Что такое полимеры в биологии

Что такое полимер с точки зрения биологии

Вы будете перенаправлены на Автор24

Полимеры – это биологические вещества сложной химической структуры.

Структура биологических полимеров

Полмеры были исследованы Г. Штаудингером, и он опытным путем доказал тот факт, что полимеры состоят из повторяющихся молекулярных звеньев, соединенных между собой ковалентными связями. Такая химическая связь отличается тем, что два атома имеют общую электронную пару. Химик также доказал тот факт, что пластмасса имеет структур полимера. За это открытие он был удостоен Нобелевской премии.

Все органические соединения, которые входят в состав живых организмов обладают высокой степенью разнообразия. Количество природных органических соединений исчисляется несколькими тысячами. Многие из них имеют очень сложную структуру.

Все органические вещества делятся на две группы:

Молекулярная масса полимеров составляет от нескольких тысяч до нескольких миллионов. Все полимеры строятся из большого количества повторяющихся мономеров.

Полимеры могут быть органическими, неорганическими, элементарно органическими. Органические полимеры могут быть природными, искусственными, синтетическими. Природные полимеры можно обнаружить в естественной среде обитания. Человек не участвует в производстве таких полимеров.

Примеры биологических полимеров

К биологическим полимерам относятся крахмал, каучук, хлопок и пр.

Искусственные полимеры получаются человеком при проведении химических опытов. Например, чтобы получить модифицированный полимер, который затем будет применён при производстве красок, химики добавляют в раствор стирола в толуоле или ксилоле льняное или касторовое масло и нагревают его.

Синтетические полимеры можно получить при реализации реакций химического синтеза. В синтезе участвуют различные высокомолекулярные органические продукты. Например, химический полимер лавсан получают с помощью поликонденсирования таких веществ, как терефталевую кислоту и этиленгликоль.

Готовые работы на аналогичную тему

Внутри молекулы полимера может присутствовать различное количество мономеров. Причем степень вариации весьма большая. Например, пептид глутатион состоит из трех аминокислот, но при этом играет важнейшую роль в процессах окисления и восстановления. Молекула ДНК состоит из более чем трех миллионов нуклеотидов и образует наследственную информацию не только эукариотических клеток, но и бактерий.

Большинство биологических полимеров предотвращают процесс передачи тепла, то есть являются теплоизоляторами. Они обладают большой эластичностью, способностью выдерживать агрессивную химическую среду. Также они являются диэлектриками, плохо проводят электрический ток и не пропускают его через себя.

К основным характеристикам биологических полимеров относят гомо и гетерополимерность (полимер может состоять из одинаковых или разных мономеров).

Большая часть полимеров построена из нескольких мономеров, относящихся, как правило, к одному и тому же классу веществ, соединенных одинаковых типом связей. Примером является гиалуроновая кислота.

Также полимеры могут быть регулярными и нерегулярными. Такая классификация отражает порядок расположения мономеров в полимере.

Регулярные полмеры состоят из повторяющихся единиц, нескольких мономеров. Уже упоминавшаяся гиалуроновая кислота состоит из чередующихся остатков двух типов — N-ацетилглюкозамина и глюкуроновой кислоты.

Чаще всего в живых организмах встречаются гетерополимеры. В них мономеры не образуют повторяющихся единиц. Последовательность мономеров внутри имеет уникальный характер. Это обуславливает высокую степень разнообразия таких полимеров.

Также при характеристике биологических полимеров учитывается степень разветвленности.

Неразветвленные полмеры – это линейные полмеры, которые образуются, если каждый входящий в их состав мономер образует две связи с соседними мономерами.

Примером таких полимеров можно назвать белки, нуклеиновые кислоты и многочисленные полисахариды.

Что касается разветвленных полимеров, то к ним относят такие полисахариды, как крахмал и гликоген. Разветвление характерно для небольшой части мономеров, поэтому разветвленные полимеры различаются также и по частоте ветвления. Длина таких ветвлений также весьма различна. Встречаются полимеры, в которых основная цепь состоит из одного мономера, а боковые — из другого.

