Что такое полезное время действия раздражителя

Что такое полезное время действия раздражителя

Все возбудимые клетки (ткани) обладают рядом общих физиологических свойств (законы раздражения), краткая характеристика которых приводится ниже. Универсальным раздражителем для возбудимых клеток является электрический ток.

Закон силы для простых возбудимых систем
(закон «все или ничего»)

Простая возбудимая система – это одна возбудимая клетка, которая реагирует на раздражитель как единое целое.

В простых возбудимых системах подпороговые раздражители не вызывают возбуждения, сверхпороговые раздражители вызывают максимальное возбуждение (рис. 1). При подпороговых значениях раздражающего тока возбуждение (ЭП, ЛО) носит местный (не распространяется), градуальный (сила реакции пропорциональная силе действующего стимула) характер. При достижении порога возбуждения возникает ответ максимальной силы (ПД). Амплитуда ответа (амплитуда ПД) не изменяется при дальнейшем увеличении силы раздражителя.

Что такое полезное время действия раздражителя. Смотреть фото Что такое полезное время действия раздражителя. Смотреть картинку Что такое полезное время действия раздражителя. Картинка про Что такое полезное время действия раздражителя. Фото Что такое полезное время действия раздражителя

Рис. 1. Зависимость силы реакции простой возбудимой системы (клетки) от силы раздражителя.
ПВ – порог возбуждения

Закон силы для сложных возбудимых систем

Сложная возбудимая система – система, состоящая из множества возбудимых элементов (мышца включает множество двигательных единиц, нерв – множество аксонов). Отдельные элементы системы имеют неодинаковые пороги возбуждения.

Для сложных возбудимых систем амплитуда ответа пропорциональна силе действующего раздражителя (при значениях силы раздражителя от порога возбуждения самого легковозбудимого элемента до порога возбуждения самого трудновозбудимого элемента) (рис. 2). Амплитуда ответа системы пропорциональна количеству вовлеченных в ответ возбудимых элементов. При возрастании силы раздражителя в реакцию вовлекается все большее число возбудимых элементов.

Что такое полезное время действия раздражителя. Смотреть фото Что такое полезное время действия раздражителя. Смотреть картинку Что такое полезное время действия раздражителя. Картинка про Что такое полезное время действия раздражителя. Фото Что такое полезное время действия раздражителя

Рис. 2. Зависимость силы реакции сложной возбудимой системы (нерв, мышца) от силы раздражителя.
ПВ мin порог возбуждения самого легковозбудимого элемента,
ПВ мах порог возбуждения самого трудновозбудимого элемента

Закон силы-длительности

Эффективность раздражителя зависит не только от силы, но и от времени его действия. Сила раздражителя, вызывающего процесс распространяющегося возбуждения, находится в обратной зависимости от длительности его действия. Графически эта закономерность выражается кривой Вейсса (рис. 3).

Что такое полезное время действия раздражителя. Смотреть фото Что такое полезное время действия раздражителя. Смотреть картинку Что такое полезное время действия раздражителя. Картинка про Что такое полезное время действия раздражителя. Фото Что такое полезное время действия раздражителя

Закон крутизны раздражения
(закон крутизны нарастания силы раздражителя)

Что такое полезное время действия раздражителя. Смотреть фото Что такое полезное время действия раздражителя. Смотреть картинку Что такое полезное время действия раздражителя. Картинка про Что такое полезное время действия раздражителя. Фото Что такое полезное время действия раздражителя

Рис. 4. Изменение мембранного потенциала и критического уровня деполяризации при медленном ( А ) и быстром ( Б ) нарастании силы раздражающего тока.

Полярный закон

При внеклеточном раздражении возбуждение возникает в области катода (–). При внутриклеточном раздражении для возникновения возбуждения необходимо, чтобы внутриклеточный электрод имел положительный знак (рис. 5).

Что такое полезное время действия раздражителя. Смотреть фото Что такое полезное время действия раздражителя. Смотреть картинку Что такое полезное время действия раздражителя. Картинка про Что такое полезное время действия раздражителя. Фото Что такое полезное время действия раздражителя

Рис. 5. Изменения, наступающие в нервном волокне при внутриклеточном или внеклеточном раздражении.
Стрелкой показано направление электрического тока

Лабильность

Под лабильностью понимают функциональную подвижность, скорость протекания элементарных физиологических процессов в клетке (ткани). Количественной мерой лабильности является максимальная частота циклов возбуждения, которую может воспроизводить клетка. Частота циклов возбуждения не может возрастать беспредельно, так как в каждом цикле возбуждения имеется период рефрактерности. Чем короче рефрактерный период, тем больше лабильность клетки.

