Что такое полное и неполное горение
Процессы распространения пламени, неполное горение
Горение – это реакция, при которой происходит преобразование химической энергии топлива в тепло.
Горение бывает полным и неполным. Полное горение происходит при достаточном количестве кислорода. Нехватка его вызывает неполное сгорание, при котором выделяется меньшее количество тепла, чем при полном, и окись углерода (СО), отравляюще действующая на обслуживающий персонал, образовывается сажа, оседающая на поверхности нагрева котла и увеличивающая потери тепла, что приводит к перерасходу топлива и снижению к.п.д. котла, загрязнению атмосферы.
Для сгорания 1 м 3 метана нужно 10 м 3 воздуха, в котором находится 2 м 3 кислорода. Для полного сжигания природного газа воздух подают в топку с небольшим избытком. Отношение действительно израсходованного объёма воздуха Vд к теоретически необходимому Vт называется коэффициентом избытка воздуха a = Vд/Vт. Этот показатель зависит от конструкции газовой горелки и топки: чем они совершеннее тем меньше a. Необходимо следить, чтобы коэффициент излишка воздуха не был меньше 1, так как это приводит к неполному сгоранию газа. Увеличение коэффициента избытка воздуха снижает к.п.д. котлоагрегата.
Полноту сгорания топлива можно определить с помощью газоанализатора и визуально – по цвету и характеру пламени: прозрачно-голубоватое – сгорание полное;
красный или жёлтый – сгорание неполное.
Горение регулируется увеличением подачи воздуха в топку котла или уменьшением подачи газа. В этом процессе используется первичный (смешивается с газом в горелке – до горения) и вторичный (соединяется с газом или газовоздушной смесью в топке котла в процессе горения) воздух.
В котлах, оборудованных диффузионными горелками (без принудительной подачи воздуха), вторичный воздух под действием разряжения поступает в топку через поддувочные дверцы.
В котлах, оборудованных инжекционными горелками: первичный воздух поступает в горелку за счёт инжекции и регулируется регулировочной шайбой, а вторичный – через поддувочные дверцы.
В котлах со смесительными горелками первичный и вторичный воздух подаётся в горелку вентилятором и регулируется воздушными задвижками.
Нарушение соотношения между скоростью газовоздушной смеси на выходе из горелки и скоростью распространения пламени приводит к отрыву или проскакиванию пламени на горелках.
Если скорость газовоздушной смеси на выходе из горелки больше скорости распространения пламени – отрыв, а если меньше – проскок.
При отрыве и проскоке пламени обслуживающий персонал должен погасить котёл, провентилировать топку и газоходы и снова разжечь котёл.
Разница между полным сгоранием и неполным сгоранием
Содержание:
Ключевые области сформированы
1. Что такое полное сгорание
— определение, свойства, примеры
2. Что такое неполное сгорание?
— определение, свойства, примеры
3. Каковы сходства между полным сгоранием и неполным сгоранием
— Краткое описание общих черт
4. В чем разница между полным сгоранием и неполным сгоранием
— Сравнение основных различий
Ключевые слова: двуокись углерода, окись углерода, горение, экзотермическая реакция, пламя, топливо, окисление, окислитель.
Что такое полное сгорание
Углеводород + Кислород → Углекислый газ + Вода
Для топлива, такого как этанол, полное сгорание может быть задано как
Полные реакции сгорания приводят к образованию оксидов углерода, серы и других элементов в топливе. Углерод окисляется до двуокиси углерода, тогда как сера окисляется до двуокиси серы. Полное сгорание приводит к меньшему количеству загрязнителей воздуха. Полное сгорание обычно характеризуется синим пламенем.
Рисунок 01: Голубое пламя создается при полном сгорании.
Поскольку атмосфера состоит только из 21% кислорода по объему, для полного сгорания требуется много воздуха. Несмотря на то, что количество побочных продуктов, образующихся в результате полного сгорания, низкое, оно все же добавляет неблагоприятные выбросы. Например, углекислый газ является парниковым газом, который вызывает глобальное потепление.