Полмеры выделяются в несколько основных классов, в зависимости от состава тех низкомолекулярных веществ, которые входят в их молекулы. Самыми распространенными классами являются: углеводы, аминокислоты и белки, липиды, нуклеиновые кислоты и нуклеотиды.

Строение биополимеров можно рассмотреть на примере молекулы белков. Эта молекула имеет значительный размер, за что получила название макромолекулы. Такое разнообразие обеспечивается аминокислотным составом белковых молекул: в них входит 20 аминокислот. Аминокислоты внутри белков состоят из аминогрупп, имеющих основные свойства (NH2). Карбоксильная группа имеет кислотные свойства (COOH). Также в состав аминокислот имеется радикал. Первые две части в составе аминокислот одинаковые, а радикал придает ей нужную степень оригинальности.

Аминокислоты взаимодействуют с друг другом и образуют пептидную связь. Она формируется за счет сближения аминогрупп и карбоксильной группы. Также при этом происходит выделение молекул воды. Пептидная связь формируется между C и N.

Таким образом, анализируя строение молекулы белка как биополимера, можно формулировать следующие выводы:

Источник

Что такое полимер: структура, основные характеристики и примеры полимеров

Полимер в биологии

Структура биологического полимера

Полимер представляет собой биологические вещества, которые отличаются сложной химической структурой.

Исследованием полимером активно занимался Г. Штаудингер. В ходе многочисленных опытов он доказал, что в составе полимеров есть повторяющиеся молекулярные звенья, которые соединены друг с другом при помощи ковалентных связей.

Отличительная особенность таких связей — в наличии общей электронной пары у двух атомов.

Также ученым было доказано, что для пластмассы характерна структура полимера — это открытие принесло Штаудингеру Нобелевскую премию.

Органические соединения в составе живых организмов характеризуются высокой степенью разнообразия. Природных органических соединений насчитывается несколько тысяч, и многие из них отличаются сложной структурой.

Выделяют 2 группы органических веществ:

Если говорить о молекулярной массе полимеров, то она варьируется от нескольких тысяч до нескольких миллионов. В основе всех полимеров лежит большое количество повторяющихся мономеров.

Есть несколько вариантов полимеров: органические, неорганические, элементарно органические. В свою очередь в группе органических выделяют природные, искусственные и синтетические.

Природные полимеры — продукт естественной среды обитания. В производстве таких полимеров человек участие не принимает.

Примеры биологических полимеров

Самые известные биологические полимеры — крахмал, хлопок, каучук и др.

Чтобы получить какие-либо искусственные полимеры, человек проводит определенные химические опыты.

Для получения модифицированного полимера с последующим его использованием в производстве красок, в раствор стирола в толуоле или ксилоле добавляется льняное или касторовое масла, которые затем нагреваются.

Результат реализации реакций химического синтеза — синтетические полимеры. В синтезе принимают участие разнообразные высокомолекулярные органические продукты.

Лавсан (химический полимер) получается в результате поликонденсирования терефталевой кислоты и этиленгликоля.

Основные характеристики полимеров

Молекула полимера может содержать разное количество мономеров — и это количество сильно варьируется. К примеру, в пептиде глутатиона всего три аминокислоты, хотя его роль в таких процессах как окисление и восстановления огромная. Для сравнения, в молекуле ДНК насчитывается больше трех миллионов нуклеотидов. Эта молекула способна образовывать наследственную информацию не только в отношении эукариотических клеток, но и бактерий.

Большая часть биологических полимеров — теплоизоляторы: они препятствуют процессу передачи тепла. Они достаточно эластичны и легко выдерживают агрессивную химическую среду. А еще биологические полимеры — диэлектрики. То есть, они практически не могут проводить электрический ток и не пропускают его через себя.

Основные характеристики биологических полимеров — гомо- и гетерополимерность. Это значит, что в составе полимера могут быть как одинаковые, так и разные мономеры.

В основе большинства полимеров лежит несколько мономеров: они относятся к одному классу веществ и соединены одинаковой связью. Яркий пример — гиалуроновая кислота.

Полимеры бывают регулярными и нерегулярными. Такое разделение связано с порядком расположения мономеров в полимере.

В состав регулярных полимеров входят повторяющиеся единицы и несколько мономеров. Та же гиалуроновая кислота включает два типа чередующихся остатков: глюкуроновую кислоту и N-ацетилглюкозамин.

Обычно в живых организмах присутствуют гетерополимеры, в которых мономеры не образуют повторяющиеся единицы. Отмечается уникальный характер последовательности мономеров внутри, который обусловлен высокой степенью разнообразия таких полимеров.

Характеристика биологических полимеров учитывает степень разветвленности.

Неразветвленные полимеры — линейные полимеры, образующиеся в результате формирования мономерами, входящими в их состав, двух связей с мономерами по соседству.

Пример таких полимеров — белки, нуклеиновые кислоты, разнообразные полисахариды.

Разветвленные полимеры — гликоген и крахмал. Разветвление отмечается у небольшой группы мономеров. По этой причине у разветвленных полимеров есть различия по частоте ветвления. Различается и длина таких ветвлений. Есть полимеры, основная цепь которых состоит из одного мономера, а боковые цепи — из другого.

В зависимости от состава низкомолекулярных веществ, входящих в состав молекулы полимера, выделяют несколько основных классов полимеров:

Особенности строения полимеров

Разобраться в строении биополимеров помогает молекула белков. Благодаря своему внушительному размеру, ее стали называть макромолекулой. Аминокислотный состав белковых молекул обеспечивает разнообразие: в них входит до 20 аминокислот. Аминокислоты внутри белков включают аминогруппы, отвечающие за основные свойства (NH2). У карбоксильной группы отмечаются кислотные свойства (COOH). В составе аминокислот есть радикал.

В составе аминокислот первые две части идентичные. Нужную степень уникальности им придает радикал.

При взаимодействии аминокислот одна с другой образуется пептидная связь. Она возникает, когда аминогруппы и карбоксильная группа сближаются. В процессе происходит выделение воды. Формирование пептидной связи происходит между С и N.

Подводя итоги и принимая во внимание особенности строения молекулы белка как биополимера, можно утверждать, что:

Источник

ПОЛИМЕРЫ БИОЛОГИЧЕСКИЕ

П. б. являются высокомолекулярными соединениями (мол. масса Что такое полимеры в биологии. Смотреть фото Что такое полимеры в биологии. Смотреть картинку Что такое полимеры в биологии. Картинка про Что такое полимеры в биологии. Фото Что такое полимеры в биологииа. е. м)., к ним приложимы все закономерности, установленные для др. природных и синтетич. полимеров. Однако особенности хим. строения приводят к появлению у П. б. уникальной пространств, структуры, необычных физ., хим. и биол. свойств. По строению осн. цепи белки и НК однородны, подобно г о-мополимерам, у к-рых все мономерные звенья цепи идентичны. Но в последовательности боковых групп у П. б. закодирована генетич. информация организма, поэтому П. б. следует отнести к гетеропо-лимерам с заданной нерегулярной последователь-ностью мономерных звеньев. В структуре и свойствах П. б. отражены эти особенности их хим. строения. Пространств. строение П. б. с определ. структурой всей макромолекулы наз. конформацией; от конформации зависит взаимодействие П. б. с др. молекулами. Наиб. важные биол. ф-ции П. б. также определяются его конформацией и способностью изменять её при разл. взаимодействиях. В большинстве случаев взаимодействия П. б. являются специфически-м и, т. е. зависят от последовательности мономерных звеньев и локальной структуры (см. также Биофизика).

Что такое полимеры в биологии. Смотреть фото Что такое полимеры в биологии. Смотреть картинку Что такое полимеры в биологии. Картинка про Что такое полимеры в биологии. Фото Что такое полимеры в биологии

Что такое полимеры в биологии. Смотреть фото Что такое полимеры в биологии. Смотреть картинку Что такое полимеры в биологии. Картинка про Что такое полимеры в биологии. Фото Что такое полимеры в биологии

Что такое полимеры в биологии. Смотреть фото Что такое полимеры в биологии. Смотреть картинку Что такое полимеры в биологии. Картинка про Что такое полимеры в биологии. Фото Что такое полимеры в биологии

Рис. 1. Вращение пептидных групп.

Что такое полимеры в биологии. Смотреть фото Что такое полимеры в биологии. Смотреть картинку Что такое полимеры в биологии. Картинка про Что такое полимеры в биологии. Фото Что такое полимеры в биологии

b- изгибы, обеспечивающие поворот цепи примерно на 180 Что такое полимеры в биологии. Смотреть фото Что такое полимеры в биологии. Смотреть картинку Что такое полимеры в биологии. Картинка про Что такое полимеры в биологии. Фото Что такое полимеры в биологиипри образовании водородной связи. Возможны и др. типы спиралей. Все названные вторичные структуры характерны для глобулярных белков. Фибриллярный белок, из к-рого строятся длинные ориентиров. волокна, образует спирали иного вида. Вторичную (и третичную) структуру белка исследуют с помощью рентгеновского структурного анализа, позволяющего определить положение всех атомов в молекуле. Трудности здесь связаны с тем, что не каждый белок можно получить в виде кристаллов необходимого размера. Обычно структура белка в растворе мало отличается от структуры в кристалле, это связано с тем, что кристаллы белка содержат много воды. Однако в целом вопрос о соответствии структуры белка в растворе и в кристалле остаётся открытым. Содержаниеa- и b-структур сильно различается для разл. белков.

Исключение составляют мембранные белки, контактирующие с неполярной жирной внутр. частью липидной мембраны. На поверхности белка в этом случае находятся гидрофобные аминокислотные остатки.

Четвертичная структура. В тех случаях, когда глобулярный белок состоит из неск. субъединиц, не связанных между собой хим. связями, говорят о его четвертичной структуре. Связь субъединиц между собой осуществляется гл. обр. за счёт гидрофобных взаимодействий; при этом на контактирующих частях поверхности субъединиц расположены в осн. гидрофобные аминокислотные остатки. Иногда во взаимодействие между субъединицами глобулярных белков дают заметный вклад водородные связи. Др. тип четвертичных структур представляют белки, образующие нити цитоскелета. Цитоскелет заполняет пространство между ядром и внутр. поверхностью клеточной мембраны и выполняет ряд важных ф-ций, определяя форму клетки, её перемещение как целого, размещение и транспорт внутр. компонентов. Известны три типа таких нитей: микрофиламенты, микротрубочки и промежуточные филаменты. Подробно изучены первые два типа. Микрофиламенты собираются из молекул глобулярного белка актина, соединяясь в длинные цепи, образующие двойные спирали. Микротрубочки также собираются из глобулярных молекул белка тубулина и являются важным компонентом ми-тотич. аппарата (аппарата деления) клетки, образующим т. н. митотич. веретно и определяющим распределение генетич. материала между дочерними клетками.

Особый тип структур представляют фибриллярные белки актин и миозин, образующие упорядоченные структуры (саркомеры). Их скольжение друг относительно друга составляет основу механизма мышечного сокращения. В сложные пространств. структуры собираются белки оболочек вирусов, бактериофагов и таких структур, как рибосомы, нуклеосомы и др.

Нуклеиновые кислоты. Дезоксирибонуклеиновые кислоты (ДНК) и рибонуклеиновые кислоты (РНК) являются полинуклеотидами, т. е. П.

Источник

Биополимеры

Высокомолекулярные природные соединения, являющиеся структурной, основой всех живых организмов и играющие определяющую роль в процессах жизнедеятельности. К Б. относятся белки, нуклеиновые кислоты и полисахариды; известны также смешанные Б. — гликопротеиды, липопротеиды, гликолипиды и др.

Биологические функции Б. Нуклеиновые кислоты выполняют в клетке генетические функции. Последовательность мономерных звеньев (нуклеотидов) в дезоксирибонуклеиновой кислоте — ДНК (иногда в рибонуклеиновой кислоте — РНК) определяет (в форме генетического кода (См. Генетический код)) последовательность мономерных звеньев (аминокислотных остатков) во всех синтезируемых белках и, т. о., строение организма и протекающие в нём биохимические процессы. При делении каждой клетки обе дочерние клетки получают полный набор генов благодаря предшествующему самоудвоению (репликации (См. Репликация)) молекул ДНК. Генетическая информация с ДНК переносится на РНК, синтезируемую на ДНК как на матрице (Транскрипция). Эта т. н. информационная РНК (и-РНК) служит матрицей при синтезе белка, происходящем на особых органоидах клетки — рибосомах (Трансляция) при участии транспортной РНК (т-РНК). Биологическая изменчивость, необходимая для эволюции, осуществляется на молекулярном уровне за счёт изменений в ДНК (см. Мутация).

Белки выполняют в клетке ряд важнейших функций. Белки-ферменты осуществляют все химические реакции обмена веществ в клетке, проводя их в необходимой последовательности и с нужной скоростью. Белки мышц, жгутиков микробов, клеточных ворсинок и др. выполняют сократительную функцию, превращая химическую энергию в механическую работу и обеспечивая подвижность организма в целом или его частей. Белки — основной материал большинства клеточных структур (в т. ч. в специальных видах тканей) всех живых организмов, оболочек вирусов и фагов. Оболочки клеток являются липопротеидными мембранами, Рибосомы построены из белка и РНК и т.д. Структурная функция белков тесно связана с регуляцией поступления различных веществ в субклеточные органеллы (Активный транспорт ионов и др.) и с ферментативным катализом. Белки выполняют и регуляторные функции (Репрессоры), «запрещая» или «разрешая» проявление того или иного гена. В высших организмах имеются белки — переносчики тех или иных веществ (например, гемоглобин — переносчик молекулярного кислорода) и иммунные белки, защищающие организм от чужеродных веществ, проникающих в организм (см. Иммунитет). Полисахариды выполняют структурную, резервную и некоторые другие функции. Белки и нуклеиновые кислоты образуются в живых организмах путём матричного ферментативного Биосинтеза. Имеются теперь и биохимические системы внеклеточного синтеза Б. с помощью ферментов, выделенных из клеток. Разработаны методы химического синтеза белков и нуклеиновых кислот.

Первичная структура Б. Состав и последовательность мономерных звеньев Б. определяют их т. н. первичную структуру. Все нуклеиновые кислоты являются линейными гетерополимерами — сахарофосфатными цепочками, к звеньям которых присоединены боковые группы — азотистые основания: аденин и тимин (в РНК — урацил), гуанин и цитозин; в некоторых случаях (главным образом в т-РНК) боковые группы могут быть представлены другими азотистыми основаниями. Белки — также гетерополимеры; молекулы их образованы одной или несколькими полипептидными цепочками, соединёнными дисульфидными мостиками. В состав полипептидных цепей входит 20 видов различных мономерных звеньев — остатков аминокислот. Молекулярная масса ДНК варьирует от нескольких млн. (у мелких вирусов и бактериофагов) до ста млн. и более (у более крупных фагов); бактериальные клетки содержат по одной молекуле ДНК с молекулярной массой в несколько млрд. ДНК высших организмов может иметь и большую молекулярную массу, но измерить её пока не удалось из-за разрывов в молекулах ДНК, возникающих при их выделении. Рибосомные РНК имеют молекулярную массу от 600 тыс. до 1,1 млн., информационная (и-РНК) — от сотен тысяч до нескольких миллионов, транспортная (т-РНК) — около 25 тыс. Молекулярная масса белков варьирует от 10 тыс. (и менее) до миллионов; в последнем случае, однако, обычно возможно разделение белковой частицы на субъединицы, соединённые между собой слабыми, большей частью гидрофобными, связями.

Конформация, т. е. та или иная пространственная форма молекул Б., определяется их первичной структурой. В зависимости от химического строения и внешних условий молекулы Б. могут находиться либо в одной или в нескольких преимущественных конформациях (обычно встречающиеся в природных условиях нативные состояния Б.: например, глобулярное строение белков, двойная спираль ДНК), либо принимать многие более или менее равновероятные конформации. Белки делят по пространственной структуре на фибриллярные (нитевидные) и глобулярные; белки-ферменты, белки-переносчики, иммунные и некоторые другие имеют, как правило, глобулярную структуру. Для ряда белков — гемоглобин, миоглобин, лизоцим, рибонуклеаза и др. — эта структура установлена во всех деталях (с определением при помощи рентгеноструктурного анализа расположения каждого атома). Она определяется последовательностью аминокислотных остатков и образуется и поддерживается относительно слабыми взаимодействиями между мономерными звеньями полипептидных цепей в водно-солевом растворе (кулоновские и дипольные силы, водородные связи, гидрофобные взаимодействия), а также дисульфидными связями. Глобула белка формируется так, что большинство полярных гидрофильных аминокислотных остатков оказывается снаружи и контактирует с растворителем, а большинство неполярных (гидрофобных) остатков находится внутри и изолировано от взаимодействия с водой. Молекулы белка, обладающие избытком неполярных групп, когда часть из них оказывается на поверхности глобулы, образуют высшую, т. н. четвертичную структуру, при которой несколько глобул агрегируют, взаимодействуя между собой в основном неполярными участками (рис. 1). Пространственная структура каждого белка-фермента уникальна и обеспечивает необходимое для его функционирования расположение в пространстве всех звеньев Б., в особенности т. н. активных центров (См. Активные центры). В то же время она не абсолютно жестка и допускает необходимые в процессе функционирования (при взаимодействии с субстратами, ингибиторами и другими веществами) конформационные сдвиги и изменения.

Пространственная структура нативной ДНК образована двумя комплементарными нитями и представляет собой двойную спираль Крика — Уотсона; в ней противоположные азотистые основания попарно связаны водородными связями — аденин с тимином и гуанин с цитозином. Устойчивость двойной спирали обеспечивается, наряду с водородными связями, также гидрофобным взаимодействием между плоскими кольцами азотистых оснований, расположенных стопкой (стопочное взаимодействие, или стакинг). Нити РНК спирализованы лишь частично. ДНК вирусов, бактериофагов, бактерий, а также митохондриальная в ряде случаев представляет собой замкнутое кольцо; при этом наряду со спиралью Крика — Уотсона наблюдается ещё дополнительная т. н. сверхспирализация.

Денатурация Б. Нарушение нативной пространственной структуры Б. при различных воздействиях (повышение температуры, изменение концентрации металлов, кислотности раствора и др.) называется денатурацией и в ряде случаев обратимо (обратный процесс называется ренатурацией; рис. 2). Молекулы Б. — кооперативные системы: поведение их зависит от взаимодействий составляющих частей. Кооперативность молекул Б. определяется тем, что повороты отдельных звеньев из-за внутримолекулярных взаимодействии зависят от конформации соседних звеньев. В основе денатурации Б. при изменении внешних условий обычно лежат кооперативные конформационные превращения (например, переходы α-спираль — β-структура, α-спираль — клубок, β-структура — клубок для полипептидов, переход глобула — клубок для глобулярных белков, переход спираль — клубок для нуклеиновых кислот). В отличие от фазовых переходов (кипение жидкости, плавление кристалла), являющихся предельным случаем кооперативных процессов и происходящих скачком, кооперативные переходы Б. совершаются в конечном, хотя и сравнительно узком, интервале изменений внешних условий. В этом интервале одномерные, линейные молекулы (нуклеиновые кислоты, полипептиды), претерпевающие переход спираль — клубок, разбиваются на чередующиеся спиральные и клубкообразные участки (рис. 3).

Переход спираль — клубок в ДНК наблюдается при повышении температуры, добавлении в раствор кислоты или щёлочи, а также под влиянием других денатурирующих агентов. Этот переход в гомополинуклеотидах происходит при нагревании в интервале десятых долей °С, в фаговых и бактериальных ДНК — в интервале 3—5°С (рис. 3), в ДНК высших организмов — в интервале 10—15 °С. Чем выше гетерогенность ДНК, тем шире интервал перехода и меньше способность молекул ДНК к ренатурации. Переход спираль — клубок в различных видах РНК носит менее кооперативный характер (рис. 4) и происходит в более широком интервале температурных или других денатурирующих воздействий.

Б. — полимерные электролиты, их пространственная конформация и кооперативные переходы зависят как от степени ионизации молекулы, так и от концентрации ионов в среде, что влияет на электростатические взаимодействия как между отдельными частями молекулы, так и между Б. и растворителем.

Строение и биологические функции Б. Строение Б. — результат длительной эволюции на молекулярном уровне, вследствие чего эти молекулы идеально приспособлены к выполнению своих биологических задач. Между первичной структурой, конформацией Б. и конформационными переходами, с одной стороны, и их биологическими функциями — с другой, существуют тесные связи, исследование которых — одна из главных задач молекулярной биологии (См. Молекулярная биология). Установление таких связей в ДНК позволило понять основные механизмы репликации (См. Репликация), транскрипции (См. Транскрипция) и трансляции (См. Трансляция), а также Мутагенеза и некоторых других важнейших биологических процессов. Линейная структура молекулы ДНК обеспечивает запись генетической информации, её удвоение при матричном синтезе ДНК и получение (также путём матричного синтеза) многих копий с одного и того же гена, т. е. молекул и-РНК. Сильные ковалентные связи между нуклеотидами обеспечивают сохранность генетической информации при всех этих процессах. В то же время относительно слабые связи между нитями ДНК и возможность вращения вокруг простых химических связей обеспечивают гибкость и лабильность пространственной структуры, необходимые для разделения нитей при репликации и транскрипции, а также подвижность молекулы и-РНК, служащей матрицей при биосинтезе белка (трансляция). Исследование пространственной структуры и конформационных изменений белков-ферментов на разных стадиях ферментативной реакции при взаимодействии с субстратами и коферментами даёт возможность установить механизмы биокатализа и понять природу огромного ускорения химических реакций, осуществляемого ферментами.

Методы исследования Б. При исследовании строения и конформационных превращений Б. широко используются как очищенные природные Б., так и их синтетические модели, которые проще по строению и легче поддаются исследованию. Так, при изучении белков моделями служат гомогенные или гетерогенные полипептиды (с заданным или случайным чередованием аминокислотных остатков). Моделями ДНК и РНК являются соответствующие синтетические гомогенные или гетерогенные полинуклеотиды. К методам исследования Б. и их моделей относятся рентгеноструктурный анализ, электронная микроскопия, изучение спектров поглощения, оптической активности, люминесценции, методы светорассеяния и динамического двойного лучепреломления, седиментационный метод, вискозиметрия, физико-химические методы разделения и очистки и ряд др. Все методы, разработанные для изучения синтетических полимеров, применимы и к Б. При трактовке свойств Б. и их моделей, закономерностей их конформационных превращений используются также методы теоретической физики (статистической физики, термодинамики, квантовой механики и др.).

Лит.: Бреслер С. Е., Введение в молекулярную биологию, М.—Л., 1966; Волькенштейн М. В., Молекулы и жизнь, М., 1965; Уотсон Дж., Молекулярная биология гена, пер. с англ., М., 1967; физические методы исследования белков и нуклеиновых кислот, М., 1967.

Что такое полимеры в биологии. Смотреть фото Что такое полимеры в биологии. Смотреть картинку Что такое полимеры в биологии. Картинка про Что такое полимеры в биологии. Фото Что такое полимеры в биологии

Рис. 1. Образование четвертичной структуры глобулярных белков. Заштрихованы редко — полярные (гидрофильные) части белковых глобул, густо — неполярные (гидрофобные) области.

Что такое полимеры в биологии. Смотреть фото Что такое полимеры в биологии. Смотреть картинку Что такое полимеры в биологии. Картинка про Что такое полимеры в биологии. Фото Что такое полимеры в биологии

Рис. 2. Схема денатурации и ренатурации глобулярного белка (на примере фермента рибонуклеазы).

Что такое полимеры в биологии. Смотреть фото Что такое полимеры в биологии. Смотреть картинку Что такое полимеры в биологии. Картинка про Что такое полимеры в биологии. Фото Что такое полимеры в биологии

Рис. 3. Схема перехода спираль — клубок для ДНК: 1 — нативное состояние (вместо двойной спирали для простоты изображена «верёвочная лестница»); 2 — состояние ДНК в области перехода; 3 — денатурированное состояние (однонитевые клубки).

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *