Что такое полный куб в алгебре
Куб (алгебра)
Кубом числа называется результат умножения числа на само себя трижды (возведения числа в степень 3). Куб величины обозначается так:
.
|
|
Сумма чисел в k-ой (k=1,2,…) выделенной области первой таблицы:
А сумма чисел в k-ой (k=1,2,…) выделенной области второй таблицы, представляющих собой арифметическую прогрессию:
Суммируя по всем выделенным областям первой таблицы, получаем такое же число, как и суммируя по всем выделенным областям второй таблицы:
Геометрический смысл
Куб числа равен объёму куба с длиной ребра, равной этому числу.
Некоторые свойства
См. также
Примечания
Полезное
Смотреть что такое «Куб (алгебра)» в других словарях:
Квадрат (алгебра) — У этого термина существуют и другие значения, см. Квадрат (значения). y=x², при целых значениях x на отрезке от 1 до 25 Квадратом числа называется результат умножения числа на себя (воз … Википедия
Список статей по математической логике — Это служебный список статей, созданный для координации работ по развитию темы. Данное предупреждение не ус … Википедия
Арифметика — Ганс Себальд Бехам. Арифметика. XVI век Арифметика (др. греч. ἀ … Википедия
Математика гармонии — Эта статья предлагается к удалению. Пояснение причин и соответствующее обсуждение вы можете найти на странице Википедия:К удалению/22 ноября 2012. Пока процесс обсуждени … Википедия
Параллелепипед — (от греч. παράλλος параллельный и греч. επιπεδον плоскость) призма, основанием которо … Википедия
МНОГОГРАННИК — часть пространства, ограниченная совокупностью конечного числа плоских многоугольников (см. ГЕОМЕТРИЯ), соединенных таким образом, что каждая сторона любого многоугольника является стороной ровно одного другого многоугольника (называемого… … Энциклопедия Кольера
8 (число) — 8 восемь 5 · 6 · 7 · 8 · 9 · 10 · 11 Факторизация: 2×2×2 Римская запись: VIII Двоичное: 1000 Восьмеричное: 10 Шестнадцатеричное: 8 … Википедия
Тетраэдр — (греч. τετραεδρον четырёхгранник) простейший многогранник, гранями которого являются четыре треугольника. У тетраэдра 4 грани, 4 вершины и 6 рёбер. Содержание 1 Связанные определения … Википедия
Карта Карно — Рис. 1 Пример Куба Карно Куб Карно графический способ минимизации переключательных (булевых) функций, обеспечивающий относительную простоту работы с большими выражениями и устранение потенциальных гонок. Представляет собой операции попарного… … Википедия
Восемь — 8 восемь 5 · 6 · 7 · 8 · 9 · 10 · 11 Факторизация: 2×2×2 Римская запись: VIII Двоичное: 1000 Восьмеричное: 10 Шестнадцатеричное … Википедия
Таблица кубов и квадратов, как состовлять и найти
Как появилось понятие куб числа?
Древнегреческие математики оперировали так называемыми фигурными числами – числами, которые можно представить в виде фигуры. Выделялись, например:
Последовательность кубов натуральных чисел выглядит так
Полезно будет запомнить, хотя бы те, что меньше тысячи. Особенно мне нравится число 729. Посмотрите:
Еще несколько интересных свойств кубов чисел:
Вот так, к слову выглядит формула вычисления суммы первых кубов чисел:
Степень с натуральным показателем
Проще всего определяется степень с натуральным (то есть целым положительным) показателем.
Выражения «возвести в квадрат» и «возвести в куб» нам давно знакомы.
Возвести число в квадрат — значит умножить его само на себя.
Возвести число в куб — значит умножить его само на себя три раза.
Возвести число в натуральную степень — значит умножить его само на себя раз:
Теория
Куб числа – это результат умножения числа само на себя три раза. Операция вычисления куба числа – это частный случай возведения числа в степень, в данном случае в втретью:
Данное выражение читается: «возвести в куб число 6» или «6 в кубе».
Возвести в куб онлайн
Как возвести число в куб онлайн!? Введите нужное число, которое требуется возвести в куб и нажмите возвести в куб. Справа от равно появится число, которое возвели в куб
Ну и далее пробежимся по нескольким поисковым запросам, которые так или иначе вы задаете в строке поиска!
Дополнительная информация
Квадратом числа называют произведение двух одинаковых множителей.
Мы уже пробовали находить квадраты первого десятка натуральных чисел.
Возводить двузначные числа, трехзначные и т.д. числа немного сложнее, главное хорошо знать и помнить таблицу умножения чисел.
Существует способ быстрого возведения в квадрат двухзначных чисел, которые оканчиваются на цифру 5.
1) Первую цифру числа, возводимого в квадрат, необходимо умножить на сумму этого числа и единицы.
2) Записать полученное число- это будут первые цифры ответа (с этих цифр начинается ответ).
3) Ответ всегда будет заканчиваться на 25 (т.е. в конце ответа всегда будет стоять число 25).
4) Приписываем к числу, полученному в п 2, число 25, получаем ответ.
Рассмотрим поясняющий пример.
Найдем квадрат 65.
65 2 = 65 ∙ 65
6 ∙ (6 + 1) = 6 ∙ 7 = 42
Запишем число 42 и припишем к нему число 25.
65 2 = 4225
Проверим: Так как квадрат числа- это произведение двух одинаковых множителей 65 2 = 65 ∙ 65, то
65 2 = 65 ∙ 65 = 4225
Получили все тот же ответ: 65 2 = 4225
Таблица кубов
Таблица кубов или таблица возведения чисел в третью степень. Интерактивная таблица кубов и изображения таблицы в высоком качестве.
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |
---|---|---|---|---|---|---|---|---|---|---|
0 | 0 | 1 | 8 | 27 | 64 | 125 | 216 | 343 | 512 | 729 |
1 | 1000 | 1331 | 1728 | 2197 | 2744 | 3375 | 4096 | 4913 | 5832 | 6859 |
2 | 8000 | 9261 | 10648 | 12167 | 13824 | 15625 | 17576 | 19683 | 21952 | 24389 |
3 | 27000 | 29791 | 32768 | 35937 | 39304 | 42875 | 46656 | 50653 | 54872 | 59319 |
4 | 64000 | 68921 | 74088 | 79507 | 85184 | 91125 | 97336 | 103823 | 110592 | 117649 |
5 | 125000 | 132651 | 140608 | 148877 | 157464 | 166375 | 175616 | 185193 | 195112 | 205379 |
6 | 216000 | 226981 | 238328 | 250047 | 262144 | 274625 | 287496 | 300763 | 314432 | 328509 |
7 | 343000 | 357911 | 373248 | 389017 | 405224 | 421875 | 438976 | 456533 | 474552 | 493039 |
8 | 512000 | 531441 | 551368 | 571787 | 592704 | 614125 | 636056 | 658503 | 681472 | 704969 |
9 | 729000 | 753571 | 778688 | 804357 | 830584 | 857375 | 884736 | 912673 | 941192 | 970299 |
Таблица кубов
Теория
Куб числа – это результат умножения числа само на себя три раза. Операция вычисления куба числа – это частный случай возведения числа в степень, в данном случае в втретью:
Данное выражение читается: «возвести в куб число 6» или «6 в кубе».
Скачать таблицу кубов
Что такое полный куб в алгебре
Куб или правильный гексаэдр — правильный многогранник, каждая грань которого представляет собой квадрат. Частный случай параллелепипеда и призмы.
В различных дисциплинах используются значения термина, имеющие отношения к тем или иным свойствам геометрического прототипа. В частности, в аналитике (OLAP-анализ) применяются так называемые аналитические многомерные кубы, позволяющие в наглядном виде сопоставить данные из различных таблиц.
Содержание
Свойства куба
Диагональю куба называют отрезок, соединяющий две вершины, симметричные относительно центра куба. Диагональ куба находится по формуле , где d — диагональ, а — ребро куба.
Тела кубической формы
В микромире
Примечания
См. также
Полезное
Смотреть что такое «Куб» в других словарях:
куб — куб, а, мн. ч. к уб ы, к уб ов … Русский орфографический словарь
куб — 1. КУБ, а; кубы; м. [греч. kybos] 1. Геометрическое тело правильный шестигранник, все грани которого квадраты; предмет, имеющий форму такого шестигранника. Начертить куб. Композиция из гипсовых кубов и призм. Мраморный куб памятника. 2. Разг. =… … Энциклопедический словарь
КУБ — ОАО АКБ «Кузбассугольбанк» http://cbank.ru/ организация, фин., энерг. КУБ кнопочный пост управления взрывобезопасный КУБ ОАО «Кредит Урал банк» http://www.credit … Словарь сокращений и аббревиатур
куб — сущ., м., употр. сравн. часто Морфология: (нет) чего? куба, чему? кубу, (вижу) что? куб, чем? кубом, о чём? о кубе; мн. что? кубы и кубы, (нет) чего? кубов и кубов, чему? кубам и кубам, (вижу) что? кубы и кубы, чем? кубами и кубами, о чём? о… … Толковый словарь Дмитриева
кубіт — кубі/т, род. кубіта, мн. кубіти, род. мн. кубітів одиниця інформації, що закодована в квантовій системі, фізичний носій інформації, що може перебуватив станах |0> та |1> і будь якій суперпозиції цих станів. • Стан кубіта може змінюватись… … Фізико-технічний словник-мінімум
КУБ — 1. КУБ1, куба, муж. (греч. kybos). 1. Правильный шестигранник, все грани которого (квадраты (мат.). Начертить куб. 2. Мера объема, равная кубическому метру. Куб дров. 3. Сосуд для перегонки или кипячения жилкостей в форме шара или цилиндра с… … Толковый словарь Ушакова
КУБ — 1. КУБ1, куба, муж. (греч. kybos). 1. Правильный шестигранник, все грани которого (квадраты (мат.). Начертить куб. 2. Мера объема, равная кубическому метру. Куб дров. 3. Сосуд для перегонки или кипячения жилкостей в форме шара или цилиндра с… … Толковый словарь Ушакова
КУБ — (от латинского cubus, от греческого kybos игральная кость), 1) один из 5 типов правильных многогранников, имеющий гранями квадраты, 12 ребер, 8 вершин, в каждой вершине сходятся 3 ребра. Куб иногда называют гексаэдром. 2) Третья степень а3 числа… … Современная энциклопедия
КУБ — КУБ, в математике результат двукратного умножения числа на самого себя. Таким образом, кубом числа а является произведение а х а х а, что записывается как а3. Куб называют также третьей степенью числа. Кубом именуется правильная шестисторонняя… … Научно-технический энциклопедический словарь
Куб (алгебра)
0 3 = | 0 | ||||||||||
1 3 = | 1 | 11 3 = | 1331 | 21 3 = | 9261 | 31 3 = | 29 791 | 41 3 = | 68 921 | 51 3 = | 132 651 |
2 3 = | 8 | 12 3 = | 1728 | 22 3 = | 10 648 | 32 3 = | 32 768 | 42 3 = | 74 088 | 52 3 = | 140 608 |
3 3 = | 27 | 13 3 = | 2197 | 23 3 = | 12 167 | 33 3 = | 35 937 | 43 3 = | 79 507 | 53 3 = | 148 877 |
4 3 = | 64 | 14 3 = | 2744 | 24 3 = | 13 824 | 34 3 = | 39 304 | 44 3 = | 85 184 | 54 3 = | 157 464 |
5 3 = | 125 | 15 3 = | 3375 | 25 3 = | 15 625 | 35 3 = | 42 875 | 45 3 = | 91 125 | 55 3 = | 166 375 |
6 3 = | 216 | 16 3 = | 4096 | 26 3 = | 17 576 | 36 3 = | 46 656 | 46 3 = | 97 336 | 56 3 = | 175 616 |
7 3 = | 343 | 17 3 = | 4913 | 27 3 = | 19 683 | 37 3 = | 50 653 | 47 3 = | 103 823 | 57 3 = | 185 193 |
8 3 = | 512 | 18 3 = | 5832 | 28 3 = | 21 952 | 38 3 = | 54 872 | 48 3 = | 110 592 | 58 3 = | 195 112 |
9 3 = | 729 | 19 3 = | 6859 | 29 3 = | 24 389 | 39 3 = | 59 319 | 49 3 = | 117 649 | 59 3 = | 205 379 |
10 3 = | 1000 | 20 3 = | 8000 | 30 3 = | 27 000 | 40 3 = | 64 000 | 50 3 = | 125 000 | 60 3 = | 216 000 |
Разницу между кубиками последовательных целых чисел можно выразить следующим образом:
База десять
Последние цифры каждой третьей степени:
0 | 1 | 8 | 7 | 4 | 5 | 6 | 3 | 2 | 9 |
Проблема Варинга для кубиков
Каждое положительное целое число можно записать как сумму девяти (или меньше) положительных кубиков. Этот верхний предел в девять кубиков не может быть уменьшен, потому что, например, 23 не может быть записано как сумма менее девяти положительных кубиков:
Суммы трех кубиков
Примитивные решения для n от 1 до 100 | ||||||||
п | Икс | у | z | п | Икс | у | z | |
---|---|---|---|---|---|---|---|---|
1 | 9 | 10 | −12 | 39 | 117 367 | 134 476 | −159 380 | |
2 | 1 214 928 | 3 480 205 | −3 528 875 | 42 | 12 602 123 297 335 631 | 80 435 758 145 817 515 | −80 538 738 812 075 974 | |
3 | 1 | 1 | 1 | 43 год | 2 | 2 | 3 | |
6 | −1 | −1 | 2 | 44 год | −5 | −7 | 8 | |
7 | 0 | −1 | 2 | 45 | 2 | −3 | 4 | |
8 | 9 | 15 | −16 | 46 | −2 | 3 | 3 | |
9 | 0 | 1 | 2 | 47 | 6 | 7 | −8 | |
10 | 1 | 1 | 2 | 48 | −23 | −26 | 31 год | |
11 | −2 | −2 | 3 | 51 | 602 | 659 | −796 | |
12 | 7 | 10 | −11 | 52 | 23 961 292 454 | 60 702 901 317 | −61 922 712 865 | |
15 | −1 | 2 | 2 | 53 | −1 | 3 | 3 | |
16 | −511 | −1609 | 1626 | 54 | −7 | −11 | 12 | |
17 | 1 | 2 | 2 | 55 | 1 | 3 | 3 | |
18 | −1 | −2 | 3 | 56 | −11 | −21 | 22 | |
19 | 0 | −2 | 3 | 57 год | 1 | −2 | 4 | |
20 | 1 | −2 | 3 | 60 | −1 | −4 | 5 | |
21 год | −11 | −14 | 16 | 61 | 0 | −4 | 5 | |
24 | −2 901 096 694 | −15 550 555 555 | 15 584 139 827 | 62 | 2 | 3 | 3 | |
25 | −1 | −1 | 3 | 63 | 0 | −1 | 4 | |
26 год | 0 | −1 | 3 | 64 | −3 | −5 | 6 | |
27 | −4 | −5 | 6 | 65 | 0 | 1 | 4 | |
28 год | 0 | 1 | 3 | 66 | 1 | 1 | 4 | |
29 | 1 | 1 | 3 | 69 | 2 | −4 | 5 | |
30 | −283 059 965 | −2 218 888 517 | 2 220 422 932 | 70 | 11 | 20 | −21 | |
33 | −2 736 111 468 807 040 | −8 778 405 442 862 239 | 8 866 128 975 287 528 | 71 | −1 | 2 | 4 | |
34 | −1 | 2 | 3 | 72 | 7 | 9 | −10 | |
35 год | 0 | 2 | 3 | 73 | 1 | 2 | 4 | |
36 | 1 | 2 | 3 | 74 | 66 229 832 190 556 | 283 450 105 697 727 | −284 650 292 555 885 | |
37 | 0 | −3 | 4 | 75 | 4 381 159 | 435 203 083 | −435 203 231 | |
38 | 1 | −3 | 4 | 78 | 26 год | 53 | −55 |
Последняя теорема Ферма для кубов
Сумма первых n кубиков
Сумма первых n кубиков равна квадрату n- го числа треугольника :
Доказательства. Чарльз Уитстон ( 1854 ) дает особенно простой вывод, расширяя каждый куб в сумме до набора последовательных нечетных чисел. Он начинает с того, что дает личность
Эта идентичность связана с треугольными числами. Т п <\ displaystyle T_ следующим образом:
получаем следующий вывод:
В более поздней математической литературе Stein (1971) Ошибка harvtxt: цель отсутствует: CITEREFStein1971 ( справка ) использует интерпретацию этих чисел как прямоугольник, чтобы сформировать геометрическое доказательство идентичности (см. также Benjamin, Quinn & Wurtz 2006 ошибка harvnb: нет цели: CITEREFBenjaminQuinnWurtz2006 ( помощь ) ); он отмечает, что это можно также легко (но малоинформативно) доказать по индукции, и утверждает, что Теплиц (1963) Ошибка harvtxt: цель отсутствует: CITEREFToeplitz1963 ( справка ) дает «интересное старинное арабское доказательство». Каним (2004) Ошибка harvtxt: нет цели: CITEREFKanim2004 ( справка ) предоставляет чисто визуальное доказательство, Benjamin & Orrison (2002) Ошибка harvtxt: цель отсутствует: CITEREFBenjaminOrrison2002 ( справка ) предоставить два дополнительных доказательства, и Nelsen (1993) Ошибка harvtxt: цель отсутствует: CITEREFNelsen1993 ( справка ) дает семь геометрических доказательств.
Например, сумма первых 5 кубиков равна квадрату 5-го треугольного числа,
Аналогичный результат может быть получен для суммы первых y нечетных кубов,
Сумма кубиков чисел в арифметической прогрессии
Кубики как суммы последовательных нечетных целых чисел
Каждое положительное рациональное число является суммой трех положительных рациональных кубов [9], и есть рациональные числа, которые не являются суммой двух рациональных кубов. [10]
Объемы подобных евклидовых тел связаны как кубы их линейных размеров.
- Что такое вятичи в древней руси
- Что такое байпас на батарее отопления