Что такое неполное сгорание
Углеводород + Кислород → Угарный газ + Углерод + Вода
Побочные продукты могут варьироваться в зависимости от количества кислорода, который участвует в сгорании. Например, иногда он дает только окись углерода или сажу. Тем не менее, он обычно дает смесь угарного газа и сажи вместе с водой.
Например, неполное сгорание этилена может привести к образованию углерода и воды в качестве побочных продуктов.
Неполное сгорание этанола может образовывать окись углерода и углеродную пыль вместе с водой.
Рисунок 2: Желтое пламя возникает при неполном сгорании.
Неполное сгорание характеризуется желтым пламенем. Поскольку количество энергии, выделяющейся при неполном сгорании, мало, это нежелательно. Более того, окись углерода, образующаяся в результате этого сжигания, является загрязнителем воздуха и смертельна для человеческого организма. Угарный газ может связываться с гемоглобином в нашей крови и ограничивать транспорт кислорода в организме.
Сходства между полным сгоранием и неполным сгоранием
Разница между полным сгоранием и неполным сгоранием
Определение
Энергия выпущена
Полное сгорание: Полное сгорание производит большое количество энергии.
Неполное сгорание: Неполное сгорание производит низкое количество энергии.
Количество вовлеченного кислорода
Полное сгорание: Полное сгорание происходит там, где присутствует достаточное количество кислорода.
Неполное сгорание: Неполное сгорание происходит там, где не хватает кислорода.
Субпродукты
Полное сгорание: Полное сгорание производит углекислый газ и воду как главные побочные продукты.
Неполное сгорание: Неполное сгорание приводит к образованию окиси углерода, угольной пыли и воды в качестве основных побочных продуктов.
пламя
Полное сгорание: Полное сгорание создает синее пламя.
Неполное сгорание: Неполное сгорание создает пламя желтого цвета.
Влияние на окружающую среду
Полное сгорание: Полное сгорание производит углекислый газ, который может вызвать глобальное потепление.
Неполное сгорание: При неполном сгорании образуется окись углерода, которая является загрязнителем воздуха.
Заключение
Рекомендации:
1. «GCSE Bitesize: Горение». BBC. BBC, н.д. Web.
Основы теплотехники
Топливо и его горение
Топливом называют горючие вещества, применяемые для получения теплоты (тепловой энергии) при их сжигании. Под сжиганием обычно подразумевают окисление горючих веществ кислородом воздуха.
Промышленным топливом считаются не все горючие вещества, а лишь те, которые удовлетворяют следующим требованиям:
В качестве примера естественных твердых топлив можно привести ископаемый уголь, торф, горючие сланцы, дрова, отходы сельскохозяйственного производства. Искусственное твердое топливо – кокс, полукокс, пылевидное топливо, брикеты, древесный уголь.
К естественному жидкому топливу относится нефть, а к искусственному – получаемые из нефти продукты – бензин, керосин, дизельное топливо, газойль, мазут, нефтяное и котельное топливо.
По методу добычи и потребления различают местное и привозное топливо.
Составные части топлива
Топливо состоит из органической и минеральной частей.
Органическую часть топлива составляют следующие химические элементы: углерод (С), водород (Н2), кислород (О2), азот (N2) и сера (S). Топливо может состоять из смеси этих элементов или только их части.
Так, органическую массу кокса или древесного угля в основном составляет углерод, а нефтепродуктов и газового топлива – углерод, водород и кислород.
Наиболее ценные из перечисленных элементов топлива – углерод и водород.
Кислород и азот являются внутренним балластом топлива, поскольку они не горят. Сера является нежелательным компонентом топлива, несмотря на то, что сгорая, она выделяет теплоту. При сгорании этого элемента образуется сернистый газ и серная кислота, пагубно влияющие на экологию и вызывающие сильную коррозию металлов.
Минеральная часть топлива составляют вода и минеральные примеси, которые являются внешней балластной частью (внешним балластом) топлива. Содержание балластной части в топливе очень нежелательно, поскольку увеличивая массу и объем топлива, она уменьшает его тепловую ценность.
Минеральные составляющие после сжигания образуют твердый остаток – золу.
Сущность процесса горения
Горение может быть полным и неполным.
Полным горением называют процесс окисления горючих элементов топлива кислородом, при котором выделяются продукты, не способные гореть в дальнейшем.
Неполное сгорание топлива сопровождается выделением продуктов горения, которые в дальнейшем могут воспламеняться и сгорать повторно. Так, при полном сгорании углерода выделяется углекислый газ СО2, который в дальнейшем гореть не способен.
Однако, если углерод сгорает при недостаточном количестве кислорода, то продуктом его окисления является углекислота СО, которая может загореться при соответствующих условиях. При этом неполное горение сопровождается выделением значительно меньшего количества теплоты, т. е. считается нежелательным явлением. Для того чтобы процесс горения был полным, необходимо обеспечить подачу достаточного количества воздуха (содержащего кислород) в зону горения.
На практике, сжигая топливо, стараются придерживаться определенного баланса между количеством воздуха и топлива, поскольку избыток воздуха сопровождается потерями теплоты на его подогрев.
Количество воздуха, необходимое для полного сгорания топлива
Количество воздуха, необходимое для полного сгорания топлива, определить несложно, если известно процентное содержание в топливе основных горючих элементов – углерода, водорода, серы и кислорода.
Так как атомная масса углерода 12, а кислорода – 16, то для получения углекислого газа СО2 необходимо 12 частей углерода соединить с 32 частями кислорода, т. е. на одну массовую долю углерода должно приходиться 2,67 частей кислорода.
Зная атомную массу водорода и серы, а также формулы продуктов их полного окисления, можно аналогично рассчитать необходимое количество кислорода для сжигания 1 части любого горючего элемента.
Теплота сгорания топлива
Например, для твердого топлива:
Qв = 339С + 1250Н – 108,85(О – S) ;
для жидкого топлива:
Условное топливо
Температура горения топлива
Следует различать теоретическую и действительную температуру горения.
Теоретической температурой горения называют максимальную температуру, которую способно давать данное топливо при полном сгорании с теоретически необходимым количеством воздуха. Ее определяют опытным путем, или аналитически, используя формулы, в которых учитывается массовая доля и теплотворная способность каждого горючего элемента в топливе. При этом теоретическая температура горения будет равна отношению теплоты, полученной от сгорания единицы топлива, к сумме произведений массовых составляющих горючих элементов на их теплотворную способность.
Теоретически определенная температура горения топлива всегда выше действительной, поскольку при расчетах не учитывается ее понижение из-за потерь теплоты на лучеиспускание, избыток воздуха при сжигании, неполное сгорание топлива и т. п.
Способы сжигания топлива
В котельной практике известны слоевой, факельный и вихревой способы сжигания топлива.
Слоевой способ сжигания топлива (рис. 1а) заключается в следующем. Загруженное в топку топливо распределяется ровным слоем по колосниковой решетке, через которую проходит воздух, встречающий на своем пути неподвижный или движущийся слой горящего топлива.
При взаимодействии с топливом воздух превращается в газовоздушный поток, который, пройдя через топочное пространство, выходит наружу. Для предотвращения уноса топлива необходимо, чтобы вес частичек топлива был больше силы газовоздушного потока. Однако, при слишком больших размерах кусков топлива замедляется процесс горения и уменьшается количество теплоты, получаемой в единицу времени, поэтому оптимальный размер кусков – 20-30 мм.
Основным достоинством слоевого способа сжигания твердого топлива является наличие на колосниках запаса горящего топлива, обеспечивающего устойчивость протекания процесса. Существенным недостатком этого способа является необходимость использования твердого топлива с оптимальными размерами кусков, что требует предварительной их сортировки и дробления.
Существенный недостаток этого способа – малая скорость обтекания частиц топлива газовоздушным потоком, которая не позволяет значительно увеличить интенсивность горения, а также большая чувствительность к изменению режима работы, поскольку в топочном пространстве постоянно находится небольшое количество (запас) топлива. Поэтому регулирование процесса возможно при одновременном изменении подачи топлива и воздуха.
Вихревой способ сжигания топлива (рис. 1в) заключается в создании в топочном пространстве вихря, благодаря которому топливо, поступающее в топку, подхватывается газовоздушным потоком и движется вместе с ним по определенной траектории до полного выгорания горючих элементов из горючей массы.
Вихревое движение топлива в газовоздушном потоке способствует более длительному нахождению топлива в топочном пространстве, что создает условия для полного сгорания частиц размером 3-5 мм и для получения более устойчивого горения, чем при факельном способе сжигания.
Скачать теоретические вопросы к экзаменационным билетам
по учебной дисциплине «Основы гидравлики и теплотехники»
(в формате Word, размер файла 68 кБ)
Скачать рабочую программу
по учебной дисциплине «Основы гидравлики и теплотехники» (в формате Word):
Скачать календарно-тематический план
по учебной дисциплине «Основы гидравлики и теплотехники» (в формате Word):
Полное и неполное сгорание газа
Природный газ, добываемый из западносибирских месторождений, практически полностью (до 99 %) состоит из метана СН4. Воздух состоит из кислорода (21%) и азота и незначительного количества других негорючих газов (79%). Упрощенно реакция полного сгорания метана выглядит следующим образом:
СН4 + 2О2 + 7,52 N2 = СО2 + 2Н20 + 7,52 N2
В результате реакции горения при полном сгорании образуется углекислый газ CO2, и пары воды H2O вещества, не оказывающие вредного влияния на окружающую среду и человека. Азот N, в реакции не участвует. Для полного сгорания 1 м³ метана теоретически необходимо 9,52 м³ воздуха. Для практических целей считается, что для полного сгорания 1 м³ природного газа необходимо не менее 10 м³ воздуха. Однако если подавать только теоретически необходимое количество воздуха, то добиться полного сгорания топлива невозможно: трудно так перемешать газ с воздухом, чтобы к каждой его молекуле было подведено необходимое количество молекул кислорода. На практике на горение подается воздуха больше, чем теоретически необходимо. Величина избытка воздуха определяется коэффициентом избытка воздуха а, который показывает отношение количества воздуха, фактически израсходованного на горение, к теоретически необходимому количеству:
где V количество воздуха, фактически израсходованного на горение, м³;
V – теоретически необходимое количество воздуха, м³.
Коэффициент избытка воздуха является важнейшим показателем, характеризующим качество сжигания газа горелкой. Чем меньше а, тем меньше теплоты унесут уходящие газы, тем выше коэффициент полезного действия газоиспользующего оборудования. Но сжигание газа с недостаточным избытком воздуха приводит к нехватке воздуха, что может стать причиной неполного сгорания. Для современных горелок с полным предварительным смешением газа с воздухом коэффициент избытка воздуха лежит в пределах 1,05 – 1,1» то есть на горение расходуется воздуха на 5 – 10% больше от теоретически необходимого.
Неполное сгорание происходит:
Качество сжигания газа можно контролировать по цвету пламени. Некачественное сжигание газа характеризуется желтым коптящим пламенем. При полном сжигании газа пламя представляет собой короткий факел голубовато-фиолетового цвета с высокой температурой. Для контроля работы промышленных горелок применяют специальные приборы, анализирующие состав дымовых газов и температуру продуктов сжигания. В настоящее время при наладке отдельных типов бытового газоиспользующего оборудования также возможно регулирование процесса горения по температуре и анализу уходящих газов.