Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅

ΠŸΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚

ГСомСтричСски Ρ‚Π°ΠΊΠΎΠ΅ число ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ прСдставлСно Π² Π²ΠΈΠ΄Π΅ ΠΏΠ»ΠΎΡ‰Π°Π΄ΠΈ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π° с цСлочислСнной стороной.

НапримСр, 9 β€” это ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ΅ число, Ρ‚Π°ΠΊ ΠΊΠ°ΠΊ ΠΎΠ½ΠΎ ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ записано Π² Π²ΠΈΠ΄Π΅ 3 Γ— 3 (ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ прСдставлСно Π² Π²ΠΈΠ΄Π΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π° 3 Γ— 3 Ρ‚ΠΎΡ‡ΠΊΠΈ).

БвязанныС понятия

Π’ матСматичСском Π°Π½Π°Π»ΠΈΠ·Π΅, ΠΈ ΠΏΡ€ΠΈΠ»Π΅Π³Π°ΡŽΡ‰ΠΈΡ… Ρ€Π°Π·Π΄Π΅Π»Π°Ρ… ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠΈ, ΠΎΠ³Ρ€Π°Π½ΠΈΡ‡Π΅Π½Π½ΠΎΠ΅ мноТСство β€” мноТСство, ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ΅ Π² ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π½ΠΎΠΌ смыслС ΠΈΠΌΠ΅Π΅Ρ‚ ΠΊΠΎΠ½Π΅Ρ‡Π½Ρ‹ΠΉ Ρ€Π°Π·ΠΌΠ΅Ρ€. Π‘Π°Π·ΠΎΠ²Ρ‹ΠΌ являСтся понятиС ограничСнности числового мноТСства, ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ΅ обобщаСтся Π½Π° случай ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ»ΡŒΠ½ΠΎΠ³ΠΎ мСтричСского пространства, Π° Ρ‚Π°ΠΊΠΆΠ΅ Π½Π° случай ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ»ΡŒΠ½ΠΎΠ³ΠΎ частично упорядочСнного мноТСства. ΠŸΠΎΠ½ΡΡ‚ΠΈΠ΅ ограничСнности мноТСства Π½Π΅ ΠΈΠΌΠ΅Π΅Ρ‚ смысла Π² ΠΎΠ±Ρ‰ΠΈΡ… топологичСских пространствах, Π±Π΅Π· ΠΌΠ΅Ρ‚Ρ€ΠΈΠΊΠΈ.

Упоминания Π² Π»ΠΈΡ‚Π΅Ρ€Π°Ρ‚ΡƒΡ€Π΅

БвязанныС понятия (ΠΏΡ€ΠΎΠ΄ΠΎΠ»ΠΆΠ΅Π½ΠΈΠ΅)

Π’ ΠΎΠ±Ρ‰Π΅ΠΉ Π°Π»Π³Π΅Π±Ρ€Π΅, Ρ‚Π΅Ρ€ΠΌΠΈΠ½ ΠΊΡ€ΡƒΡ‡Π΅Π½ΠΈΠ΅ относится ΠΊ элСмСнтам Π³Ρ€ΡƒΠΏΠΏΡ‹, ΠΈΠΌΠ΅ΡŽΡ‰ΠΈΠΌ ΠΊΠΎΠ½Π΅Ρ‡Π½Ρ‹ΠΉ порядок, ΠΈΠ»ΠΈ ΠΊ элСмСнтам модуля, Π°Π½Π½ΡƒΠ»ΠΈΡ€ΡƒΠ΅ΠΌΡ‹ΠΌ рСгулярным элСмСнтом ΠΊΠΎΠ»ΡŒΡ†Π°.

Π’ Ρ‚Π΅ΠΎΡ€ΠΈΠΈ чисСл Π³Π»Π°Π΄ΠΊΠΈΠΌ числом называСтся Ρ†Π΅Π»ΠΎΠ΅ число, всС простыС Π΄Π΅Π»ΠΈΡ‚Π΅Π»ΠΈ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ ΠΌΠ°Π»Ρ‹.

Π’ ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ (особСнно Π² Ρ‚Π΅ΠΎΡ€ΠΈΠΈ ΠΊΠ°Ρ‚Π΅Π³ΠΎΡ€ΠΈΠΉ), коммутативная Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° β€” изобраТаСмая Π² наглядном Π²ΠΈΠ΄Π΅ структура Π½Π°ΠΏΠΎΠ΄ΠΎΠ±ΠΈΠ΅ Π³Ρ€Π°Ρ„Π°, Π²Π΅Ρ€ΡˆΠΈΠ½Π°ΠΌΠΈ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ слуТат ΠΎΠ±ΡŠΠ΅ΠΊΡ‚Ρ‹ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Ρ‘Π½Π½ΠΎΠΉ ΠΊΠ°Ρ‚Π΅Π³ΠΎΡ€ΠΈΠΈ, Π° Ρ€Ρ‘Π±Ρ€Π°ΠΌΠΈ β€” ΠΌΠΎΡ€Ρ„ΠΈΠ·ΠΌΡ‹. ΠšΠΎΠΌΠΌΡƒΡ‚Π°Ρ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ ΠΎΠ·Π½Π°Ρ‡Π°Π΅Ρ‚, Ρ‡Ρ‚ΠΎ для Π»ΡŽΠ±Ρ‹Ρ… Π²Ρ‹Π±Ρ€Π°Π½Π½Ρ‹Ρ… Π½Π°Ρ‡Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ ΠΈ ΠΊΠΎΠ½Π΅Ρ‡Π½ΠΎΠ³ΠΎ ΠΎΠ±ΡŠΠ΅ΠΊΡ‚Π° для ΡΠΎΠ΅Π΄ΠΈΠ½ΡΡŽΡ‰ΠΈΡ… ΠΈΡ… ΠΎΡ€ΠΈΠ΅Π½Ρ‚ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Ρ… ΠΏΡƒΡ‚Π΅ΠΉ композиция ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΡ… ΠΏΡƒΡ‚ΠΈ ΠΌΠΎΡ€Ρ„ΠΈΠ·ΠΌΠΎΠ² Π½Π΅ Π±ΡƒΠ΄Π΅Ρ‚ Π·Π°Π²ΠΈΡΠ΅Ρ‚ΡŒ ΠΎΡ‚ Π²Ρ‹Π±ΠΎΡ€Π° ΠΏΡƒΡ‚ΠΈ.

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅

Π’ΠΎ Π΅ΡΡ‚ΡŒ ΠΎΠ½ΠΈ ΡΠ²Π»ΡΡŽΡ‚ΡΡ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΎΠΌ умноТСния числа Π½Π° само сСбя.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ‚ΠΎΡ‡Π½Ρ‹Π΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹Π΅ числа?

ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΏΠΎΠ»Π½ΠΎΠ³ΠΎ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ числа ΠΌΠΎΠΆΠ½ΠΎ ΠΏΠΎΠ½ΠΈΠΌΠ°Ρ‚ΡŒ ΠΊΠ°ΠΊ ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ Π½Π°Ρ‚ΡƒΡ€Π°Π»ΡŒΠ½ΠΎΠ΅ Ρ†Π΅Π»ΠΎΠ΅ число, ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹ΠΉ ΠΊΠΎΡ€Π΅Π½ΡŒ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ Ρ‚Π°ΠΊΠΆΠ΅ являСтся Π½Π°Ρ‚ΡƒΡ€Π°Π»ΡŒΠ½Ρ‹ΠΌ ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌ Ρ†Π΅Π»Ρ‹ΠΌ числом.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅

Π’Π°Π±Π»ΠΈΡ†Π° умноТСния ΠΈ вывСски ΠΏΠΎΠ»Π½Ρ‹Ρ… ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹Ρ… чисСл Π΄ΠΎ 15

Π›ΡŽΠ±ΠΎΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚, стороны ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ ΡΠ²Π»ΡΡŽΡ‚ΡΡ Ρ†Π΅Π»Ρ‹ΠΌΠΈ числами, Π±ΡƒΠ΄Π΅Ρ‚ ΠΈΠ΄Π΅Π°Π»ΡŒΠ½Ρ‹ΠΌ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΎΠΌ.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅

ΠŸΡ€ΠΈΠΌΠ΅Ρ€Ρ‹ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΎΠ²: 1 2 = 1 ΠΈ 4 2 = 16

Как Π²Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ, являСтся Π»ΠΈ число ΠΏΠΎΠ»Π½Ρ‹ΠΌ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΎΠΌ?

Π˜ΡΡ…ΠΎΠ΄Ρ ΠΈΠ· Ρ„Π°ΠΊΡ‚ΠΎΡ€ΠΈΠ·Π°Ρ†ΠΈΠΈ числа, Ссли ΠΎΠ½ΠΎ ΠΈΠΌΠ΅Π΅Ρ‚ Ρ‚ΠΎΡ‡Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹ΠΉ ΠΊΠΎΡ€Π΅Π½ΡŒ ΠΈ являСтся Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΎΠΌ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π° Π΄Ρ€ΡƒΠ³ΠΈΡ… чисСл, ΠΌΡ‹ ΠΌΠΎΠΆΠ΅ΠΌ ΡΠΊΠ°Π·Π°Ρ‚ΡŒ, Ρ‡Ρ‚ΠΎ это ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚.

ΠŸΡ€ΠΈΠΌΠ΅Ρ€:

Π§Ρ‚ΠΎΠ±Ρ‹ ΠΎΡ‚Π²Π΅Ρ‚ΠΈΡ‚ΡŒ Π½Π° вопрос, Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎ Ρ€Π°Π·Π»ΠΎΠΆΠΈΡ‚ΡŒ 2704 Π½Π° ΠΌΠ½ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒ, Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ Π²Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅

Π‘Π»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, ΠΈΠΌΠ΅Π΅ΠΌ: 2704 = 2 Γ— 2 Γ— 2 Γ— 2 Γ— 13 Γ— 13 = 2 4 Γ— 13 2.

√2704 = √ (2 2 Γ— 2 2 Γ— 13 2) = 2 Γ— 2 Γ— 13 = 52

ΠŸΡ€Π°Π²ΠΈΠ»Π° идСального ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π°

Π”Ρ€ΡƒΠ³ΠΈΠ΅ ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡ

ΠšΠ²Π°Π΄Ρ€Π°Ρ‚ числа Ρ€Π°Π²Π΅Π½ ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΡŽ Π΅Π³ΠΎ сосСдСй плюс ΠΎΠ΄ΠΈΠ½. НапримСр: ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ сСми (7 2 ) Ρ€Π°Π²Π΅Π½ ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΡŽ смСТных чисСл (6 ΠΈ 8) плюс ΠΎΠ΄ΠΈΠ½. 7 2 = 6 Γ— 8 + 1 = 48 + 1 = 49. Ρ… 2 = (Ρ…-1). (Ρ… + 1) + 1.

Π‘ΠΎΠ²Π΅Ρ€ΡˆΠ΅Π½Π½Ρ‹Π΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Ρ‹ ΡΠ²Π»ΡΡŽΡ‚ΡΡ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΎΠΌ матСматичСской ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ ΠΌΠ΅ΠΆΠ΄Ρƒ ΠΏΡ€Π΅Π΄Ρ‹Π΄ΡƒΡ‰ΠΈΠΌ Ρ‚ΠΎΡ‡Π½Ρ‹ΠΌ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΎΠΌ ΠΈ арифмСтичСской прогрСссиСй.

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅

Однако Π½Π΅ всС Π΅Π³ΠΎ Π·Π½Π°ΡŽΡ‚. Π’ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π΅ этого объСм вычислСний увСличиваСтся, Π° Ρ‚Π°ΠΊΠΆΠ΅ Π΄ΠΎΠΏΡƒΡΠΊΠ°ΡŽΡ‚ΡΡ ошибки. Он Ρ‚Π°ΠΊΠΆΠ΅ примСняСтся для нахоТдСния ΠΊΠΎΡ€Π½Π΅ΠΉ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ ΠΈ построСния Π³Ρ€Π°Ρ„ΠΈΠΊΠΎΠ².

ΠžΠ±Ρ‰Π°Ρ информация

Π’Ρ‹Π΄Π΅Π»ΠΈΡ‚ΡŒ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ ΠΈΠ· ΠΌΠ½ΠΎΠ³ΠΎΡ‡Π»Π΅Π½Π° Π²Ρ‚ΠΎΡ€ΠΎΠΉ стСпСни ΠΎΠ·Π½Π°Ρ‡Π°Π΅Ρ‚, Ρ‡Ρ‚ΠΎ Π΅Π³ΠΎ слСдуСт привСсти ΠΊ Π±ΠΎΠ»Π΅Π΅ Ρ‡ΠΈΡ‚Π°Π±Π΅Π»ΡŒΠ½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅. Π­Ρ‚Π° опСрация примСняСтся Π² ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΡ… случаях: ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅, Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅, построСниС Π³Ρ€Π°Ρ„ΠΈΠΊΠΎΠ² ΠΈ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ (Ρ‡Π°Ρ‰Π΅ β€” Π² послСдних Π΄Π²ΡƒΡ…).

Π—Π° основу взяты Ρ‚Ρ€ΠΈ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ сокращСнного умноТСния (Ρ€Π°Π·Π»ΠΎΠΆΠ΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ ΠΌΠ½ΠΎΠ³ΠΎΡ‡Π»Π΅Π½Π° Π½Π° ΠΌΠ½ΠΎΠΆΠΈΡ‚Π΅Π»ΠΈ), ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ спСциалисты Ρ€Π΅ΠΊΠΎΠΌΠ΅Π½Π΄ΡƒΡŽΡ‚ Π·Π°ΠΏΠΎΠΌΠ½ΠΈΡ‚ΡŒ ΠΈΠ»ΠΈ Π²Ρ‹ΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΡ‚Π΄Π΅Π»ΡŒΠ½ΠΎ.

К Π½ΠΈΠΌ относятся ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠ΅ ΡΠΎΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡ:

БущСствуСт ΠΏΡ€Π°Π²ΠΈΠ»ΠΎ, ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡŽΡ‰Π΅Π΅ Π²Ρ‹ΠΏΠΎΠ»Π½ΠΈΡ‚ΡŒ ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΡŽ упрощСния ΠΌΠ½ΠΎΠ³ΠΎΡ‡Π»Π΅Π½Π° ay 2 + by + c Π²Ρ‚ΠΎΡ€ΠΎΠΉ стСпСни ΠΏΡƒΡ‚Π΅ΠΌ разлоТСния Π΅Π³ΠΎ Π½Π° ΠΌΠ½ΠΎΠΆΠΈΡ‚Π΅Π»ΠΈ. Π­Ρ‚ΠΎ ΠΎΠ·Π½Π°Ρ‡Π°Π΅Ρ‚, Ρ‡Ρ‚ΠΎ Π΅Π³ΠΎ слСдуСт свСсти (ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Ρ‚ΡŒ) ΠΊ Π²ΠΈΠ΄Ρƒ a * (y β€” y0)^2 + y0.

Π£Π½ΠΈΠ²Π΅Ρ€ΡΠ°Π»ΡŒΠ½Ρ‹ΠΉ Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌ

Алгоритмом называСтся комплСксноС Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅, состоящСС ΠΈΠ· ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ Π½Π°Π±ΠΎΡ€Π° ΠΏΡ€Π°Π²ΠΈΠ». ΠŸΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ ay 2 + by + c осущСствляСтся ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ:

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅

Для ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π° разности Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌ ΠΏΠΎΡ…ΠΎΠΆΠΈΠΉ. Π€ΠΎΡ€ΠΌΡƒΠ»Π° выдСлСния ΠΏΠΎΠ»Π½ΠΎΠ³ΠΎ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π° ΠΈΠΌΠ΅Π΅Ρ‚ Ρ‚Π°ΠΊΠΎΠΉ Π²ΠΈΠ΄: [(a)^(Β½) * y]^2 β€” [(2 * (a)^(Β½) * y)] * (b / [2 * (a)^(Β½)] + [(b / (2 * (a)^(Β½))]^2 β€” [(b / (2 * (a)^(Β½))]^2 + c. Π‘ΠΎΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ Ρ‚Π°ΠΊΠΆΠ΅ примСняСтся ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ°ΠΌΠΈ Π² Π°Π»Π³Π΅Π±Ρ€Π΅, Π° Ρ‚Π°ΠΊΠΆΠ΅ Π² Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… дисциплинах с Ρ„ΠΈΠ·ΠΈΠΊΠΎ-матСматичСским ΡƒΠΊΠ»ΠΎΠ½ΠΎΠΌ. Для этого Π½ΡƒΠΆΠ½ΠΎ Π²ΠΎΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒΡΡ Ρ‚Π°ΠΊΠΈΠΌ ΠΏΠΎΠ΄Ρ€ΠΎΠ±Π½Ρ‹ΠΌ объяснСниСм ΠΏΡ€Π°Π²ΠΈΠ» Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ:

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅

Число Β«Π°Β» ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌ ΠΈΠ»ΠΈ ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌ. Если Π΅Π³ΠΎ ΠΏΡ€ΠΈΠ±Π°Π²ΠΈΡ‚ΡŒ ΠΊ «с», Ρ‚ΠΎ Π΄ΠΎΠ»ΠΆΠ½ΠΎ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΡ‚ΡŒΡΡ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ «с1Β».

ΠŸΡ€ΠΈ ΠΈΠ·Π²Π»Π΅Ρ‡Π΅Π½ΠΈΠΈ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ корня Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ Π΄ΠΎΠ»ΠΆΠ΅Π½ Π±Ρ‹Ρ‚ΡŒ Ρ†Π΅Π»Ρ‹ΠΌ. Π§Ρ‚ΠΎΠ±Ρ‹ равСнство Π½Π΅ Π½Π°Ρ€ΡƒΡˆΠ°Π»ΠΎΡΡŒ, слСдуСт ΠΏΡ€ΠΈΠ±Π°Π²ΠΈΡ‚ΡŒ ΠΈ ΠΎΡ‚Π½ΡΡ‚ΡŒ Β«Π°Β».

Алгоритм записан Π² ΠΎΠ±Ρ‰Π΅ΠΌ Π²ΠΈΠ΄Π΅. Π’ Ρ‚Π΅ΠΎΡ€ΠΈΠΈ ΠΎΠ½ являСтся слоТным для понимания.

Однако ΠΏΡ€ΠΈ практичСском ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠΈ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ нСясности ΠΈΡΡ‡Π΅Π·Π°ΡŽΡ‚. Для Π½Π°Ρ‡Π°Π»Π° Π½ΡƒΠΆΠ½ΠΎ Ρ€Π°Π·ΠΎΠ±Ρ€Π°Ρ‚ΡŒ, Π³Π΄Π΅ Π΅Π³ΠΎ Π½ΡƒΠΆΠ½ΠΎ ΠΏΡ€ΠΈΠΌΠ΅Π½ΡΡ‚ΡŒ.

Π‘Ρ„Π΅Ρ€Ρ‹ использования

ΠœΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠΈ Ρ€Π΅ΠΊΠΎΠΌΠ΅Π½Π΄ΡƒΡŽΡ‚ Ρ€Π°Π·ΠΎΠ±Ρ€Π°Ρ‚ΡŒ основныС ΠΏΡ€ΠΈΠΌΠ΅Ρ€Ρ‹ выдСлСния ΠΏΠΎΠ»Π½ΠΎΠ³ΠΎ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π°. Π‘Π»Π΅Π΄ΡƒΠ΅Ρ‚ ΠΈΡ… ΡΠΈΡΡ‚Π΅ΠΌΠ°Ρ‚ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ, ΠΏΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ это ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΡ‚ ΠΎΠΏΡ‚ΠΈΠΌΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ процСсс Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ. Основной смысл Π·Π°ΠΊΠ»ΡŽΡ‡Π°Π΅Ρ‚ΡΡ Π² ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠΈ ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΡ… Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΠΎΠ² для экономии Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ.

НСкоторыС ΡΡ‡ΠΈΡ‚Π°ΡŽΡ‚, Ρ‡Ρ‚ΠΎ шаблонами ΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒΡΡ Π½Π΅ΠΆΠ΅Π»Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ. Однако Π² этом Π΅ΡΡ‚ΡŒ ΠΈ свои ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ стороны. НапримСр, ΠΏΡ€ΠΈ поступлСнии Π² ΠΊΠ°ΠΊΠΎΠ΅-Π»ΠΈΠ±ΠΎ Π²Ρ‹ΡΡˆΠ΅Π΅ ΡƒΡ‡Π΅Π±Π½ΠΎΠ΅ Π·Π°Π²Π΅Π΄Π΅Π½ΠΈΠ΅ слСдуСт ΠΏΡ€ΠΈΠ΄Π΅Ρ€ΠΆΠΈΠ²Π°Ρ‚ΡŒΡΡ общСпринятых Π²Π°Ρ€ΠΈΠ°Π½Ρ‚ΠΎΠ² Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ. ΠŸΡ€ΠΈ ΡƒΡΠΏΠ΅ΡˆΠ½ΠΎΠΌ зачислСнии Π² унивСрситСт ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡ€ΠΈΠΌΠ΅Π½ΠΈΡ‚ΡŒ нСстандартныС ΠΏΠΎΠ΄Ρ…ΠΎΠ΄Ρ‹ выполнСния задания.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅

Π¨Π°Π±Π»ΠΎΠ½Ρ‹ ΡˆΠΈΡ€ΠΎΠΊΠΎ ΠΏΡ€ΠΈΠΌΠ΅Π½ΡΡŽΡ‚ΡΡ Π½Π΅ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ Π² дисциплинах с Ρ„ΠΈΠ·ΠΈΠΊΠΎ-матСматичСским ΡƒΠΊΠ»ΠΎΠ½ΠΎΠΌ, Π½ΠΎ ΠΈ Π² ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠΈ.

РаспространСнными заданиями с ΡƒΠΏΡ€ΠΎΡ‰Π΅Π½ΠΈΠ΅ΠΌ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ Ρ‚Ρ€Π΅Ρ…Ρ‡Π»Π΅Π½Π° ΡΠ²Π»ΡΡŽΡ‚ΡΡ:

Для нахоТдСния Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΉ слСдуСт ΠΏΠΎΠ΄Ρ€ΠΎΠ±Π½ΠΎ Ρ€Π°Π·ΠΎΠ±Ρ€Π°Ρ‚ΡŒ Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΡ‹. НСт нСобходимости Π·Π°ΡƒΡ‡ΠΈΠ²Π°Ρ‚ΡŒ основныС опрСдСлСния, Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ ΠΈ ΠΏΡ€Π°Π²ΠΈΠ»Π°. Π˜Ρ… слСдуСт ΠΏΠΎΠ½ΠΈΠΌΠ°Ρ‚ΡŒ, ΠΏΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ Π² философии Π΅ΡΡ‚ΡŒ Ρ‚Π°ΠΊΠΎΠΉ Π·Π°ΠΊΠΎΠ½: Β«ΠΏΠ΅Ρ€Π΅Ρ…ΠΎΠ΄ количСства Π² качСство». ΠšΡ€ΠΎΠΌΠ΅ Ρ‚ΠΎΠ³ΠΎ, программистами Π±Ρ‹Π»ΠΈ созданы ΡΠΏΠ΅Ρ†ΠΈΠ°Π»ΡŒΠ½Ρ‹Π΅ ΠΎΠ½Π»Π°ΠΉΠ½-ΠΊΠ°Π»ΡŒΠΊΡƒΠ»ΡΡ‚ΠΎΡ€Ρ‹, ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡŽΡ‰ΠΈΠ΅ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΡ‚ΡŒ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚, Ρ€Π°Π·Π»ΠΎΠΆΠΈΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΡ‡Π»Π΅Π½ Π½Π° ΠΌΠ½ΠΎΠΆΠΈΡ‚Π΅Π»ΠΈ ΠΈ Ρ‚Π°ΠΊ Π΄Π°Π»Π΅Π΅.

ΠŸΠΎΡΡ‚Ρ€ΠΎΠ΅Π½ΠΈΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊΠΎΠ²

Π“Ρ€Π°Ρ„ΠΈΠΊΠΎΠΌ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ z = a[y β€” c]^2 + d являСтся кривая, которая называСтся ΠΏΠ°Ρ€Π°Π±ΠΎΠ»ΠΎΠΉ. Π”Π°Π»Π΅Π΅ слСдуСт ввСсти ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠ΅ пояснСния:

Π‘Π»Π΅Π΄ΡƒΠ΅Ρ‚ ΠΎΡ‚ΠΌΠ΅Ρ‚ΠΈΡ‚ΡŒ, Ρ‡Ρ‚ΠΎ располоТСниС Π³Ρ€Π°Ρ„ΠΈΠΊΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ зависит ΠΎΡ‚ Π²Ρ‹ΡˆΠ΅ΠΎΠΏΠΈΡΠ°Π½Π½Ρ‹Ρ… коэффициСнтов. Для построСния ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹ ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠΈ Ρ€Π΅ΠΊΠΎΠΌΠ΅Π½Π΄ΡƒΡŽΡ‚ Ρ€Π°Π·ΠΎΠ±Ρ€Π°Ρ‚ΡŒ частныС случаи:

ΠŸΡ€ΠΈ использовании ΠΏΠ΅Ρ€Π²ΠΎΠ³ΠΎ ΠΌΠ΅Ρ‚ΠΎΠ΄Π° Π½ΡƒΠΆΠ½ΠΎ Π²ΠΎΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒΡΡ Ρ‚Π°ΠΊΠΈΠΌ Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΠΎΠΌ:

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅

Когда коэффициСнт с = 0 (az 2 + bz = 0), Ρ‚ΠΎ Ρ€Π΅ΡˆΠΈΡ‚ΡŒ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ ΠΎΡ‡Π΅Π½ΡŒ просто.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅

Для этого Π½ΡƒΠΆΠ½ΠΎ произвСсти Ρ‚Π°ΠΊΠΈΠ΅ дСйствия:

Π’Ρ€Π΅Ρ‚ΠΈΠΉ способ β€” Π²Ρ‹Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π° ΠΈΠ»ΠΈ использованиС Ρ„ΠΎΡ€ΠΌΡƒΠ» сокращСнного умноТСния. Π’ этом случаС Π½Π΅Ρ‚ нСобходимости ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ стандартный ΠΏΠ΅Ρ€Π²Ρ‹ΠΉ ΠΌΠ΅Ρ‚ΠΎΠ΄. Если ΠΏΠΎΡΡ‚Ρ€ΠΎΠΈΡ‚ΡŒ Π³Ρ€Π°Ρ„ΠΈΠΊ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ, Ρ‚ΠΎ корнями Π±ΡƒΠ΄ΡƒΡ‚ ΡΠ²Π»ΡΡ‚ΡŒΡΡ Π΅Π³ΠΎ Ρ‚ΠΎΡ‡ΠΊΠΈ пСрСсСчСния с осью абсцисс. МоТно ΠΏΠΎΠ»ΡƒΡ‡ΠΈΡ‚ΡŒ Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ ΠΏΡ€ΠΈ ΠΏΠΎΠΌΠΎΡ‰ΠΈ матСматичСских ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠΉ. ПослСдний считаСтся ΠΌΠ΅Π½Π΅Π΅ Ρ‚ΠΎΡ‡Π½Ρ‹ΠΌ способом, ΠΏΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ корнями ΠΌΠΎΠ³ΡƒΡ‚ Π±Ρ‹Ρ‚ΡŒ ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Π΅ числа, Π° Π½Π΅ Π΄Π΅ΠΉΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Π΅.

Π£ΠΏΡ€ΠΎΡ‰Π΅Π½ΠΈΠ΅ Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½ΠΈΠΉ

Π‘Ρ‹Π²Π°ΡŽΡ‚ случаи, ΠΊΠΎΠ³Π΄Π° слСдуСт Ρ€Π΅ΡˆΠΈΡ‚ΡŒ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅, упростив Π΅Π³ΠΎ. НапримСр, Ρ‡Ρ‚ΠΎΠ±Ρ‹ Ρ€Π΅ΡˆΠΈΡ‚ΡŒ равСнство (2z 2 β€” 5z + 7) + (z + 5)(z + 3) = 0, Π½ΡƒΠΆΠ½ΠΎ Ρ€Π°ΡΠΊΡ€Ρ‹Ρ‚ΡŒ скобки, Π° Π·Π°Ρ‚Π΅ΠΌ привСсти ΠΏΠΎΠ΄ΠΎΠ±Π½Ρ‹Π΅ слагаСмыС. Π­Ρ‚ΠΎΡ‚ способ называСтся ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ матСматичСских ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠΉ.

Π’ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… случаях слСдуСт возвСсти Π² ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚, Π° Π·Π°Ρ‚Π΅ΠΌ привСсти ΠΏΠΎΠ΄ΠΎΠ±Π½Ρ‹Π΅ слагаСмыС. ПослС этого Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎ ΠΎΠΏΡΡ‚ΡŒ Π²ΠΎΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒΡΡ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π°ΠΌΠΈ, сгруппировав элСмСнты.

Π­Ρ‚ΠΎΡ‚ шаг позволяСт ΠΎΠΏΡ‚ΠΈΠΌΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ процСсс вычислСний. НапримСр, Π½Π΅Ρ‚ нСобходимости ΠΏΠΎΠ΄ΡΡ‚Π°Π²Π»ΡΡ‚ΡŒ числСнныС значСния Π² Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ z 2 + 4z + 16 + z 2 β€” 16. Π•Π³ΠΎ ΠΌΠΎΠΆΠ½ΠΎ просто ΡƒΠΏΡ€ΠΎΡΡ‚ΠΈΡ‚ΡŒ: z 2 + 8z + 16 + z 2 β€” 16 = (z + 4)^2 + (z β€” 4)(z + 4) = (z + 4)(z + 4 + z β€” 4) = 2z (z + 4).

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ

НСобходимо Ρ€Π΅ΡˆΠΈΡ‚ΡŒ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ z^2 + 20z + 50 = 6z + 5 нСсколькими способами, ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠ΅ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹: Π½Π°Ρ…ΠΎΠΆΠ΄Π΅Π½ΠΈΠ΅ дискриминанта, Ρ„ΠΎΡ€ΠΌΡƒΠ» разлоТСния, Ρ‚Π΅ΠΎΡ€Π΅ΠΌΡ‹ Π’ΠΈΠ΅Ρ‚Π° ΠΈ ΠΏΠΎΡΡ‚Ρ€ΠΎΠΈΡ‚ΡŒ Π³Ρ€Π°Ρ„ΠΈΠΊ. ВычислСниС ΠΊΠΎΡ€Π½Π΅ΠΉ ΠΏΠ΅Ρ€Π²Ρ‹ΠΌ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ (Ρ‡Π΅Ρ€Π΅Π· дискриминант) выглядит Ρ‚Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ:

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅

Π”Π²Π° корня подходят, ΠΏΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ равСнство 0 = 0 ΡΠΎΠ±Π»ΡŽΠ΄Π°Π΅Ρ‚ΡΡ. БпСциалисты Ρ€Π΅ΠΊΠΎΠΌΠ΅Π½Π΄ΡƒΡŽΡ‚ ΠΎΠΏΡƒΡΠΊΠ°Ρ‚ΡŒ ΠΏΡ€ΠΎΠ²Π΅Ρ€ΠΊΡƒ, ΠΏΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ Π·Π°Π΄Π°Ρ‡Π° Ρ€Π΅ΡˆΠ°Π΅Ρ‚ΡΡ нСсколькими способами.

Π’Ρ€Π΅Ρ‚ΠΈΠΉ ΠΌΠ΅Ρ‚ΠΎΠ΄ Π·Π°ΠΊΠ»ΡŽΡ‡Π°Π΅Ρ‚ΡΡ Π² использовании Ρ„ΠΎΡ€ΠΌΡƒΠ» разлоТСния. Π˜Ρ… Ρ€Π°Π·Ρ€Π΅ΡˆΠ°Π΅Ρ‚ΡΡ ΠΏΡ€ΠΈΠΌΠ΅Π½ΡΡ‚ΡŒ нСсколько Ρ€Π°Π· ΠΈ Π² любом порядкС. Алгоритм Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ выглядит Ρ‚Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ:

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅

ОписаниС ΠΌΠ΅Ρ‚ΠΎΠ΄Π° выдСлСния ΠΏΠΎΠ»Π½ΠΎΠ³ΠΎ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π°

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅

Β§2. Π’Ρ‹Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΏΠΎΠ»Π½ΠΎΠ³ΠΎ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π° ΠΈΠ· ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ Ρ‚Ρ€Ρ‘Ρ…Ρ‡Π»Π΅Π½Π°

ОписаниС ΠΌΠ΅Ρ‚ΠΎΠ΄Π° выдСлСния ΠΏΠΎΠ»Π½ΠΎΠ³ΠΎ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π°

ΠŸΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅, ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ΅ ΠΌΡ‹ сдСлали, носит Π½Π°Π·Π²Π°Π½ΠΈΠ΅ Β«Π²Ρ‹Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΏΠΎΠ»Π½ΠΎΠ³ΠΎ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π° ΠΈΠ· ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ Ρ‚Ρ€Ρ‘Ρ…Ρ‡Π»Π΅Π½Π°Β».

ΠŸΡ€ΠΈΠ±Π°Π²ΠΈΠΌ ΠΈ Π²Ρ‹Ρ‡Ρ‚Π΅ΠΌ ΠΊ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½ΠΎΠΌΡƒ Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½ΠΈΡŽ `(1/2)^2`, ΠΏΠΎΠ»ΡƒΡ‡Π°Π΅ΠΌ

ПокаТСм, ΠΊΠ°ΠΊ примСняСтся ΠΌΠ΅Ρ‚ΠΎΠ΄ выдСлСния ΠΏΠΎΠ»Π½ΠΎΠ³ΠΎ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π° ΠΈΠ· ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ Ρ‚Ρ€Ρ‘Ρ…Ρ‡Π»Π΅Π½Π° для разлоТСния ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ Ρ‚Ρ€Ρ‘Ρ…Ρ‡Π»Π΅Π½Π° Π½Π° ΠΌΠ½ΠΎΠΆΠΈΡ‚Π΅Π»ΠΈ.

ВыдСляСм ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ ΠΈΠ· ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ Ρ‚Ρ€Ρ‘Ρ…Ρ‡Π»Π΅Π½Π°:

ΠŸΡ€ΠΈΠΌΠ΅Π½ΡΠ΅ΠΌ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ для разности ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΎΠ², ΠΈΠΌΠ΅Π΅ΠΌ:

ΠœΡ‹ Π½Π΅ ΠΌΠΎΠΆΠ΅ΠΌ ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²ΠΈΡ‚ΡŒ Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ 3 x 2 ΠΊΠ°ΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ ΠΊΠ°ΠΊΠΎΠ³ΠΎ-Ρ‚ΠΎ выраТСния, Ρ‚. ΠΊ. Π΅Ρ‰Ρ‘ Π½Π΅ ΠΈΠ·ΡƒΡ‡Π°Π»ΠΈ этого Π² школС. Π­Ρ‚ΠΎ Π±ΡƒΠ΄Π΅Ρ‚Π΅ ΠΏΡ€ΠΎΡ…ΠΎΠ΄ΠΈΡ‚ΡŒ ΠΏΠΎΠ·ΠΆΠ΅, ΠΈ ΡƒΠΆΠ΅ Π² Π—Π°Π΄Π°Π½ΠΈΠΈ β„–4 Π±ΡƒΠ΄Π΅ΠΌ ΠΈΠ·ΡƒΡ‡Π°Ρ‚ΡŒ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. ПокаТСм, ΠΊΠ°ΠΊ ΠΌΠΎΠΆΠ½ΠΎ Ρ€Π°Π·Π»ΠΎΠΆΠΈΡ‚ΡŒ Π½Π° ΠΌΠ½ΠΎΠΆΠΈΡ‚Π΅Π»ΠΈ Π·Π°Π΄Π°Π½Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹ΠΉ Ρ‚Ρ€Ρ‘Ρ…Ρ‡Π»Π΅Π½:

`(x)^2-2*x*1/2+(1/2)^2-(1/2)^2+3=(x-1/2)^2+11/4`. Π—Π°ΠΌΠ΅Ρ‚ΠΈΠΌ, Ρ‡Ρ‚ΠΎ ΠΏΡ€ΠΈ `x=1/2` Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ Ρ‚Ρ€Ρ‘Ρ…Ρ‡Π»Π΅Π½Π° Ρ€Π°Π²Π½ΠΎ `11/4`, Π° ΠΏΡ€ΠΈ `x!=1/2` ΠΊ Π·Π½Π°Ρ‡Π΅Π½ΠΈΡŽ `11/4` добавляСтся ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ число, поэтому ΠΏΠΎΠ»ΡƒΡ‡Π°Π΅ΠΌ число, большСС `11/4`. Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, наимСньшСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ Ρ‚Ρ€Ρ‘Ρ…Ρ‡Π»Π΅Π½Π° Ρ€Π°Π²Π½ΠΎ `11/4` ΠΈ ΠΎΠ½ΠΎ получаСтся ΠΏΡ€ΠΈ `x=1/2`.

Π Π°Π·Π»ΠΎΠΆΠΈΡ‚Π΅ Π½Π° ΠΌΠ½ΠΎΠΆΠΈΡ‚Π΅Π»ΠΈ Ρ‡ΠΈΡΠ»ΠΈΡ‚Π΅Π»ΡŒ ΠΈ Π·Π½Π°ΠΌΠ΅Π½Π°Ρ‚Π΅Π»ΡŒ Π΄Ρ€ΠΎΠ±ΠΈ `/` ΠΈ сократитС эту Π΄Ρ€ΠΎΠ±ΡŒ.

ΠŸΡ€ΠΈΠΌΠ΅Π½ΠΈΠΌ ΠΊ этому ΠΌΠ½ΠΎΠ³ΠΎΡ‡Π»Π΅Π½Ρƒ ΠΌΠ΅Ρ‚ΠΎΠ΄ выдСлСния ΠΏΠΎΠ»Π½ΠΎΠ³ΠΎ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π°.

ΠŸΡ€ΠΈΠΌΠ΅Π½ΡΠ΅ΠΌ ΠΌΠ΅Ρ‚ΠΎΠ΄ выдСлСния ΠΏΠΎΠ»Π½ΠΎΠ³ΠΎ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π°. ИмССм:

ΠŸΡ€ΠΈΠΌΠ΅Π½ΡΡ ΠΌΠ΅Ρ‚ΠΎΠ΄ выдСлСния ΠΏΠΎΠ»Π½ΠΎΠ³ΠΎ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π°, Ρ€Π°Π·Π»ΠΎΠΆΠΈΡ‚Π΅ Π½Π° ΠΌΠ½ΠΎΠΆΠΈΡ‚Π΅Π»ΠΈ Ρ‡ΠΈΡΠ»ΠΈΡ‚Π΅Π»ΡŒ ΠΈ Π·Π½Π°ΠΌΠ΅Π½Π°Ρ‚Π΅Π»ΡŒ ΠΈ сократитС Π΄Ρ€ΠΎΠ±ΡŒ `<8x^2+10x-3>/<2x^2-x-6>`.

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅

ΠŸΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚, ΠΈΠ»ΠΈ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ΅ число, β€” число, ΡΠ²Π»ΡΡŽΡ‰Π΅Π΅ΡΡ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΎΠΌ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ Ρ†Π΅Π»ΠΎΠ³ΠΎ числа. Π˜Π½Ρ‹ΠΌΠΈ словами, ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΎΠΌ являСтся Ρ†Π΅Π»ΠΎΠ΅ число, ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹ΠΉ ΠΊΠΎΡ€Π΅Π½ΡŒ ΠΈΠ· ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ извлСкаСтся Π½Π°Ρ†Π΅Π»ΠΎ. ГСомСтричСски Ρ‚Π°ΠΊΠΎΠ΅ число ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ прСдставлСно Π² Π²ΠΈΠ΄Π΅ ΠΏΠ»ΠΎΡ‰Π°Π΄ΠΈ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π° с цСлочислСнной стороной.

НапримСр, 9 β€” это ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ΅ число, Ρ‚Π°ΠΊ ΠΊΠ°ΠΊ ΠΎΠ½ΠΎ ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ записано Π² Π²ΠΈΠ΄Π΅ 3 Γ— 3, Π° Ρ‚Π°ΠΊΠΆΠ΅ прСдставляСт ΠΏΠ»ΠΎΡ‰Π°Π΄ΡŒ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π° со стороной, Ρ€Π°Π²Π½ΠΎΠΉ 3.

ΠšΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ΅ число Π²Ρ…ΠΎΠ΄ΠΈΡ‚ Π² ΠΊΠ°Ρ‚Π΅Π³ΠΎΡ€ΠΈΡŽ классичСских Ρ„ΠΈΠ³ΡƒΡ€Π½Ρ‹Ρ… чисСл.

Π‘ΠΎΠ΄Π΅Ρ€ΠΆΠ°Π½ΠΈΠ΅

ΠŸΡ€ΠΈΠΌΠ΅Ρ€Ρ‹ [ ΠΏΡ€Π°Π²ΠΈΡ‚ΡŒ | ΠΏΡ€Π°Π²ΠΈΡ‚ΡŒ ΠΊΠΎΠ΄ ]

ΠŸΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΎΠ² начинаСтся Ρ‚Π°ΠΊ:

0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169, 196, 225, 256, 289, 324, 361, 400, 441, 484, 529, 576, 625, 676, 729, 784, 841, 900, 961, 1024, 1089, 1156, 1225, 1296, 1369, 1444, 1521, 1600, 1681, 1764, 1849, 1936, 2025, 2116, 2209, 2304, 2401, 2500, … (ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ A000290 Π² OEIS)

_0_1_2_3_4_5_6_7_8_90_1491625364964811_1001211441691962252562893243612_4004414845295766256767297848413_900961102410891156122512961369144415214_16001681176418491936202521162209230424015_25002601270428092916302531363249336434816_36003721384439694096422543564489462447617_49005041518453295476562557765929608462418_64006561672468897056722573967569774479219_8100828184648649883690259216940996049801

ΠŸΡ€Π΅Π΄ΡΡ‚Π°Π²Π»Π΅Π½ΠΈΡ ΠΈ свойства [ ΠΏΡ€Π°Π²ΠΈΡ‚ΡŒ | ΠΏΡ€Π°Π²ΠΈΡ‚ΡŒ ΠΊΠΎΠ΄ ]

ΠšΠ²Π°Π΄Ρ€Π°Ρ‚ Π½Π°Ρ‚ΡƒΡ€Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ числа n Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²ΠΈΡ‚ΡŒ Π² Π²ΠΈΠ΄Π΅ суммы ΠΏΠ΅Ρ€Π²Ρ‹Ρ… n Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅Π½Π΅Ρ‡Ρ‘Ρ‚Π½Ρ‹Ρ… чисСл:

1: 1 = 1 Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅
2: 4 = 1 + 3 Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅
.
7: 49 = 1 + 3 + 5 + 7 + 9 + 11 + 13 Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅
.

1: 1 = 1 Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅
2: 4 = 1 + 1 + 2 Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅
.
4: 16 = 1 + 1 + 2 + 2 + 3 + 3 + 4 Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅
.

Π‘ΡƒΠΌΠΌΠ° ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΎΠ² ΠΏΠ΅Ρ€Π²Ρ‹Ρ… n Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅Π½Π°Ρ‚ΡƒΡ€Π°Π»ΡŒΠ½Ρ‹Ρ… чисСл вычисляСтся ΠΏΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ [1] :

Бпособ 2, ΠΌΠ΅Ρ‚ΠΎΠ΄ нСизвСстных коэффициСнтов:

βˆ‘ n = 1 ∞ 1 n 2 = 1 1 2 + 1 2 2 + β‹― + 1 n 2 + β‹― = Ο€ 2 6 >>= >>+ >>+dots + >>+dots = >> Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅

Π§Π΅Ρ‚Ρ‹Ρ€Π΅ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π° Π½Π΅ ΠΌΠΎΠ³ΡƒΡ‚ ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Ρ‹Π²Π°Ρ‚ΡŒ Π°Ρ€ΠΈΡ„ΠΌΠ΅Ρ‚ΠΈΡ‡Π΅ΡΠΊΡƒΡŽ ΠΏΡ€ΠΎΠ³Ρ€Π΅ΡΡΠΈΡŽ. [3] АрифмСтичСскиС прогрСссии ΠΈΠ· Ρ‚Ρ€Ρ‘Ρ… ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΎΠ² ΡΡƒΡ‰Π΅ΡΡ‚Π²ΡƒΡŽΡ‚ β€” Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€: 1, 25, 49.

КаТдоС Π½Π°Ρ‚ΡƒΡ€Π°Π»ΡŒΠ½ΠΎΠ΅ число ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ прСдставлСно ΠΊΠ°ΠΊ сумма Ρ‡Π΅Ρ‚Ρ‹Ρ€Ρ‘Ρ… ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΎΠ² (Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠ° Π›Π°Π³Ρ€Π°Π½ΠΆΠ° ΠΎ суммС Ρ‡Π΅Ρ‚Ρ‹Ρ€Ρ‘Ρ… ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΎΠ²).

4900 β€” СдинствСнноС число > 1, ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ΅ являСтся ΠΎΠ΄Π½ΠΎΠ²Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹ΠΌ ΠΈ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π°Π»ΡŒΠ½Ρ‹ΠΌ.

Π‘ΡƒΠΌΠΌΡ‹ ΠΏΠ°Ρ€ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½Ρ‹Ρ… чисСл ΡΠ²Π»ΡΡŽΡ‚ΡΡ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹ΠΌΠΈ числами.

Π’ дСсятичной записи ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹Π΅ числа ΠΈΠΌΠ΅ΡŽΡ‚ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠ΅ свойства:

ГСомСтричСски Ρ‚Π°ΠΊΠΎΠ΅ число ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ прСдставлСно Π² Π²ΠΈΠ΄Π΅ ΠΏΠ»ΠΎΡ‰Π°Π΄ΠΈ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π° с цСлочислСнной стороной.

НапримСр, 9 β€” это ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ΅ число, Ρ‚Π°ΠΊ ΠΊΠ°ΠΊ ΠΎΠ½ΠΎ ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ записано Π² Π²ΠΈΠ΄Π΅ 3 Γ— 3 (ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ прСдставлСно Π² Π²ΠΈΠ΄Π΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π° 3 Γ— 3 Ρ‚ΠΎΡ‡ΠΊΠΈ).

БвязанныС понятия

Π’ Ρ‚Π΅ΠΎΡ€ΠΈΠΈ чисСл ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹ΠΌ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½Ρ‹ΠΌ числом (ΠΈΠ»ΠΈ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½Ρ‹ΠΌ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹ΠΌ числом) называСтся число, ΡΠ²Π»ΡΡŽΡ‰Π΅Π΅ΡΡ ΠΊΠ°ΠΊ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½Ρ‹ΠΌ, Ρ‚Π°ΠΊ ΠΈ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹ΠΌ.

Упоминания Π² Π»ΠΈΡ‚Π΅Ρ€Π°Ρ‚ΡƒΡ€Π΅

БвязанныС понятия (ΠΏΡ€ΠΎΠ΄ΠΎΠ»ΠΆΠ΅Π½ΠΈΠ΅)

Π’ Ρ‚Π΅ΠΎΡ€ΠΈΠΈ чисСл Π³Π»Π°Π΄ΠΊΠΈΠΌ числом называСтся Ρ†Π΅Π»ΠΎΠ΅ число, всС простыС Π΄Π΅Π»ΠΈΡ‚Π΅Π»ΠΈ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ ΠΌΠ°Π»Ρ‹.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅

Однако Π½Π΅ всС Π΅Π³ΠΎ Π·Π½Π°ΡŽΡ‚. Π’ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π΅ этого объСм вычислСний увСличиваСтся, Π° Ρ‚Π°ΠΊΠΆΠ΅ Π΄ΠΎΠΏΡƒΡΠΊΠ°ΡŽΡ‚ΡΡ ошибки. Он Ρ‚Π°ΠΊΠΆΠ΅ примСняСтся для нахоТдСния ΠΊΠΎΡ€Π½Π΅ΠΉ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ ΠΈ построСния Π³Ρ€Π°Ρ„ΠΈΠΊΠΎΠ².

ΠžΠ±Ρ‰Π°Ρ информация

Π’Ρ‹Π΄Π΅Π»ΠΈΡ‚ΡŒ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ ΠΈΠ· ΠΌΠ½ΠΎΠ³ΠΎΡ‡Π»Π΅Π½Π° Π²Ρ‚ΠΎΡ€ΠΎΠΉ стСпСни ΠΎΠ·Π½Π°Ρ‡Π°Π΅Ρ‚, Ρ‡Ρ‚ΠΎ Π΅Π³ΠΎ слСдуСт привСсти ΠΊ Π±ΠΎΠ»Π΅Π΅ Ρ‡ΠΈΡ‚Π°Π±Π΅Π»ΡŒΠ½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅. Π­Ρ‚Π° опСрация примСняСтся Π² ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΡ… случаях: ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅, Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅, построСниС Π³Ρ€Π°Ρ„ΠΈΠΊΠΎΠ² ΠΈ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ (Ρ‡Π°Ρ‰Π΅ β€” Π² послСдних Π΄Π²ΡƒΡ…).

Π—Π° основу взяты Ρ‚Ρ€ΠΈ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ сокращСнного умноТСния (Ρ€Π°Π·Π»ΠΎΠΆΠ΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ ΠΌΠ½ΠΎΠ³ΠΎΡ‡Π»Π΅Π½Π° Π½Π° ΠΌΠ½ΠΎΠΆΠΈΡ‚Π΅Π»ΠΈ), ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ спСциалисты Ρ€Π΅ΠΊΠΎΠΌΠ΅Π½Π΄ΡƒΡŽΡ‚ Π·Π°ΠΏΠΎΠΌΠ½ΠΈΡ‚ΡŒ ΠΈΠ»ΠΈ Π²Ρ‹ΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΡ‚Π΄Π΅Π»ΡŒΠ½ΠΎ.

К Π½ΠΈΠΌ относятся ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠ΅ ΡΠΎΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡ:

БущСствуСт ΠΏΡ€Π°Π²ΠΈΠ»ΠΎ, ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡŽΡ‰Π΅Π΅ Π²Ρ‹ΠΏΠΎΠ»Π½ΠΈΡ‚ΡŒ ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΡŽ упрощСния ΠΌΠ½ΠΎΠ³ΠΎΡ‡Π»Π΅Π½Π° ay 2 + by + c Π²Ρ‚ΠΎΡ€ΠΎΠΉ стСпСни ΠΏΡƒΡ‚Π΅ΠΌ разлоТСния Π΅Π³ΠΎ Π½Π° ΠΌΠ½ΠΎΠΆΠΈΡ‚Π΅Π»ΠΈ. Π­Ρ‚ΠΎ ΠΎΠ·Π½Π°Ρ‡Π°Π΅Ρ‚, Ρ‡Ρ‚ΠΎ Π΅Π³ΠΎ слСдуСт свСсти (ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Ρ‚ΡŒ) ΠΊ Π²ΠΈΠ΄Ρƒ a * (y β€” y0)^2 + y0.

Π£Π½ΠΈΠ²Π΅Ρ€ΡΠ°Π»ΡŒΠ½Ρ‹ΠΉ Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌ

Алгоритмом называСтся комплСксноС Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅, состоящСС ΠΈΠ· ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ Π½Π°Π±ΠΎΡ€Π° ΠΏΡ€Π°Π²ΠΈΠ». ΠŸΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ ay 2 + by + c осущСствляСтся ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ:

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅

Для ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π° разности Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌ ΠΏΠΎΡ…ΠΎΠΆΠΈΠΉ. Π€ΠΎΡ€ΠΌΡƒΠ»Π° выдСлСния ΠΏΠΎΠ»Π½ΠΎΠ³ΠΎ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π° ΠΈΠΌΠ΅Π΅Ρ‚ Ρ‚Π°ΠΊΠΎΠΉ Π²ΠΈΠ΄: [(a)^(Β½) * y]^2 β€” [(2 * (a)^(Β½) * y)] * (b / [2 * (a)^(Β½)] + [(b / (2 * (a)^(Β½))]^2 β€” [(b / (2 * (a)^(Β½))]^2 + c. Π‘ΠΎΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ Ρ‚Π°ΠΊΠΆΠ΅ примСняСтся ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ°ΠΌΠΈ Π² Π°Π»Π³Π΅Π±Ρ€Π΅, Π° Ρ‚Π°ΠΊΠΆΠ΅ Π² Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… дисциплинах с Ρ„ΠΈΠ·ΠΈΠΊΠΎ-матСматичСским ΡƒΠΊΠ»ΠΎΠ½ΠΎΠΌ. Для этого Π½ΡƒΠΆΠ½ΠΎ Π²ΠΎΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒΡΡ Ρ‚Π°ΠΊΠΈΠΌ ΠΏΠΎΠ΄Ρ€ΠΎΠ±Π½Ρ‹ΠΌ объяснСниСм ΠΏΡ€Π°Π²ΠΈΠ» Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ:

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅

Число Β«Π°Β» ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌ ΠΈΠ»ΠΈ ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌ. Если Π΅Π³ΠΎ ΠΏΡ€ΠΈΠ±Π°Π²ΠΈΡ‚ΡŒ ΠΊ «с», Ρ‚ΠΎ Π΄ΠΎΠ»ΠΆΠ½ΠΎ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΡ‚ΡŒΡΡ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ «с1Β».

ΠŸΡ€ΠΈ ΠΈΠ·Π²Π»Π΅Ρ‡Π΅Π½ΠΈΠΈ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ корня Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ Π΄ΠΎΠ»ΠΆΠ΅Π½ Π±Ρ‹Ρ‚ΡŒ Ρ†Π΅Π»Ρ‹ΠΌ. Π§Ρ‚ΠΎΠ±Ρ‹ равСнство Π½Π΅ Π½Π°Ρ€ΡƒΡˆΠ°Π»ΠΎΡΡŒ, слСдуСт ΠΏΡ€ΠΈΠ±Π°Π²ΠΈΡ‚ΡŒ ΠΈ ΠΎΡ‚Π½ΡΡ‚ΡŒ Β«Π°Β».

Алгоритм записан Π² ΠΎΠ±Ρ‰Π΅ΠΌ Π²ΠΈΠ΄Π΅. Π’ Ρ‚Π΅ΠΎΡ€ΠΈΠΈ ΠΎΠ½ являСтся слоТным для понимания.

Однако ΠΏΡ€ΠΈ практичСском ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠΈ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ нСясности ΠΈΡΡ‡Π΅Π·Π°ΡŽΡ‚. Для Π½Π°Ρ‡Π°Π»Π° Π½ΡƒΠΆΠ½ΠΎ Ρ€Π°Π·ΠΎΠ±Ρ€Π°Ρ‚ΡŒ, Π³Π΄Π΅ Π΅Π³ΠΎ Π½ΡƒΠΆΠ½ΠΎ ΠΏΡ€ΠΈΠΌΠ΅Π½ΡΡ‚ΡŒ.

Π‘Ρ„Π΅Ρ€Ρ‹ использования

ΠœΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠΈ Ρ€Π΅ΠΊΠΎΠΌΠ΅Π½Π΄ΡƒΡŽΡ‚ Ρ€Π°Π·ΠΎΠ±Ρ€Π°Ρ‚ΡŒ основныС ΠΏΡ€ΠΈΠΌΠ΅Ρ€Ρ‹ выдСлСния ΠΏΠΎΠ»Π½ΠΎΠ³ΠΎ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π°. Π‘Π»Π΅Π΄ΡƒΠ΅Ρ‚ ΠΈΡ… ΡΠΈΡΡ‚Π΅ΠΌΠ°Ρ‚ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ, ΠΏΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ это ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΡ‚ ΠΎΠΏΡ‚ΠΈΠΌΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ процСсс Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ. Основной смысл Π·Π°ΠΊΠ»ΡŽΡ‡Π°Π΅Ρ‚ΡΡ Π² ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠΈ ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΡ… Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΠΎΠ² для экономии Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ.

НСкоторыС ΡΡ‡ΠΈΡ‚Π°ΡŽΡ‚, Ρ‡Ρ‚ΠΎ шаблонами ΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒΡΡ Π½Π΅ΠΆΠ΅Π»Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ. Однако Π² этом Π΅ΡΡ‚ΡŒ ΠΈ свои ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ стороны. НапримСр, ΠΏΡ€ΠΈ поступлСнии Π² ΠΊΠ°ΠΊΠΎΠ΅-Π»ΠΈΠ±ΠΎ Π²Ρ‹ΡΡˆΠ΅Π΅ ΡƒΡ‡Π΅Π±Π½ΠΎΠ΅ Π·Π°Π²Π΅Π΄Π΅Π½ΠΈΠ΅ слСдуСт ΠΏΡ€ΠΈΠ΄Π΅Ρ€ΠΆΠΈΠ²Π°Ρ‚ΡŒΡΡ общСпринятых Π²Π°Ρ€ΠΈΠ°Π½Ρ‚ΠΎΠ² Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ. ΠŸΡ€ΠΈ ΡƒΡΠΏΠ΅ΡˆΠ½ΠΎΠΌ зачислСнии Π² унивСрситСт ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡ€ΠΈΠΌΠ΅Π½ΠΈΡ‚ΡŒ нСстандартныС ΠΏΠΎΠ΄Ρ…ΠΎΠ΄Ρ‹ выполнСния задания.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅

Π¨Π°Π±Π»ΠΎΠ½Ρ‹ ΡˆΠΈΡ€ΠΎΠΊΠΎ ΠΏΡ€ΠΈΠΌΠ΅Π½ΡΡŽΡ‚ΡΡ Π½Π΅ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ Π² дисциплинах с Ρ„ΠΈΠ·ΠΈΠΊΠΎ-матСматичСским ΡƒΠΊΠ»ΠΎΠ½ΠΎΠΌ, Π½ΠΎ ΠΈ Π² ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠΈ.

РаспространСнными заданиями с ΡƒΠΏΡ€ΠΎΡ‰Π΅Π½ΠΈΠ΅ΠΌ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ Ρ‚Ρ€Π΅Ρ…Ρ‡Π»Π΅Π½Π° ΡΠ²Π»ΡΡŽΡ‚ΡΡ:

Для нахоТдСния Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΉ слСдуСт ΠΏΠΎΠ΄Ρ€ΠΎΠ±Π½ΠΎ Ρ€Π°Π·ΠΎΠ±Ρ€Π°Ρ‚ΡŒ Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΡ‹. НСт нСобходимости Π·Π°ΡƒΡ‡ΠΈΠ²Π°Ρ‚ΡŒ основныС опрСдСлСния, Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ ΠΈ ΠΏΡ€Π°Π²ΠΈΠ»Π°. Π˜Ρ… слСдуСт ΠΏΠΎΠ½ΠΈΠΌΠ°Ρ‚ΡŒ, ΠΏΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ Π² философии Π΅ΡΡ‚ΡŒ Ρ‚Π°ΠΊΠΎΠΉ Π·Π°ΠΊΠΎΠ½: Β«ΠΏΠ΅Ρ€Π΅Ρ…ΠΎΠ΄ количСства Π² качСство». ΠšΡ€ΠΎΠΌΠ΅ Ρ‚ΠΎΠ³ΠΎ, программистами Π±Ρ‹Π»ΠΈ созданы ΡΠΏΠ΅Ρ†ΠΈΠ°Π»ΡŒΠ½Ρ‹Π΅ ΠΎΠ½Π»Π°ΠΉΠ½-ΠΊΠ°Π»ΡŒΠΊΡƒΠ»ΡΡ‚ΠΎΡ€Ρ‹, ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡŽΡ‰ΠΈΠ΅ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΡ‚ΡŒ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚, Ρ€Π°Π·Π»ΠΎΠΆΠΈΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΡ‡Π»Π΅Π½ Π½Π° ΠΌΠ½ΠΎΠΆΠΈΡ‚Π΅Π»ΠΈ ΠΈ Ρ‚Π°ΠΊ Π΄Π°Π»Π΅Π΅.

ΠŸΠΎΡΡ‚Ρ€ΠΎΠ΅Π½ΠΈΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊΠΎΠ²

Π“Ρ€Π°Ρ„ΠΈΠΊΠΎΠΌ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ z = a[y β€” c]^2 + d являСтся кривая, которая называСтся ΠΏΠ°Ρ€Π°Π±ΠΎΠ»ΠΎΠΉ. Π”Π°Π»Π΅Π΅ слСдуСт ввСсти ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠ΅ пояснСния:

Π‘Π»Π΅Π΄ΡƒΠ΅Ρ‚ ΠΎΡ‚ΠΌΠ΅Ρ‚ΠΈΡ‚ΡŒ, Ρ‡Ρ‚ΠΎ располоТСниС Π³Ρ€Π°Ρ„ΠΈΠΊΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ зависит ΠΎΡ‚ Π²Ρ‹ΡˆΠ΅ΠΎΠΏΠΈΡΠ°Π½Π½Ρ‹Ρ… коэффициСнтов. Для построСния ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹ ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠΈ Ρ€Π΅ΠΊΠΎΠΌΠ΅Π½Π΄ΡƒΡŽΡ‚ Ρ€Π°Π·ΠΎΠ±Ρ€Π°Ρ‚ΡŒ частныС случаи:

    НаправлСниС Π²Π΅Ρ‚Π²Π΅ΠΉ: Π²Π²Π΅Ρ€Ρ… (a > 0) ΠΈ Π²Π½ΠΈΠ· (a 0), ΠΏΠΎ ОУ Π² ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠΌ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠΈ (c 2 + bz + с = 0 ΠΎΠ·Π½Π°Ρ‡Π°Π΅Ρ‚ Π½Π°ΠΉΡ‚ΠΈ всС Π΅Π³ΠΎ ΠΊΠΎΡ€Π½ΠΈ ΠΈΠ»ΠΈ Π΄ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ, Ρ‡Ρ‚ΠΎ ΠΈΡ… Π½Π΅Ρ‚. Π•Π³ΠΎ ΠΌΠΎΠΆΠ½ΠΎ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ нСсколькими ΠΌΠ΅Ρ‚ΠΎΠ΄Π°ΠΌΠΈ: Π½Π°Ρ…ΠΎΠΆΠ΄Π΅Π½ΠΈΠ΅ дискриминанта, использованиС Ρ‚Π΅ΠΎΡ€Π΅ΠΌΡ‹ Π’ΠΈΠ΅Ρ‚Π° ΠΈΠ»ΠΈ прСдставлСниС Π² Π²ΠΈΠ΄Π΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π°.

ΠŸΡ€ΠΈ использовании ΠΏΠ΅Ρ€Π²ΠΎΠ³ΠΎ ΠΌΠ΅Ρ‚ΠΎΠ΄Π° Π½ΡƒΠΆΠ½ΠΎ Π²ΠΎΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒΡΡ Ρ‚Π°ΠΊΠΈΠΌ Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΠΎΠΌ:

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅

Когда коэффициСнт с = 0 (az 2 + bz = 0), Ρ‚ΠΎ Ρ€Π΅ΡˆΠΈΡ‚ΡŒ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ ΠΎΡ‡Π΅Π½ΡŒ просто.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅

Для этого Π½ΡƒΠΆΠ½ΠΎ произвСсти Ρ‚Π°ΠΊΠΈΠ΅ дСйствия:

Π’Ρ€Π΅Ρ‚ΠΈΠΉ способ β€” Π²Ρ‹Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π° ΠΈΠ»ΠΈ использованиС Ρ„ΠΎΡ€ΠΌΡƒΠ» сокращСнного умноТСния. Π’ этом случаС Π½Π΅Ρ‚ нСобходимости ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ стандартный ΠΏΠ΅Ρ€Π²Ρ‹ΠΉ ΠΌΠ΅Ρ‚ΠΎΠ΄. Если ΠΏΠΎΡΡ‚Ρ€ΠΎΠΈΡ‚ΡŒ Π³Ρ€Π°Ρ„ΠΈΠΊ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ, Ρ‚ΠΎ корнями Π±ΡƒΠ΄ΡƒΡ‚ ΡΠ²Π»ΡΡ‚ΡŒΡΡ Π΅Π³ΠΎ Ρ‚ΠΎΡ‡ΠΊΠΈ пСрСсСчСния с осью абсцисс. МоТно ΠΏΠΎΠ»ΡƒΡ‡ΠΈΡ‚ΡŒ Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ ΠΏΡ€ΠΈ ΠΏΠΎΠΌΠΎΡ‰ΠΈ матСматичСских ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠΉ. ПослСдний считаСтся ΠΌΠ΅Π½Π΅Π΅ Ρ‚ΠΎΡ‡Π½Ρ‹ΠΌ способом, ΠΏΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ корнями ΠΌΠΎΠ³ΡƒΡ‚ Π±Ρ‹Ρ‚ΡŒ ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Π΅ числа, Π° Π½Π΅ Π΄Π΅ΠΉΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Π΅.

Π£ΠΏΡ€ΠΎΡ‰Π΅Π½ΠΈΠ΅ Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½ΠΈΠΉ

Π‘Ρ‹Π²Π°ΡŽΡ‚ случаи, ΠΊΠΎΠ³Π΄Π° слСдуСт Ρ€Π΅ΡˆΠΈΡ‚ΡŒ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅, упростив Π΅Π³ΠΎ. НапримСр, Ρ‡Ρ‚ΠΎΠ±Ρ‹ Ρ€Π΅ΡˆΠΈΡ‚ΡŒ равСнство (2z 2 β€” 5z + 7) + (z + 5)(z + 3) = 0, Π½ΡƒΠΆΠ½ΠΎ Ρ€Π°ΡΠΊΡ€Ρ‹Ρ‚ΡŒ скобки, Π° Π·Π°Ρ‚Π΅ΠΌ привСсти ΠΏΠΎΠ΄ΠΎΠ±Π½Ρ‹Π΅ слагаСмыС. Π­Ρ‚ΠΎΡ‚ способ называСтся ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ матСматичСских ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠΉ.

Π’ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… случаях слСдуСт возвСсти Π² ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚, Π° Π·Π°Ρ‚Π΅ΠΌ привСсти ΠΏΠΎΠ΄ΠΎΠ±Π½Ρ‹Π΅ слагаСмыС. ПослС этого Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎ ΠΎΠΏΡΡ‚ΡŒ Π²ΠΎΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒΡΡ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π°ΠΌΠΈ, сгруппировав элСмСнты.

Π­Ρ‚ΠΎΡ‚ шаг позволяСт ΠΎΠΏΡ‚ΠΈΠΌΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ процСсс вычислСний. НапримСр, Π½Π΅Ρ‚ нСобходимости ΠΏΠΎΠ΄ΡΡ‚Π°Π²Π»ΡΡ‚ΡŒ числСнныС значСния Π² Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ z 2 + 4z + 16 + z 2 β€” 16. Π•Π³ΠΎ ΠΌΠΎΠΆΠ½ΠΎ просто ΡƒΠΏΡ€ΠΎΡΡ‚ΠΈΡ‚ΡŒ: z 2 + 8z + 16 + z 2 β€” 16 = (z + 4)^2 + (z β€” 4)(z + 4) = (z + 4)(z + 4 + z β€” 4) = 2z (z + 4).

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ

НСобходимо Ρ€Π΅ΡˆΠΈΡ‚ΡŒ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ z^2 + 20z + 50 = 6z + 5 нСсколькими способами, ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠ΅ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹: Π½Π°Ρ…ΠΎΠΆΠ΄Π΅Π½ΠΈΠ΅ дискриминанта, Ρ„ΠΎΡ€ΠΌΡƒΠ» разлоТСния, Ρ‚Π΅ΠΎΡ€Π΅ΠΌΡ‹ Π’ΠΈΠ΅Ρ‚Π° ΠΈ ΠΏΠΎΡΡ‚Ρ€ΠΎΠΈΡ‚ΡŒ Π³Ρ€Π°Ρ„ΠΈΠΊ. ВычислСниС ΠΊΠΎΡ€Π½Π΅ΠΉ ΠΏΠ΅Ρ€Π²Ρ‹ΠΌ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ (Ρ‡Π΅Ρ€Π΅Π· дискриминант) выглядит Ρ‚Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ:

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅

Π”Π²Π° корня подходят, ΠΏΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ равСнство 0 = 0 ΡΠΎΠ±Π»ΡŽΠ΄Π°Π΅Ρ‚ΡΡ. БпСциалисты Ρ€Π΅ΠΊΠΎΠΌΠ΅Π½Π΄ΡƒΡŽΡ‚ ΠΎΠΏΡƒΡΠΊΠ°Ρ‚ΡŒ ΠΏΡ€ΠΎΠ²Π΅Ρ€ΠΊΡƒ, ΠΏΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ Π·Π°Π΄Π°Ρ‡Π° Ρ€Π΅ΡˆΠ°Π΅Ρ‚ΡΡ нСсколькими способами.

Π’Ρ€Π΅Ρ‚ΠΈΠΉ ΠΌΠ΅Ρ‚ΠΎΠ΄ Π·Π°ΠΊΠ»ΡŽΡ‡Π°Π΅Ρ‚ΡΡ Π² использовании Ρ„ΠΎΡ€ΠΌΡƒΠ» разлоТСния. Π˜Ρ… Ρ€Π°Π·Ρ€Π΅ΡˆΠ°Π΅Ρ‚ΡΡ ΠΏΡ€ΠΈΠΌΠ΅Π½ΡΡ‚ΡŒ нСсколько Ρ€Π°Π· ΠΈ Π² любом порядкС. Алгоритм Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ выглядит Ρ‚Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ:

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅

ИспользованиС графичСского ΠΌΠ΅Ρ‚ΠΎΠ΄Π° ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΡ‚ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΡ‚ΡŒ Ρ‚ΠΎΡ‡Π½Ρ‹Π΅ значСния, ΠΏΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ Π²ΠΎ всСх ΠΏΡ€Π΅Π΄Ρ‹Π΄ΡƒΡ‰ΠΈΡ… способах ΠΎΠ½ΠΈ ΡΠ²Π»ΡΡŽΡ‚ΡΡ Ρ†Π΅Π»Ρ‹ΠΌΠΈ числами. НСобходимо Π·Π°ΠΏΠΈΡΠ°Ρ‚ΡŒ уравнСния ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹ (ΠΌΠΎΠΆΠ½ΠΎ Π²ΠΎΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒΡΡ Π²Ρ‚ΠΎΡ€Ρ‹ΠΌ ΠΏΡƒΠ½ΠΊΡ‚ΠΎΠΌ Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΠ° Ρ‚Ρ€Π΅Ρ‚ΡŒΠ΅Π³ΠΎ ΠΌΠ΅Ρ‚ΠΎΠ΄Π°): (z + 7)^2 – 4. Анализ ΠΏΠ΅Ρ€Π΅Π΄ построСниСм выглядит Ρ‚Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ:

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

Π”ΠΎΠ±Π°Π²ΠΈΡ‚ΡŒ ΠΊΠΎΠΌΠΌΠ΅Π½Ρ‚Π°Ρ€ΠΈΠΉ

Π’Π°Ρˆ адрСс email Π½Π΅ Π±ΡƒΠ΄Π΅Ρ‚ ΠΎΠΏΡƒΠ±Π»ΠΈΠΊΠΎΠ²Π°Π½. ΠžΠ±ΡΠ·Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ поля ΠΏΠΎΠΌΠ΅Ρ‡Π΅Π½Ρ‹ *