Источник

Основные физиологические свойства возбудимых тканей

Что такое полезное время действия раздражителя. Смотреть фото Что такое полезное время действия раздражителя. Смотреть картинку Что такое полезное время действия раздражителя. Картинка про Что такое полезное время действия раздражителя. Фото Что такое полезное время действия раздражителя

Понятие о состоянии относительного физиологического покоя и активности

Состояние активности возникает под действием раздражителей. Характеризуется выраженным изменением уровня обменных процессов, проявлениями функциональных отправлений данной ткани.

Формы активного состояния возбудимых тканей

Существуют 2 формы активного состояния возбудимых тканей:

Торможение— возникает в ткани в ответ на раздражение и характеризуется угнетением функциональных отправлений данной ткани. Торможение протекает с затратой и выделением энергии, но они меньше, чем при возбуждении.

Вывод:при нанесении раздражения в ткани возникает или возбуждение или торможение, эти процессы тесно взаимосвязаны между собой и (по Павлову) являются двумя сторонами одного процесса.

Виды возбуждения

Возбуждение может быть 2-х видов:

Особенности местного возбуждения:

Особенности импульсного возбуждения:

Вывод:в организме животного и человека наблюдается местное и импульсное возбуждение. Возникновение того или иного вида возбуждения зависит от степени развития ткани и силы раздражителя.

Законы взаимодействия раздражителя с возбудимой тканью

Существует определенная зависимость ответной реакции от параметра раздражителя.

Законы:

Вывод:

Источник

Что такое полезное время действия раздражителя. Смотреть фото Что такое полезное время действия раздражителя. Смотреть картинку Что такое полезное время действия раздражителя. Картинка про Что такое полезное время действия раздражителя. Фото Что такое полезное время действия раздражителя Что такое полезное время действия раздражителя. Смотреть фото Что такое полезное время действия раздражителя. Смотреть картинку Что такое полезное время действия раздражителя. Картинка про Что такое полезное время действия раздражителя. Фото Что такое полезное время действия раздражителя Что такое полезное время действия раздражителя. Смотреть фото Что такое полезное время действия раздражителя. Смотреть картинку Что такое полезное время действия раздражителя. Картинка про Что такое полезное время действия раздражителя. Фото Что такое полезное время действия раздражителя Что такое полезное время действия раздражителя. Смотреть фото Что такое полезное время действия раздражителя. Смотреть картинку Что такое полезное время действия раздражителя. Картинка про Что такое полезное время действия раздражителя. Фото Что такое полезное время действия раздражителя

Что такое полезное время действия раздражителя. Смотреть фото Что такое полезное время действия раздражителя. Смотреть картинку Что такое полезное время действия раздражителя. Картинка про Что такое полезное время действия раздражителя. Фото Что такое полезное время действия раздражителя

Что такое полезное время действия раздражителя. Смотреть фото Что такое полезное время действия раздражителя. Смотреть картинку Что такое полезное время действия раздражителя. Картинка про Что такое полезное время действия раздражителя. Фото Что такое полезное время действия раздражителя

ФИЗИОЛОГИЯ И Б И О Ф И 3 И К А В О 3 Б У Д И М Ы X

КЛЕТОК

Понятие о раздражимости, возбудимости и возбуждении. Классификация раздражителей

Процесс воздействия раздражителя на клетку, ткань, организм называется раздражением.

Все раздражители делятся на следующие группы: 1.По природе

А) физические (электричество, свет, звук, механические воздействия и т.д.)

Б) химические (кислоты, щелочи, гормоны и т.д.)

В) физико-химические (осмотическое давление, парциальное давление газов и т.д.)

Г) биологические (пища для животного, особь другого пола)

д) социальные (слово для человека). 2.По месту воздействия:

А) внешние (экзогенные)

б) внутренние (эндогенные) З.По силе:

А) подпороговые (не вызывающие ответной реакции)

Б) пороговые (раздражители минимальной силы, при которой возникает возбуждение)

в) сверхпороговые (силой выше пороговой) 4.По физиологическому характеру:

а) адекватные (физиологичные для данной клетки или рецептора, которые приспособились к нему в |процессе эволюции, например, свет для фоторецепторов глаза).

Б) неадекватные

Если реакция на раздражитель является рефлекторной, то выделяют также:

А) безусловно-рефлекторные раздражители

Б) условно-рефлекторные

Законы раздражения. Параметры возбудимости.

Реакция клеток, тканей на раздражитель определяется законами раздражения

Акон силы: Чем больше сила раздражителя, тем сильнее ответная реакция Однако выраженностъ ответной реакции растет лишь до определенного максимума. Закону силы подчиняется целостная скелетная, гладкая мышца, так как они состоят из многочисленных мышечных клеток, умеющих различную возбудимость.

Источник

полезное время в физиологии

Смотреть что такое «полезное время в физиологии» в других словарях:

ЭЛЕКТРОВОЗБУДШОСТЬ — ЭЛЕКТРОВОЗБУДШОСТЬ, свойство живой ткани подвергаться изменениям под влиянием электрического тока. Уже низшие организмы обнаруживают чувствительность к гальваническому току. У высокоорганизованных животных наиболее чувствительна к электротоку… … Большая медицинская энциклопедия

Порог раздражения — (в физиологии нервных и мышечных клеток) наименьшая сила раздражителя (обычно электрического тока), способная вызвать распространяющийся Потенциал действия; мера возбудимости (См. Возбудимость) клетки. В определённых пределах П. р.… … Большая советская энциклопедия

Медицина — I Медицина Медицина система научных знаний и практической деятельности, целями которой являются укрепление и сохранение здоровья, продление жизни людей, предупреждение и лечение болезней человека. Для выполнения этих задач М. изучает строение и… … Медицинская энциклопедия

Тимирязев, Климент Аркадьевич — профессор Московского университета; род. в Петербурге в 1843 г. Первоначальное образование получил дома. В 1861 г. поступил в Петербургский унив. на камеральный факультет, потом перешел на физико математический, курс которого окончил в 1866 г. со … Большая биографическая энциклопедия

Эстетика — составляет особую отрасль философии, занимающуюся красотой и искусством. Самый термин Э. происходит от греческого αίσθετικός, что значит чувственный, и в таком смысле встречается еще у самого основателя науки о прекрасном, Канта, в Критике… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

БОЛЕЗНЬ — БОЛЕЗНЬ, понятие, трудно поддающееся определению. Трудность заключается, главным образом, в том, что невозможно делить людей на абсолютно здоровых и абсолютно больных, т. к., во первых, абсолютно, при всех условиях, здоровых людей не существует… … Большая медицинская энциклопедия

Библиография — Содержание статьи: Понятие библиографии. I. Библиография всеобщая. II. Обозрение би6лиографии по государствам и национальностям. Франция. Италия. Испания и Португалия. Германия. Австро Венгрия. Швейцария. Бельгия и Голландия. Англия. Дания,… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

Залманов — Залманов, Абрам Соломонович Абрам (Александр) Соломонович Залманов (20 июня 1875, Гомель 24 января 1965, Париж) знаменитый российский врач, создатель современного варианта методики скипидарных ванн и учения о капилляротерапии. После… … Википедия

Источник

Что такое полезное время действия раздражителя

Физик А. Вольта, повторив этот опыт, пришел к другому заключению. Источником тока, по его мнению, является не спинной мозг и «животное электричество», а разность потенциалов, образующаяся в месте контакта разнородных металлов – меди и железа, а нервно-мышечный препарат лягушки является лишь проводником электричества. В ответ на эти возражения Л. Гальвани усовершенствовал опыт, исключив из него металлы. Он препарировал седалищный нерв вдоль бедра лапки лягушки, затем набрасывал нерв на мышцы голени, что вызывало сокращение мышцы (второй опыт Гальвани), тем самым доказав существование «животного электричества».

Позднее Дюбуа-Реймоном было установлено, что поврежденный участок мышцы имеет отрицательный заряд, а неповрежденный участок – положительный. При набрасывании нерва между поврежденным и неповрежденным участками мышцы возникает ток, который раздражает нерв и вызывает сокращение мышцы. Этот ток был назван током покоя, или током повреждения. Так было показано, что наружная поверхность мышечных клеток заряжена положительно по отношению к внутреннему содержимому.

В состоянии покоя между наружной и внутренней поверхностями мембраны клетки существует разность потенциалов, которая называется мембранным потенциалом [МП), или, если это клетка возбудимой ткани, – потенциалом покоя. Так как внутренняя сторона мембраны заряжена отрицательно по отношению к наружной, то, принимая потенциал наружного раствора за нуль, МП записывают со знаком «минус». Его величина у разных клеток колеблется от минус 30 до минус 100 мВ.

Первая теория возникновения и поддержания мембранного потенциала была разработана Ю. Бернштейном (1902). Исходя из того, что мембрана клеток обладает высокой проницаемостью для ионов калия и малой проницаемостью для других ионов, он показал, что величину мембранного потенциала можно определить, используя формулу Нернста.

Таким образом, согласно обновленной мембранной теории асимметричное распределение ионов по обе стороны мембраны и связанное с этим создание и поддержание мембранного потенциала обусловлено как избирательной проницаемостью мембраны для различных ионов, так и их концентрацией по обе стороны от мембраны, а более точно величину мембранного потенциала можно рассчитать по формуле.

Поляризация мембраны в покое объясняется наличием открытых калиевых каналов и трансмембранным градиентом концентраций калия, что приводит к выходу части внутриклеточного калия в окружающую клетку среду, т. е. к появлению положительного заряда на наружной поверхности мембраны. Органические анионы – крупномолекулярные соединения, для которых мембрана клетки непроницаема, создают на внутренней поверхности мембраны отрицательный заряд. Поэтому чем больше разница концентраций калия по обе стороны от мембраны, тем больше его выходит и тем выше значения МП. Переход ионов калия и натрия через мембрану по их концентрационному градиенту в конечном итоге должен был бы привести к выравниванию концентрации этих ионов внутри клетки и в окружающей ее среде. Но в живых клетках этого не происходит, так как в клеточной мембране имеются натрий-калиевые насосы, которые обеспечивают выведение из клетки ионов натрия и введение в нее ионов калия, работая с затратой энергии. Они принимают и прямое участие в создании МП, так как за единицу времени ионов натрия выводится из клетки больше, чем вводится калия (в соотношении 3:2), что обеспечивает постоянный ток положительных ионов из клетки. То что выведение натрия зависит от наличия метаболической энергии, доказывается тем, что под действием динитрофенола, который блокирует метаболические процессы, выход натрия снижается примерно в 100 раз. Таким образом, возникновение и поддержание мембранного потенциала обусловлено избирательной проницаемостью мембраны клетки и работой натрий-калиевого насоса.

Изменения мембранного потенциала. Пороговые и подпороговые раздражители

Если раздражать нейрон через электрод, находящийся в цитоплазме, кратковременными импульсами деполяризующего электрического тока различной величины, то, регистрируя через другой электрод изменения мембранного потенциала, можно наблюдать следующие биоэлектрические реакции: электротонический потенциал, локальный ответ и потенциал действия (рис.1). Если наносятся раздражения, величина которых не превышает 0,5 величины порогового раздражения, то деполяризация мембраны наблюдается только во время действия раздражителя. Это пассивная электротоническая деполяризация (электротонический потенциал). Развитие и исчезновение электротонического потенциала происходит по экспоненте и определяется параметрами раздражающего тока, а также свойствами мембраны (ее сопротивлением и емкостью). Во время развития электротонического потенциала проницаемость мембраны для ионов практически не изменяется.

При увеличении амплитуды подпороговых раздражений от 0,5 до 0,9 пороговой величины развитие деполяризации мембраны происходит не прямолинейно, а по S-образной кривой. Деполяризация продолжает нарастать и после прекращения раздражения, а затем сравнительно медленно исчезает. Этот процесс получил название локального ответа.

Локальный ответ имеет следующие свойства:

1. возникает при действии подпороговых раздражителей;

2. находится в градуальной зависимости от силы стимула (не подчиняется закону «все или ничего»); локализуется в месте действия раздражителя и не способен к распространению на большие расстояния;

3. может распространяться лишь локально, при этом его амплитуда быстро уменьшается;

4. локальные ответы способны суммироваться, что приводит к увеличению деполяризации мембраны. В период развития локального ответа возрастает поток ионов натрия в клетку, что повышает ее возбудимость. Локальный ответ является экспериментальным феноменом, однако по перечисленным выше свойствам он близок к таким явлениям, как процесс местного нераспространяющегося возбуждения и возбуждающего постсинаптического потенциала (ВПСП), который возникает под влиянием деполяризующего действия возбуждающих медиаторов.

Потенциал действия (ПД) возникает на мембранах возбудимых клеток под влиянием раздражителя пороговой или сверхпороговой величины, который увеличивает проницаемость мембраны для ионов натрия. Ионы натрия начинают входить внутрь клетки, что приводит к уменьшению величины мембранного потенциала – деполяризации мембраны. При уменьшении МП до критического уровня деполяризации открываются потенциалозависимые каналы для натрия и проницаемость мембраны для этих ионов увеличивается в 500 раз (превышая проницаемость для ионов калия в 20 раз). В результате проникновения ионов натрия в цитоплазму и их взаимодействия с анионами разность потенциалов на мембране исчезает, а затем происходит перезарядка клеточной мембраны (инверсия заряда, овершут) – внутренняя поверхность мембраны заряжается положительно по отношению к наружной (на 30 – 50 мВ), после чего закрываются натриевые каналы и открываются потенциалозависимые калиевые каналы. В результате выхода калия из клетки начинается процесс восстановления исходного уровня мембранного потенциала покоя – реполяризация мембраны. Если такое повышение проводимости для калия предотвратить введением тетраэтиламмония, который избирательно блокирует калиевые каналы, мембрана реполяризуется гораздо медленнее. Натриевые каналы можно блокировать тетродотоксином и разблокировать последующим введением фермента проназы, который расщепляет белки.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *