Что такое показательная форма комплексного числа
Комплексные числа
Алгебраическая форма записи комплексных чисел |
Сложение, вычитание и умножение комплексных чисел, записанных в алгебраической форме |
Комплексно сопряженные числа |
Модуль комплексного числа |
Деление комплексных чисел, записанных в алгебраической форме |
Изображение комплексных чисел радиус-векторами на координатной плоскости |
Аргумент комплексного числа |
Тригонометрическая форма записи комплексного числа |
Формула Эйлера. Экспоненциальная форма записи комплексного числа |
Умножение, деление и возведение в натуральную степень комплексных чисел, записанных в экспоненциальной форме |
Извлечение корня натуральной степени из комплексного числа |
Алгебраическая форма записи комплексных чисел
Множеством комплексных чисел называют множество всевозможных пар (x, y) вещественных чисел, на котором определены операции сложения, вычитания и умножения по правилам, описанным чуть ниже.
Тригонометрическая и экспоненциальная формы записи комплексных чисел будут изложены чуть позже.
Сложение, вычитание и умножение комплексных чисел, записанных в алгебраической форме
Комплексно сопряженные числа
![]() | ![]() |
![]() | ![]() |
![]() | ![]() |
![]() | ![]() |
![]() | ![]() |
Модуль комплексного числа
Модулем комплексного числа z = x + i y называют вещественное число, обозначаемое | z | и определенное по формуле
Для произвольного комплексного числа z справедливо равенство:
а для произвольных комплексных чисел z1 и z2 справедливы неравенства:
![]() | ![]() |
![]() | ![]() |
![]() | ![]() |
![]() | ![]() |
Деление комплексных чисел, записанных в алгебраической форме
Деление комплексного числа z1 = x1 + i y1 на отличное от нуля комплексное число z2 = x2 + i y2 осуществляется по формуле
Используя обозначения модуля комплексного числа и комплексного сопряжения, частное от деления комплексных чисел можно представить в следующем виде:
Деление на нуль запрещено.
Изображение комплексных чисел радиус-векторами координатной плоскости
Рассмотрим плоскость с заданной на ней прямоугольной декартовой системой координат Oxy и напомним, что радиус-вектором на плоскости называют вектор, начало которого совпадает с началом системы координат.
При таком представлении комплексных чисел сумме комплексных чисел соответствует сумма радиус-векторов, а произведению комплексного числа на вещественное число соответствует произведение радиус–вектора на это число.
Аргумент комплексного числа
Считается, что комплексное число нуль аргумента не имеет.
Тогда оказывается справедливым равенство:
![]() | (3) |
![]() | (4) |
а аргумент определяется в соответствии со следующей Таблицей 1.
Для того, чтобы не загромождать запись, условимся, не оговаривая этого особо, символом k обозначать в Таблице 1 произвольное целое число.
Таблица 1. – Формулы для определения аргумента числа z = x + i y
| Расположение числа z | Знаки x и y | Главное значение аргумента | Аргумент | Примеры |
| Положительная вещественная полуось | ![]() | ![]() | ![]() | |
| Положительная мнимая полуось | ![]() | ![]() | ![]() | |
| Второй квадрант | ![]() | ![]() | ![]() | |
| Отрицательная вещественная полуось | Положительная вещественная полуось | |||
| Знаки x и y | ||||
| Главное значение аргумента | 0 | |||
| Аргумент | φ = 2kπ | |||
| Примеры | ![]() |
значение
аргумента



значение
аргумента



значение
аргумента



x z
квадрант
x z
мнимая
полуось
y z
квадрант
Положительная вещественная полуось
Главное значение аргумента:
Расположение числа z :
Главное значение аргумента:
Расположение числа z :
Положительная мнимая полуось
Главное значение аргумента:
Расположение числа z :
Главное значение аргумента:
Расположение числа z :
Отрицательная вещественная полуось
Отрицательная мнимая полуось
x z = x + i y может быть записано в виде
Формула Эйлера. Экспоненциальная форма записи комплексного числа
В курсе «Теория функций комплексного переменного», который студенты изучают в высших учебных заведениях, доказывается важная формула, называемая формулой Эйлера :
Из формулы Эйлера (6) и тригонометрической формы записи комплексного числа (5) вытекает, что любое отличное от нуля комплексное число z = x + i y может быть записано в виде
Из формулы (7) вытекают, в частности, следующие равенства:
а из формул (4) и (6) следует, что модуль комплексного числа
Умножение, деление и возведение в натуральную степень комплексных чисел, записанных в экспоненциальной форме
Экспоненциальная запись комплексного числа очень удобна для выполнения операций умножения, деления и возведения в натуральную степень комплексных чисел.
Действительно, умножение и деление двух произвольных комплексных чисел 

Таким образом, при перемножении комплексных чисел их модули перемножаются, а аргументы складываются.
При делении двух комплексных чисел модуль их частного равен частному их модулей, а аргумент частного равен разности аргументов делимого и делителя.
Возведение комплексного числа z = r e iφ в натуральную степень осуществляется по формуле
Другими словами, при возведении комплексного числа в степень, являющуюся натуральным числом, модуль числа возводится в эту степень, а аргумент умножается на показатель степени.
Извлечение корня натуральной степени из комплексного числа
Пусть 
Для того, чтобы решить уравнение (8), перепишем его в виде
следствием которых являются равенства
![]() | (9) |
Из формул (9) вытекает, что уравнение (8) имеет n различных корней
![]() | (10) |
то по формуле (10) получаем:
Комплексные числа
Формы
Так сложилось в математике, что у данных чисел несколько форм. Число одно и тоже, но записать его можно по-разному:
Далее с примерами решений вы узнаете как переводить комплексные числа из одной формы в другую путем несложных действий в обе стороны.
Изображение
Изучение выше мы начали с алгебраической формы. Так как она является основополагающей. Чтобы было понятно в этой же форме изобразим комплексное число на плоскости:
Вычислить сумму и разность заданных комплексных чисел:
Сначала выполним сложение. Для этого просуммируем соответствующие мнимые и вещественные части комплексных чисел:
Аналогично выполним вычитание чисел:
Выполнить умножение и деление комплексных чисел:
Так, теперь разделим первое число на второе:
Суть деления в том, чтобы избавиться от комплексного числа в знаменателе. Для этого нужно домножить числитель и знаменатель дроби на комплексно-сопряженное число к знаменателю и затем раскрываем все скобки:
Разделим числитель на 29, чтобы записать дробь в виде алгебраической формы:
Для возведения в квадрат достаточно умножить число само на себя:
Пользуемся формулой для умножения, раскрываем скобки и приводим подобные:
В этом случае не всё так просто как в предыдущем случае, когда было возведение в квадрат. Конечно, можно прибегнуть к способу озвученному ранее и умножить число само на себя 7 раз, но это будет очень долгое и длинное решение. Гораздо проще будет воспользоваться формулой Муавра. Но она работает с числами в тригонометрической форме, а число задано в алгебраической. Значит, прежде переведем из одной формы в другую.
Вычисляем значение модуля:
Найдем чем равен аргумент:
$$ \varphi = arctg \frac<3> <3>= arctg(1) = \frac<\pi> <4>$$
Записываем в тригонометрическом виде:
Преобразуем в алгебраическую форму для наглядности:
Представим число в тригонометрической форме. Найдем модуль и аргумент:
Используем знакомую формулу Муавра для вычисления корней любой степени:
Показательная форма записи комплексного числа
Что такое показательная форма комплексного числа
Выражение \(\mathcal z=\mathcal
\(\mathcal r=\left|\mathcal z\right|=\sqrt<\mathcal x^2+\mathcal y^2>\) — модуль комплексного числа;
\(\mathcal e^<\mathcal i\varphi>\) — расширение экспоненты, если показатель степени является комплексным числом.
Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.
Как перейти к показательной форме комплексного числа
Для перехода к показательной форме комплексного числа нужно поработать над его алгебраической записью. Рассмотрим преобразование.
Алгебраическая форма имеет вид:
\(\mathcal z=\mathcal a+\mathcal
Подставляем полученные значения в показательную форму:
\(\mathcal z=\left|\mathcal z\right|\mathcal e^<\mathcal i\varphi>\) (произведение модуля и аргумента)
Пример:
Комплексно сопряженное число в показательной форме
Если \(\mathcal z=\mathcal a+\mathcal
Примечание:
Мнимые части отличаются знаком.
Пример:
Действия над комплексными числами в показательной форме
Вычитание и сложение происходит в алгебраической форме. Вычитаем и складываем действительные и мнимые части.
Примеры задач
Задача 1
Дано:
Есть комплексное число \(\mathcal z=-7\mathcal i.\)
Найти:
Записать число в показательной форме.
Решение:
Далее считаем аргумент комплексного числа:
Задача 2
Дано:
Число в алгебраической форме \(\mathcal z=-3+4\mathcal i.\)
Лекция на тему: «Показательная форма комплексного числа»
«Управление общеобразовательной организацией:
новые тенденции и современные технологии»
Свидетельство и скидка на обучение каждому участнику


Показательная форма комплексного числа.
1. Общий вид показательной формы.
2.Действия над комплексными числами в показательной форме
1. Общий вид показательной формы.
Рассмотрим показательную функцию
Можно показать, что функция w может быть записана в виде:
Данное равенство называется уравнением Эйлера.
Для комплексных чисел будут справедливы следующие свойства:
1)
2)
3) 
Если в уравнении Эйлера показатель степени принять за чисто мнимое число ( х=0 ), то получаем:
Для комплексно – сопряженного числа получаем:
Из этих двух уравнений получаем:
Этими формулами пользуются для нахождения значений степеней тригонометрических функций через функции кратных углов.
Если представить комплексное число в тригонометрической форме:
и воспользуемся формулой Эйлера:
Полученное равенство и есть показательная форма комплексного числа.
Пример 1 . Записать в показательной форме комплексное число 
Модуль 

Поскольку
Пример 2. 



Пример 3. 
Пример 4.
2. Действия над комплексными числами в показательной форме.
Из формули Эйлера 

Складывая почленно равенства(1) і (2),получим 

Почленно вычитая из равенства (1) равенство (2),получаем 

Равенства(3) і (4) также называются формулами Эйлера; они выражают тригонометрические функции действительного аргумента 




равенства (5) и (6) принимаются за определения косинуса и синуса комплексного аргумента. Если комплексные числа записаны в показательной форме, то умножение, деление, возведение в степень производится по правилам действий со степенями. Так, для произведения и частного комплексных чисел

Упражнения для коллективного решения
1. Выполните действия в показательной форме. Результат записать в алгебраической и тригонометрической форме:
а) 


Вопросы для самопроверки:
1.Запишить общий вид комплексного числа в показательной форме.
2.Запишить формулы для выполнения арифметических действий с комплексными числами в показательной форме.
3.Запишить данные комплексные числа в алгебраической и тригонометрической форме: а) 

Алгебраическая форма записи комплексных чисел

























































