мг·экв/100 г. В гумусовых горизонтах ЕКО выше, чем в нижележащих горизонтах. В верхнем горизонте черноземов она достигает 50 – 60 мг·экв/100 г, так как здесь много гуминовых кислот, ЕКО которых в чистом виде – 350 – 400 мг·экв/100 г.

Емкость катионного обмена варьирует в широких пределах и ее величина в различных типах почв представлена в таблице 6.

Емкость катионного обмена в различных типах почв

Источник

Поглотительная способность почв

Что такое поглотительная способность почвы. Смотреть фото Что такое поглотительная способность почвы. Смотреть картинку Что такое поглотительная способность почвы. Картинка про Что такое поглотительная способность почвы. Фото Что такое поглотительная способность почвы

Почва — сложная многофазная и полидисперсная система. В ней имеются грубые дисперсии с диаметром частиц более 0,02 нм, образующие в почвенных и грунтовых водах суспензии, более тонкие дисперсии размером 0,02—0,0001 нм — почвенные коллоиды и дисперсии на уровне молекулярного раздробления с диаметром частиц менее 0,0001 нм, которые образуют молекулярные, или истинные, растворы.

Дисперсные системы коллоидного раздробления, обладающие большой свободной поверхностной энергией, электрокинетическими свойствами, обусловливают ряд важнейших процессов, связанных с поглотительной способностью почв.

Что такое поглотительная способность почвы. Смотреть фото Что такое поглотительная способность почвы. Смотреть картинку Что такое поглотительная способность почвы. Картинка про Что такое поглотительная способность почвы. Фото Что такое поглотительная способность почвы

Поглотительная способность почв

Эти явления были известны очень давно (I—II в. до н. э.) и уже использовались тогда для опреснения морской воды (пропуская ее через почву).

В пятидесятые годы XIX в. английские ученые-химики Т. Трем и Д. Уэй попытались объяснить поглотительную способность почв на основании химических явлений.

В дальнейшем, в восьмидесятые годы прошлого столетия, развитие физической и коллоидной химии позволило голландскому ученому Ван-Беммелену объяснить поглотительную способность почв наличием в них тел, находящихся в коллоидном состоянии.

В начале XX в. поглотительную способность почв методами коллоидной химии изучали швейцарский ученый Г. Вигнер и шведский ученый С. Маттсон.

Их исследования позволили раскрыть некоторые закономерности физико-химического поглощения и явлений амфотерности, но они не были связаны с решением агрономических вопросов.

Видная роль в изучении поглотительной способности почв принадлежит российскому ученому К. К. Гедройцу. Для его исследований характерны широкий подход к изучению почвенных коллоидов и поглотительной способности почв и тесная связь с практическими вопросами агрономии.

В дальнейшем развитие учения о почвенных коллоидах и поглотительной способности почв получило как в нашей стране, так и за рубежом (Гапон, Соколовский, Тюлин, Антипов-Каратаев, Алешин, Горбунов, Ди-Глерия, Келли и др.).

Что такое поглотительная способность почвы. Смотреть фото Что такое поглотительная способность почвы. Смотреть картинку Что такое поглотительная способность почвы. Картинка про Что такое поглотительная способность почвы. Фото Что такое поглотительная способность почвы

Почвенные коллоиды

Количество коллоидов в почвах различно и составляет от 1—2 до 30—40 % массы почвы. Образуются почвенные коллоиды при раздроблении более крупных частиц в процессе выветривания, путем поликонденсации в процессах почвообразования и образования гумуса, а также при химических реакциях между продуктами выветривания и почвообразования.

Коллоиды как двухфазная система состоят из дисперсной фазы (коллоидные частицы) и дисперсионной среды (почвенный раствор). Свойства почвенных коллоидов обусловлены их размерами, составом и строением.

Небольшие размеры коллоидов определяют огромную суммарную и удельную поверхность, что можно представить на примере суммарной и удельной поверхности при дроблении длины сторон куба (табл. 25).

25. Увеличение суммарной и удельной поверхности 1 см 3 тела при возрастании дисперсности

Длина сторон кубаЧисло кубовПоверхностьЧисло кубовПоверхность
суммарная, см 2на единицу объемасуммарная, м 2на единицу объема
1см1660,110 1266-10 4
1мм10 3606•100,0110 15606-10 5
0,1мм10 66006 • 10 20,00110 186006 • 10 6
0,01мм10 960006•10 30,000110 2160006•10 7

От размеров удельной поверхности зависит величина поверхностной энергии, с которой связаны явления сорбции паров воды, газов и молекул других веществ. С поверхностной энергией дисперсных тел связан тепловой эффект — выделение тепла при их смачивании, который называется теплотой смачивания.

Состав почвенных коллоидов представлен минеральными, органическими и органо-минеральными соединениями.

Что такое поглотительная способность почвы. Смотреть фото Что такое поглотительная способность почвы. Смотреть картинку Что такое поглотительная способность почвы. Картинка про Что такое поглотительная способность почвы. Фото Что такое поглотительная способность почвы

Минеральные

К минеральным коллоидам относятся глинные минералы, коллоидные формы кремнезема, оксиды железа и алюминия. Органические коллоиды представлены в основном веществами гумусовой и белковой природы.

В коллоидно-дисперсном состоянии могут находиться полисахариды и другие органические соединения. Органо-минеральные коллоиды представлены преимущественно соединениями гумусовых веществ с глинными минералами и осажденными формами оксидов железа и алюминия.

Поглотительная способность этих трех групп соединений проявляется в разной степени и обусловлена не только удельной поверхностью, но и строением коллоидов, наличием двойного электрического слоя ионов на границе раздела между дисперсной фазой и дисперсионной средой. Общая схема строения коллоида приведена на рисунке 5.

Коллоидную частицу, по предложению Г. Вигнера, называют мицеллой. Ядро мицеллы представляет собой агрегат недиссоциированных молекул какого-либо вещества. Например, глинные минералы (каолинит, монтмориллонит и др.), гуминовые кислоты, коллоидные формы кремнезема и др.

На границе с дисперсионной средой в результате диссоциации внешних молекул ядра или поглощения ионов из дисперсионной среды, на поверхности ядра формируется двойной электрический слой ионов (ионогенный слой).

Он состоит из внутреннего потенциалопределяюще-го слоя прочно связанных с ядром неподвижных ионов и внешнего слоя компенсирующих противоположно заряженных ионов. Ядро с потенциалопределяющим слоем ионов называется гранулой, гранула и слой компенсирующих ионов — частицей.

Часть ионов компенсирующего слоя прочно связана с потенциалопределяющим слоем, часть его диффундирует в почвенный раствор, образуя внешний, или диффузный, слой.

В результате диффузии внешнего слоя между потенциалопределяющим и диффузным слоями возникает разность потенциалов, которая обусловливает заряд коллоидной частицы и называется электрокинетическим или дзета-потенциалом.

Величина дзета-потенциала колеблется от 0 до 40—60 мВ. Когда электрокинетический потенциал равен 0, коллоид находится в электронейтральном, или изоэлектрическом, состоянии, называемом изоэлектрическои точкой коллоида.

В зависимости от состава ионов в потенциалопределяющем слое коллоиды могут иметь отрицательный, положительный или переменный заряды.

Коллоиды, содержащие в потенциалопределяющем слое анионы, заряжены отрицательно и называются аци-доидами, содержащие в потенциалопределяющем слое катионы заряжены положительно и называются базоидами.

Коллоиды, способные менять характер диссоциации молекул двойного электрического слоя ионов в зависимости от реакции среды, имеют переменный заряд и ведут себя как базоиды или как ацидоиды. Такие коллоиды получили название амфолитоидов.

Согласно правилу Маттсона, если два соединения при диссоциации дают один общий ион, то они взаимно подавляют диссоциацию друг друга.

Базоид

Ацидоид

Так же ведут себя при изменении реакции и коллоиды гидроксидов железа.

При определенной реакции среды диссоциация амфолитоидов идет в равной степени как по основному, так и по кислотному типу. Коллоидная система в этом случае будет электронейтральной, а величина рН называется изоэлектрической.

Считается, что большинство почвенных коллоидов — ацидоиды, в диффузном слое которых находятся катионы, способные к обменным реакциям; присутствуют амфолитоиды; типичных базоидов в почве нет.

К ацидоидам относят большинство минеральных, органических и органо-минеральных коллоидов. Это глинные минералы, коллоидные формы кремнезема, гумусовые кислоты, соединения гумусовых кислот и их производных с минеральной частью почвы.

К амфолитоидам относят группы минеральных высокодисперсных форм гидроксидов железа и алюминия, некоторых глинных минералов (монтмориллонит и др.), а также органических коллоидов, представленных белковыми веществами, в основном плазмой микроорганизмов, изоэлектрическая величина рН которых равна 4—4,5, для гидроксидов железа —7,1 и для гидроксидов алюминия—8,1.

Наличие заряда обусловливает электрокинетические свойства почвенных коллоидов. К ним относят коагуляцию и пептизацию коллоидной системы.

В зависимости от наличия или отсутствия заряда коллоиды могут находиться в состоянии золя или геля.

Золь — коллоидный раствор. Обусловлен наличием заряда в коллоидной системе; представляет состояние коллоидно раздробленного вещества, рассеянного в дисперсионной среде.

Гель — коллоидный осадок. При отсутствии заряда в коллоидной системе дисперсная фаза укрупняется и отделяется от дисперсионной среды.

Коагуляция — переход коллоида из состояния золя в состояние геля. Коагуляция может происходить под действием электролитов, при взаимодействии двух противоположно заряженных коллоидных систем, при высушивании или замораживании почв, сопровождающихся дегидратацией.

Коагуляция — положительный процесс. В скоагулированном (осажденном) состоянии могут находиться, например, органические коллоиды в результате их взаимодействия с поливалентными катионами.

Коагуляция способствует образованию почвенной структуры, уменьшению связности тяжелых по гранулометрическому составу почв, сохранению от вымывания коллоидов, обусловливающих важнейшие агрономические свойства почвы.

Пептизация — переход от состояния геля в состояние золя. Она связана с восстановлением заряда коллоидной системы, повышением ее дзета-потенциала, обусловленным главным образом действием растворов щелочей и гидролитически щелочных солей.

Например, за счет образования гумусовых солей щелочных металлов, чаще всего натрия. При пептизации разрушается структура, коллоиды распыляются и приобретают способность к передвижению по почвенному профилю; верхние горизонты почв обедняются коллоидами, что отрицательно сказывается на многих агрономически важных свойствах почвы.

Коллоиды почвы обладают способностью поглощать молекулы воды. Эта способность называется гидратацией коллоида. Гидрофобные коллоиды практически не гидратируются, почвы характеризуются плохой смачиваемостью, при насыщении почвы высокогидратированными катионами происходит пептизация почвенных коллоидов.

Что такое поглотительная способность почвы. Смотреть фото Что такое поглотительная способность почвы. Смотреть картинку Что такое поглотительная способность почвы. Картинка про Что такое поглотительная способность почвы. Фото Что такое поглотительная способность почвы

Виды поглотительной способности почв

Способность почвы поглощать пары, газы, задерживать растворенные или взмученные в почвенном растворе вещества или части их, живые организмы называется поглотительной способностью.

К. К. Гедройц выделил пять видов поглотительной способности — четыре абиотических вида: механическая, физическая, физико-химическая, или обменная, химическая и пятый вид — биологическая поглотительная способность.

Совокупность частиц почвы, обладающих абиотической катионной или анионной поглотительной способностью, называется, по К. К. Гедройцу, почвенным поглощающим комплексом (ППК).

С физической точки зрения, ППК представляет собой совокупность веществ в тонкодисперсном состоянии (коллоиды). В химическом отношении это нерастворимые в воде солеобразные алюмосиликатные, органические и органо-минеральные соединения.

Что такое поглотительная способность почвы. Смотреть фото Что такое поглотительная способность почвы. Смотреть картинку Что такое поглотительная способность почвы. Картинка про Что такое поглотительная способность почвы. Фото Что такое поглотительная способность почвы

Механическая поглотительная способность

Это свойство почвы задерживать (подобно фильтру) твердые частицы, взмученные в фильтрующейся воде, размеры которых превышают размеры почвенных пор.

Это свойство зависит от размера и формы почвенных пор, которые обусловлены гранулометрическим, агрегатным составами, плотностью почвы.

Песчаные, крупноагрегатные, рыхлые почвы обладают слабой механической поглотительной способностью. Наоборот, глинистые почвы способны полностью поглощать из почвенных суспензий частицы размером более 0,001 мм.

В природе механическое поглощение взвешенных в почвенной воде частиц происходит при промывном режиме пористых и трещиноватых почв.

Явление механического поглощения используют для очистки питьевых и сточных вод путем их фильтрации через почву, для заиливания (кольматирования) дна и стенок каналов, водохранилищ в целях уменьшения потерь воды на фильтрацию.

Что такое поглотительная способность почвы. Смотреть фото Что такое поглотительная способность почвы. Смотреть картинку Что такое поглотительная способность почвы. Картинка про Что такое поглотительная способность почвы. Фото Что такое поглотительная способность почвы

Физическая поглотительная способность

Это поглощение целых молекул газов, вещества, растворенного в воде, изменение его концентрации на поверхности твердых почвенных частиц. Эту поглотительную способность еще называют молекулярной адсорбцией.

Физическая поглотительная способность протекает на границе твердой и жидкой фаз. Она обусловлена наличием большой свободной поверхностной энергии, которая равна произведению поверхностного натяжения раствора на суммарную величину поверхности частиц.

Известно, что всякая дисперсная система стремится уменьшить свою поверхностную энергию. Она может быть уменьшена, во-первых, за счет укрупнения дисперсной фазы (коагуляция) и, во-вторых, за счет уменьшения поверхностного натяжения раствора.

Вещества, способные понижать поверхностное натяжение системы (поверхностно-активные вещества), концентрируются на поверхности твердых частиц почвы и испытывают положительную физическую адсорбцию.

К таким веществам относятся органические кислоты, спирты, алкалоиды, высокомолекулярные органические соединения.

Чем длиннее углеводородная цепь, тем сильнее понижение поверхностного натяжения системы, тем выше поглощение, так как свободная энергия поверхностного слоя насыщается за счет связывания поглощенного вещества.

Вещества, способные повышать поверхностное натяжение системы, отталкиваются от почвенных частиц и испытывают отрицательную физическую адсорбцию. К таким веществам относятся неорганические кислоты, соли, основания, органические вещества с большим количеством гидроксильных групп (сахара).

Из этого следует, что такие соли, как нитраты, хлориды и другие, слабо удерживаются в почве и могут вымываться за пределы корнеобитаемого слоя, а в условиях промывного водного режима — и за пределы почвенного профиля.

В агрономической практике важно знать и учитывать эти особенности физического поглощения. Они, в частности, могут привести к непродуктивным потерям вносимых азотных удобрений, что расценивается как отрицательное явление или как положительное при удалении Cl-ионов, входящих в состав калийных удобрений, ухудшающих качество продукции некоторых сельскохозяйственных культур.

К физическому поглощению относится также поглощение почвой паров, газов из газообразной фазы почвы. По энергии поглощения газы представляют следующий ряд:

O2 = Н2 Что такое поглотительная способность почвы. Смотреть фото Что такое поглотительная способность почвы. Смотреть картинку Что такое поглотительная способность почвы. Картинка про Что такое поглотительная способность почвы. Фото Что такое поглотительная способность почвы

Химическая поглотительная способность (хемосорбция)

Это способность почвы закреплять в форме труднорастворимых соединений ионы, поступающие в раствор.

В результате химических реакций в почвенном растворе образуется труднорастворимая соль, которая определяет закрепление в почве химически как катионов, так и анионов почвенного раствора:

Кроме образования новой твердой фазы (труднорастворимого осадка) химическая поглотительная способность может осуществляться за счет осадочной сорбции фосфатов на поверхности труднорастворимых гидроксидов.

Комплексообразовательной сорбции, хемосорбционного и адгезионного взаимодействия при возникновении сорбционных глиногумусных комплексов, играющих роль в образовании органо-минеральных почвенных коллоидов.

Кроме природы аниона на его химическое поглощение оказывают влияние состав коллоидов и реакция среды. Чем больше в почве амфолитоидов и чем кислее реакция среды, тем сильнее выражено химическое поглощение аниона. Гумусовые вещества снижают интенсивность поглощения фосфатов.

Химическая поглотительная способность имеет большое значение в закреплении почвами анионов фосфорной кислоты, а также органического вещества и катионов поливалентных металлов. Поглощение фосфатов приводит к накоплению фосфора в почве, но снижает его доступность растениям.

В связи с этим при внесении особенно фосфорных удобрений учитывают взаимодействие их с почвой, способность к химическому поглощению.

Для уменьшения химического поглощения используют гранулированные удобрения, применяют способы внесения, обеспечивающие большие их контакты с корневыми системами растений.

Что такое поглотительная способность почвы. Смотреть фото Что такое поглотительная способность почвы. Смотреть картинку Что такое поглотительная способность почвы. Картинка про Что такое поглотительная способность почвы. Фото Что такое поглотительная способность почвы

Биологическая поглотительная способность

Особенностью этой поглотительной способности является ее избирательность, т. е. усвоение ионов, жизненно необходимых веществ, специфичных для каждого вида организмов.

Благодаря избирательной способности осуществляются биологическая трансформация, миграция и аккумуляция веществ, приводящие со временем к формированию почвенного плодородия.

Таким образом, биологическая поглотительная способность играет важную роль в плодородии почв и имеет большое агрономическое значение.

При минерализации органических веществ биологически поглощенные соединения вновь поступают в почвенный раствор и становятся доступными новым поколениям растительных и животных организмов. Ежегодно растения на каждом гектаре поглощают и возвращают в почвы сотни килограммов химических элементов (Ковда, 1973).

Емкость катионного поглощения корней растений колеблется от 10 до 80 мг • экв/100 г. Бобовые растения — более активные сорбенты, чем злаки.

В результате жизнедеятельности растений, животных, микроорганизмов в почве образуются высокодисперсные органические (гумусовые), органо-минеральные вещества, составляющие сорбционные барьеры в почве, способные удерживать за счет обменного и необменного поглощений различные вещества.

На сорбционных барьерах могут накапливаться Ni, Со, Сu, Zn, Hg, Ba и другие металлы; К, Cs, Zn, Си и другие элементы могут удерживаться глинными минералами и гумусовыми веществами в необменной форме.

Процессы биологического поглощения, меняя концентрацию и состав почвенного раствора, влияют на его равновесие и состояние почвенного поглощающего комплекса.

Что такое поглотительная способность почвы. Смотреть фото Что такое поглотительная способность почвы. Смотреть картинку Что такое поглотительная способность почвы. Картинка про Что такое поглотительная способность почвы. Фото Что такое поглотительная способность почвы

Физико-химическая

Или обменная, поглотительная способность – это способность почвы поглощать и обменивать ионы, находящиеся на поверхности коллоидных частиц (в диффузном слое), на ионы почвенного раствора.

Если потенциалопределяющий слой почвенных коллоидов заряжен отрицательно, то обмениваются катионы, если заряд положительный – обмениваются анионы.

Обмен протекает по уравнению

Основные закономерности обменного поглощения катионов заключаются в следующем.

Энергия поглощения с увеличением валентности возрастает:

Внутри рядов катионов с одной валентностью энергия поглощения возрастает с увеличением атомной массы:

7 Li 23 Na 18 NH4 39 K 1 H:

R 0,78 Ǻ 0,98 Ǻ 1,43 Ǻ 1,33 Ǻ.

Г. Вигнер дал объяснение этой закономерности, исходя из теории гидратации ионов. Чем больше гидратационная оболочка, тем меньшей энергией поглощения обладает ион. Гидратированность иона зависит от радиуса (размера) иона.

Ион водорода обладает высокой энергией поглощения. В водном растворе он присоединяет одну молекулу воды (Н2O) и образует гидроксоний (Н3O + ), который поглощается сильнее, чем другие одновалентные катионы.

На энергию поглощения оказывает влияние концентрация иона в почвенном растворе. Катион натрия, обладающий меньшей способностью к внедрению, чем катионы аммония и калия, может обменно поглощаться только при высокой концентрации их в почвенном растворе.

Обменное поглощение носит обратимый характер. Скорость обмена обусловлена строением ядер коллоидныхчастиц, строением кристаллических решеток глинных минералов,величины внутримицеллярной порозности.

Скорость обмена велика, почти мгновенная, если она развивается на внешних поверхностях коллоидов и может продолжаться долго (несколько суток) при внутримицеллярном обменном поглощении.

Общее количество всех поглощенных катионов, по К. К. Гедройцу, называется емкостью поглощения (7). Ее характеризуют с некоторой условностью емкостью катионного обмена (ЕКО) и выражают в мг • экв на 100 г почвы.

В различных почвах количество и состав обменных катионов, емкость поглощения, степень насыщенности основаниями неодинаковы (табл. 26).

26. Емкость катионного обмена основных типов почв, мг•экв/100 г (Горбунов, 1978)

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *