Что такое полимерное наследование
Взаимодействие неаллельных генов: комплементарное действие, эпистаз
Эпистаз – взаимодействие неаллельных генов, при котором действие одного из них угнетает действие другого. В зависимости от того, какой из генов вызывает угнетение, выделяют доминантный и рецессивный эпистаз. Угнетающий ген получил название ингибитора, супрессора или же эпистатического гена, угнетаемый – гипостатического гена. Гены-ингибиторы в основном угнетают другой ген, не детерминируя развитие определенного признака. Расщепление по фенотипу составляет 13:3, 12:3:1, 9:3:4 и т.д. Если ген-супрессор рецессивный, то может наблюдаться криптомерия – зависимость признака от нескольких действующих одновременно генов, каждый из которых не имеет видимого фенотипического проявления.
Полимерное наследование признаков у человека. Плейотропия.
Одинаковое действие двух и более неаллельных генов на развитие одного и того же признака в организме называется полимерным взаимодействием генов. Полимерное взаимодействие проявляется в количественных признаках: рост, вес, окраска кожных покровов, скорость протекания биохимических реакций, артериальное давление, содержание сахара в крови, особенности нервной системы, уровень интеллекта. Степень развития количественных признаков зависит от числа воздействующих полимерных генов.
Первоначально полимерию было путем скрещивания сортов пшеницы с красными (A1A1A2A2) и белыми (а1а1а2а2) зернами. Получились растения F1, зерна которых были розового цвета. Скрестив гибриды F1, он получил растения F2, которые можно разделить на пять групп по цвету их зерен. Количественное соотношение их было следующим: растения с красным зерном — 1, с бледно-красным зерном — 4, с розовым зерном — 6, с бледно-розовым зерном — 4, с белым зерном — 1.
Примером полимерного наследования у человека является наследование окраски кожных покровов. В браке индивида негроидной расы с черной окраской кожи и представителем европеоидной расы с белой кожей дети рождаются с промежуточным цветом кожи (мулаты). В браке двух мулатов потомки могут обладать любой окраской кожи: от черной до белой, поскольку пигментация кожи обусловлена действием трех или четырех неаллельных генов. Влияние каждого из этих генов на окраску кожи примерно одинаково.
Плейотропия — явление множественного действия гена. Выражается в способности одного гена влиять на несколько фенотипических признаков. Таким образом, новая мутация в гене может оказать влияние на некоторые или все связанные с этим геном признаки. Этот эффект может вызвать проблемы при селективном отборе, когда при отборе по одному из признаков лидирует один из аллелей гена, а при отборе по другим признакам — другой аллель этого же гена.
Виды плейотропии
1) Первичная: ген одновременно проявляет множественное действие. Например, синдром Марфана обусловлен действием одного гена. Этот синдром проявляется следующими признаками: высокий рост за счет длинных конечностей, тонкие пальцы, порок сердца, высокий уровень катехоламинов в крови. Другим примером у человека служит серповидноклеточная анемия. Мутация нормального аллеля ведёт к изменению молекулярной структуры белка гемоглобина, при этом эритроциты теряют способность транспорту кислорода и приобретают серповидную форму вместо округлой. Гомозиготы по гену серповидноклеточности гибнут при рождении, гетерозиготы живут и обладают устойчивостью против малярийного плазмодия. Доминантная мутация, вызывающая у человека укорочение пальцев (брахидактилия), в гомозиготном состоянии приводит к гибели эмбриона на ранних стадиях развития.
2) Вторичная: имеется одно первичное фенотипическое проявление гена, которое обуславливает проявление вторичных признаков. Например, аномальный гемоглобин S в гомозиготном состоянии фенотипически первично проявляется в виде серповидноклеточной анемии, которая приводит к вторичным фенотипическим проявлениям в виде невосприимчивости к малярии, анемии, поражению сердца и мозга.
Примеры:
● Ген рыжих волос обусловливает более светлую окраску кожи и появление веснушек.
● Фенилкетонурия (ФКУ), болезнь, вызывающая задержку умственного развития, выпадение волос и пигментацию кожи, может быть вызвана мутацией в гене, кодирующем фермент фенилаланин-4-гидроксилаза, который в норме катализирует превращение аминокислоты фенилаланина в тирозин.
● Рецессивная мутация в гене, кодирующем синтез глобиновой части в гемоглобине (замена одной аминокислоты), вызывающая серповидную форму эритроцитов, изменения в сердечно-сосудистой, нервной, пищеварительной и выделительной системах.
● Арахнодактилия, вызываемая доминантной мутацией, проявляется одновременно в изменениях пальцев рук и ног, вывихах хрусталика глаза и врождённых пороках сердца.
● Галактоземия, вызываемая рецессивной мутацией гена, кодирующего фермент галактозо-1-фосфатуридилтрансфераза, приводит к слабоумию, циррозу печени и слепоте.
43. Сцепленное наследования генов (закон Т. Моргана). Кроссинговер. Генетические и цитологические карты хромосом.
Некроссоверные гаметы — гаметы, в процессе образования которых кроссинговер не произошел.
| Образуются гаметы: | |
Кроссоверные гаметы — гаметы, в процессе образования которых произошел кроссинговер. Как правило кроссоверные гаметы составляют небольшую часть от всего количества гамет.
| Образуются гаметы: | |
Нерекомбинанты — гибридные особи, у которых такое же сочетание признаков, как и у родителей.
Рекомбинанты — гибридные особи, имеющие иное сочетание признаков, чем у родителей.
Расстояние между генами измеряется в морганидах — условных единицах, соответствующих проценту кроссоверных гамет или проценту рекомбинантов. Например, расстояние между генами серой окраски тела и длинных крыльев (также черной окраски тела и зачаточных крыльев) у дрозофилы равно 17%, или 17 морганидам.
Взаимодействие генов
Вы уже знаете о том, что гены могут взаимодействовать друг с другом по типу полного и неполного доминирования. Однако, в генетике встречается масса других примеров взаимодействия генов. В этой статье мы затронем те, которые ранее не обсуждались.
Кодоминирование
Наиболее распространенным примером кодоминирования является наследование групп крови у человека.
Решим пару задач, которые укрепят понимание темы.
Пример решения задачи №1
«Родители имеют II и III группы крови, гетерозиготны. Какие группы крови можно ожидать у их детей?»
Итак, в результате такого брака может получиться ребенок с любой группой крови, в чем мы убедились.
Пример решения задачи №2
«Дигетерозиготная по B (III) группе и положительному резус-фактору вступила в брак с таким же мужчиной. Какое расщепление по фенотипу можно ожидать у детей?»
Комплементарность
В каждой задаче свой случай комплементарного взаимодействия генов. Чтобы успешно их решать, надо помнить, что такое явление, как комплементарность, в принципе, возможно, и быть внимательным при написании генотипов особей и их гамет.
Пример решения задачи №3
Наследование слуха у человека определяется двумя доминантными генами из разных аллельных пар, один из которых детерминирует развитие слухового нерва, а другой – улитки. Определить вероятность рождения глухих детей, если оба родителя глухие, но по разным генетическим причинам (у одного отсутствует слуховой нерв, у другого улитка). По генотипу оба родителя являются дигомозиготными.
Эпистаз
Пример решения задачи №4
Вероятность рождения детей с i(0) группой крови в данном случае равна 2/8, или 1/4 (25%). Генотипами, у которых будет i(0) группа крови являются: I A I A hh и I A I B hh. Эпистатический рецессивный ген hh в гомозиготном состоянии всегда приводит к i(0) группе крови.
Полимерия
У человека полимерное действие генов заложено в наследовании количественных признаков (вес, рост, цвет кожи, давление).
Пример решения задачи №5
«Цвет кожи у мулатов наследуется по типу полимерии. При этом данный признак контролируется 2 аутосомными несцепленными генами. Сын белой женщины и негра женился на белой женщине. Может ли этот ребенок быть темнее своего отца?»
В данном случае полимерия проявляется в том, что чем больше доминантных генов в генотипе (A и B), тем более темный цвет кожи имеет человек. Это правило мы и применим для решения.
© Беллевич Юрий Сергеевич 2018-2021
Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.
Полимерия
В рассмотренных до сих пор типах взаимодействия генов мы касались альтернативных, т. е. качественно различающихся, признаков.
Такие же свойства организмов, как темп роста, живой вес животного, яйценоскость кур, количество молока и его жирность у скота, шерстность овец, количество белка в эндосперме зерна кукурузы и пшеницы, содержание витаминов в растениях, скорость протекания биохимических реакций, свойства нервной деятельности животных и т. п., нельзя разложить на четкие фенотипические классы, их необходимо измерять, взвешивать, подсчитывать, т. е. оценивать в Количественном выражении. Подобные признаки чаще всего называют количественными, или мерными, признаками. Каким же образом они могут наследоваться?
Рассматривая действие гена, определяющего количество витамина А в эндосперме кукурузы, мы видели, что чем больше доза доминантного гена (YYY), тем выше активность витамина А. Допустим, что количественные признаки, образующие по своему проявлению непрерывный вариационный ряд, определяются взаимодействием многих доминантных генов, действующих на один и тот же признак или свойство. В таком случае количественно варьирующий признак у разных особей одного и того же поколения будет определяться разным числом доминантных генов в генотипе.
Изучение наследования полимерных признаков было начато в первом десятилетии нашего столетия. Так, при скрещивании рас пшениц с красными и белыми (неокрашенными) зернами шведский генетик Г. Нильсон-Эле в 1908 г. обнаружил в F2 обычное моногибридное расщепление в отношении 3:1. Однако при скрещивании некоторых линий пшениц, различающихся по таким же признакам, в F2 наблюдается расщепление в отношении 15 /16 окрашенных и 1 /16 белых, Окраска зерен из первой группы варьирует от темнокрасных до бледно-красных. Генетический анализ растений пшеницы в F3 из семян F2 разных окрасок показал, что растения, выращенные из белых зерен и из зерен с наиболее темной, (красной) окраской, в дальнейшем не дают расщепления. Из зерен с окраской промежуточного типа развились растения, давшие в последующих поколениях расщепление по окраске зерна.
Наследование окраски зерна у Triticum при взаимодействии двух пар генов (полимерия)
Анализ характера расщепления позволил установить, что в данном случае красную окраску зерен определяют две доминантные аллели двух разных генов, а сочетание их рецессивных аллелей в гомозиготном состоянии определяет отсутствие окраски. Интенсивность окраски зерен зависит от числа доминантных генов, присутствующих в генотипе.
Гены такого типа были названы полимерными, и, поскольку однозначно влияют на один и тот же признак, было принято обозначать их одной латинской буквой с указанием индекса для разных членов: А1, А2, А3 и т. д.
Следовательно, исходные родительские формы, давшие расщепление в F2 15 : 1, имели генотипы А1А1А2А2 и а1а1а2а2. Гибрид F1 обладал генотипом А1а1А2а2, а в F2 развились зерна с разным числом доминантных генов. Наличие всех четырех доминантных аллелей генов окраски А1А1А2А2 1 /16 растений определяет самую интенсивную окраску зерна; 4 /16 всех зерен F2 имели три доминантные аллели (типа А1А1А2а2), 6 /16 — две (типа А1а1А2а2), 4 /16 — одну (типа А1а1а2а2); все эти генотипы определяли различные промежуточные окраски, переходные между интенсивно красной и белой. Гомозиготной по обоим рецессивным генам (а1а1а2а2) являлась 1 /16 всех зерен, и эти зерна оказались неокрашенными. Нетрудно заметить, что частоты пяти перечисленных генотипических классов при расщеплении в F2 распределяются в ряд: 1+4+6 + 4+1 = 16, который отображает изменчивость признака окраски зерна пшеницы в зависимости от числа доминантных аллелей в генотипе. Точно такой же тип наследования известен для некоторых видов окраски зерен кукурузы.
При накоплении доминантных полимерных генов их действие суммируется. Эти гены имеют кумулятивный эффект, поэтому взаимодействие такого типа называют кумулятивной полимерией.
Очевидно, что если у гибрида F1 число таких генов в гетерозиготном состоянии оказывается не два, а три А1а1А2а2А3а3 или более, то число комбинаций генотипов в F2 увеличивается. Этот ряд генотипов можно представить в виде биноминальной кривой изменчивости данного признака.
В опыте Г. Нильсона-Эле тригибридное расщепление в F2 по генам окраски зерен пшеницы давало соотношение: 63 красных и 1 неокрашенное. В F2 наблюдались все переходы от интенсивной окраски зерен с генотипом А1А1А2А2А3А3 до полного ее отсутствия у a1a1a2a2a3a3. При этом частоты генотипов с разным количеством Доминантных генов распределились в следующий ряд: 1 + 6 + 15 + 20 + 15 + 6 + 1 = 64. Приведены кривые распределения частот генотипов с разным числом доминантных генов Кумулятивного действия при независимом их сочетании в моно-, ди- и тригибридном скрещиваниях. Из этого сопоставления видно, что чем большее число доминантных генов определяет данный признак, тем больше амплитуда изменчивости.
Кривые распределения частот генотипов в F2 в случае кумулятивной полимерии при скрещивании
По типу полимерных генов наследуется пигментация кожи у человека. Например, у супружеской пары негра и белой женщины урождаются дети с промежуточным цветом кожи (мулаты). У супружеской пары мулатов рождаются дети по цвету кожи всех типов окраски от черной до белой, что определяется комбинацией двух пар аллелей полимерных генов.
Изучение полимерных генов имеет не только теоретический, но и большой практический интерес. Установлено, что многие хозяйственно ценные признаки у животных и растений, такие, как молочность скота, яйценоскость кур, вес и рост животного, длина колоса, длина початка кукурузы, содержание сахара в корнеплодах свеклы, плодовитость и скороспелость животных, длина вегетационного периода у растений и многие другие наследуются по типу полимерии.
Изучая наследование перечисленных выше признаков, мы не наблюдаем в F2 расщепления на определенные, легко отличимые фенотипические классы, как это имеет место в случае альтернативно наследующихся признаков: красная или белая окраска цветка, гладкая или морщинистая форма семян у гороха и т. д. Полимерные признаки необходимо измерять. Поэтому в отличие от альтернативно наследующихся, так называемых качественных, признаков генетики различают количественные признаки. При наследовании количественного признака потомство гибрида образует непрерывный вариационный ряд по фенотипическому проявлению данного признака.
В принципе деление признаков на количественные и качественные условно. Как те, так и другие признаки можно и должно измерять при изучении их наследования, поскольку без количественной оценки любого явления природы не может быть объективного анализа. Изменчивость количественного признака в отличие от альтернативного оценивается амплитудой его варьирования.
Сама амплитуда варьирования признака наследственно определена и имеет приспособительное значение в индивидуальном развитии.
В качестве примера к сказанному приведем опыт Е. Иста по скрещиванию двух форм кукурузы — длиннопочатковой и короткопочатковой.
Наследование и изменчивость длины початков (в см) у Zea mays в F1 и F2
Початки по их длине у исходных линий кукурузы № 60 (короткопочатковая) и № 54 (длиннопочатковая), а также у гибридов первого и второго поколений распределяются с определенной закономерностью. Нетрудно заметить, что эти две линии сильно различаются между собой, но в пределах каждой из них длина початков колеблется незначительно. Это указывает на то, что они наследственно сравнительно однородны. Захождения в размерах початков у родительских форм нет. У гибридных растений длина початков оказывается промежуточной, с небольшой изменчивостью ряда. При самоопылении растений F1 в следующем поколении (F2) размах изменчивости по длине початков значительно увеличивается. Если вычертить кривую распределения классов по длине початков, отложив на Абсциссе размер початков, а на ординате — их количество, она оказывается сходной с кривой распределения полимерных доминантных генов. Следовательно, непрерывный ряд изменений по длине початка кукурузы можно представить как ряд генотипов при тригибридном скрещивании с различным числом доминантных генов, обусловливающих данный количественный признак.
Приведенные примеры анализа наследования количественных признаков иллюстрируют лишь один из возможных путей изучения сложных и колеблющихся в своем проявлении признаков. Большая изменчивость признака, прежде всего, указывает на его сложную генетическую обусловленность, и, напротив, меньшая изменчивость признака — на меньшее число факторов, его определяющих.
Для изучения наследования количественных признаков и их изменчивости необходимо применение статистических методов обработки и оценки измерений. Мы не будем касаться этих методов, так как их можно найти в ряде учебников и пособий по вариационной статистике.
Данные, полученные в результате изучения наследования количественных признаков, явились одним из первых доказательств того, что признаки организма обусловлены многими генами. Анализ наследования и действия этих генов чрезвычайно сложен, потому что, во-первых, число полимерных генов, могущих определять развитие даже одного количественного признака, изменчиво, во-вторых, сила действия и значение каждого из этих генов могут быть специфичны, в-третьих, каждый из этих генов может иметь разную степень доминирования.
Несмотря на сложность изучения наследования и действия множественных генов, необходимо признать, что теория множественных генов оказывается пока наилучшим объяснением закономерностей для наследования количественных признаков. Она раскрывает возможности для успешной работы селекционера по созданию сортов растений и пород животных.
Наследование формы стручка у Capsella bursa pastoris при взаимодействии двух пар генов (полимерия)
Полимерные гены с однозначным действием могут наследственно определять и качественные, т. е. альтернативные, признаки. Примером такого действия полимерных генов может служить наследование формы плода (стручка) у пастушьей сумки. У этого вида обычно встречаются растения с треугольной и очень редко — с яйцевидной формой плода. От скрещивания этих рас в F1 появляются растения, которые имеют плоды треугольной формы. Во втором поколении происходит расщепление по фенотипу в отношении 15 /16 с треугольными стручками и 1 /16 в с яйцевидными, т. е. наблюдаются два фенотипических класса.
Предположим, что раса пастушьей сумки (Capsella bursa pastoris) с треугольными стручками гомозиготна по двум парам однозначных доминантных генов (генотип A1A1A2А2), а раса с яйцевидными стручками имеет генотип a1a1a2a2. Сочетание гамет при оплодотворении дает гибриды с генотипом А1а1А2а2. Доминантные аллели каждого из двух генов действуют качественно однозначно, т. е. определяют треугольную форму стручка. Поэтому генотипы A1—A2—( 9 /16), A1—a2a2( 3 /16) и a1a1A2—( 3 /16) будут определять треугольную форму стручков, а яйцевидная форма стручка будет обусловливаться двойным рецессивом а1а1а2а2, и из 16 комбинаций ожидается один такой генотип.
Таким же образом осуществляется наследование оперенности голени у цыплят. При скрещивании кур, гомозиготных по двум различным рецессивным аллелям и имеющим неоперенную голень, с формами, гомозиготными по доминантным аллелям генов, определяющих оперенность голени, в F1 все цыплята имеют оперенную голень. В F2 по этому признаку наблюдается расщепление в отношении 15 : 1.
При тригибридном скрещивании расщепление по таким генам будет соответствовать отношению 63 : 1 и т. д. Такого рода доминантные однозначные гены иногда называют генами с некумулятивным действием, а явление подобного взаимодействия — некумулятивной полимерией. Рецессивные гены, обусловливающие мутантный фенотип при одновременном их присутствии в генотипе в гомозиготном состоянии, называют дупликатными генами.
Как мы видим, в случае некумулятивной полимерии наличие в генотипе разного количества доминантных полимерных генов однозначного действия не изменяет выраженности признака. Достаточно одной доминантной аллели любого из генов, чтобы вызвать развитие признака.
Некоторые авторы рассматривают явление взаимодействия однозначных генов как пример взаимного двойного (дупликатного) доминантного эпистаза: А— > B— и В— > А—. Возможно, что для ряда случаев данное объяснение вполне оправданно. Однако в отношении большинства случаев это объяснение взаимодействия полимерных генов, вероятно, неприменимо.
Происхождение полимерных генов в процессе эволюции может быть объяснено следующим образом. При случайном скрещивании двух близких форм, имеющих одинаковые доминантные гены с одним и тем же действием A1A1 и А2А2, у гибрида могло произойти удвоение набора хромосом (по типу амфидиплоидии), в результате чего новый вид будет нести оба доминантных гена: A1/A1 A2/A2.
Возможны и другие механизмы возникновения полимерных генов путем различных хромосомных перестроек. Дупликатные рецессивные гены могут возникнуть из дупликатных доминантных генов за счет мутаций: A1—→ a1 и A2—→ a2.
Однозначное действие множественных генов оказывается довольно широко распространенным явлением, оно описано для многих растений: кукурузы, пшеницы, табака, хлопчатника и др.
Мы разобрали три типа взаимодействия генов: комплементарное, эпистатическое и полимерное. Все они видоизменяют классическую формулу расщепления по фенотипу, установленную Менделем для дигибридного скрещивания 9:3:3: 1. Приведены некоторые типы расщепления по фенотипу для дигибридного скрещивания, при этом все они показаны с точки зрения доминантного и рецессивного эпистаза.
Таким образом, все приведенные типы расщепления по фенотипу столь же закономерны, как 9:3:3:1; они являются не следствием нарушения генетического механизма расщепления, а результатом взаимодействия генов между собой в индивидуальном развитии. Именно знание генетического механизма позволило выяснить эти сложные случаи наследования.
Мы иллюстрировали типы взаимодействия генов на примере дигибридного расщепления. Подобные же типы взаимодействия могут иметь место и при любом числе аллельных пар генов, наследующихся независимо друг от друга. В этом случае расщепление по фенотипу будет еще более сложным, и его можно выявить лишь при учете большого числа особей в потомстве. Так, для тетра- и пентагибридных скрещиваний необходимо иметь несколько тысяч потомков, чтобы обнаружить все классы расщепления.
Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.