Что такое полосы равной толщины и равного наклона
Полосы равной толщины и равного наклона.
Классическим примером полос равной толщины являются кольца Ньютона. Они наблюдаются при отражении света от верхней и нижней границ тонкой воздушной прослойки, образованной поверхностями, соприкасающихся друг с другом толстой плоскопараллельной стеклянной пластинки и плосковыпуклой линзы с большим радиусом кривизны (рис. 32.4).

обращенные друг к другу практически параллельными. Тем более, что


![]() |
![]() |
являются когерентными при малой толщине прослойки h (длина когерентности 
На радиусе r вдоль окружности толщина прослойки h будет одинаковой, и в этом случае наблюдаются интерференционные полосы равной толщины, имеющие форму колец с центром в точке касания линзы О. Эта интерференционная картина была впервые описана в 1675 г. Ньютоном и называется кольцами Ньютона.
Из рисунка 32.4 видно, что оптическая разность хода интерферирующих волн 2 и 3 Δ = 2hn +λ /2.
Коэффициент преломления воздуха n = 1. Слагаемое λ /2 возникает из-за того, что при отражении от оптически более плотной среды волны 3 (от стекла) оптический ход волны скачком увеличивается на λ /2. В том месте воздушного зазора, где выполняется условие
Δ = 2d + λ /2 = mλ (условие максимума),
наблюдаются светлые кольца, а там, где
Δ = 2d + λ /2 = (2m + 1) λ /2 (условие минимума),
возникают темные кольца. В месте соприкосновения линзы с плоскостью
![]() |
![]() |
вид концентрических колец. Таким образом, полосы равной толщины – это интерференционные полосы, возникающие в результате интерференции когерентных волн от мест с одинаковой толщиной.
Полосы равного наклона – интерференционные полосы, возникающие в результате наложения лучей, падающих на плоскопараллельную пластинку под одинаковыми углами.
Рассмотрим оптическую схему на рис. 32.6. Почти монохроматический
![]() | ![]() |
задней поверхности пластины, снова преломляясь, попадает на экран (2-2΄). Если длина когерентности 
Вопросы для самоконтроля.
1. В чем состоит явление интерференции?
2. Что такое когерентность?
3. В чем состоит временная когерентность?
Каков смысл времени и длины когерентности?
4. В чем состоит пространственная когерентность?
Каков смысл радиуса когерентности?
5. Что называется оптической длиной пути
и оптической разностью хода?
6. Каковы условия получения интерференционных максимумов и мини-
мумов при положении света от двух когерентных источников?
7. Как получаются полосы равной толщины и равного наклона?
ДИФРАКЦИЯ СВЕТА
1. Дифракция света. Принцип Гюйгенса-Френеля. Дифракция Френеля и Фраунгофера. Метод зон Френеля. Прямолинейное распространение света. Дифракция Френеля на круглом отверстии и диске.
2. Дифракция Фраунгофера на одной щели.
3. Дифракция Фраунгофера на одномерной дифракционной решетке. Многолучевая интерференция*.
Что такое полосы равной толщины и равного наклона
Интерференцию света по методу деления амплитуды во многих отношениях наблюдать проще, чем в опытах с делением волнового фронта. Один из способов, использующих такой метод, – опыт Поля.
В опыте Поля свет от источника S отражается двумя поверхностями тонкой прозрачной плоскопараллельной пластинки (рис. 8.7).
В любую точку P, находящуюся с той же стороны от пластинки, что и источник, приходят два луча. Эти лучи образуют интерференционную картину.
Для определения вида полос можно представить себе, что лучи выходят из мнимых изображений S1 и S2 источника S, создаваемых поверхностями пластинки. На удаленном экране, расположенном параллельно пластинке, интерференционные полосы имеют вид концентрических колец с центрами на перпендикуляре к пластинке, проходящем через источник S. Этот опыт предъявляет менее жесткие требования к размерам источника S, чем рассмотренные выше опыты. Поэтому можно в качестве S применить ртутную лампу без вспомогательного экрана с малым отверстием, что обеспечивает значительный световой поток. С помощью листочка слюды (толщиной 0,03 – 0,05 мм) можно получить яркую интерференционную картину прямо на потолке и на стенах аудитории. Чем тоньше пластинка, тем крупнее масштаб интерференционной картины, т.е. больше расстояние между полосами.
Полосы равного наклона
Особенно важен частный случай интерференции света, отраженного двумя поверхностями плоскопараллельной пластинки, когда точка наблюдения P находится в бесконечности, т.е. наблюдение ведется либо глазом, аккомодированным на бесконечность, либо на экране, расположенном в фокальной плоскости собирающей линзы (рис. 8.8).
В этом случае оба луча, идущие от S к P, порождены одним падающим лучом и после отражения от передней и задней поверхностей пластинки параллельны друг другу. Оптическая разность хода между ними в точке P такая же, как на линии DC:

Здесь n – показатель преломления материала пластинки. Предполагается, что над пластинкой находится воздух, т.е. 






Следует также учесть, что при отражении волны от верхней поверхности пластинки в соответствии с формулами Френеля ее фаза изменяется на π. Поэтому разность фаз δ складываемых волн в точке P равна:

где 
В соответствии с последней формулой светлые полосы расположены в местах, для которых 
Полосы равного наклона можно получить не только в отраженном свете, но и в свете, прошедшем сквозь пластинку. В этом случае один из лучей проходит прямо, а другой – после двух отражений на внутренней стороне пластинки. Однако видимость полос при этом низкая.
Для наблюдения полос равного наклона вместо плоскопараллельной пластинки удобно использовать интерферометр Майкельсона (рис. 8.9). Рассмотрим схему интерферометра Майкельсона: з1 и з2 – зеркала. Полупрозрачное зеркало 









Интерференция от клина. Полосы равной толщины
Мы рассмотрели интерференционные опыты, в которых деление амплитуды световой волны от источника происходило в результате частичного отражения на поверхностях плоскопараллельной пластинки. Локализованные полосы при протяженном источнике можно наблюдать и в других условиях. Оказывается, что для достаточно тонкой пластинки или пленки (поверхности которой не обязательно должны быть параллельными и вообще плоскими) можно наблюдать интерференционную картину, локализованную вблизи отражающей поверхности. Возникающие при этих условиях полосы называют полосами равной толщины. В белом свете интерференционные полосы окрашены. Поэтому такое явление называют цветами тонких пленок. Его легко наблюдать на мыльных пузырях, на тонких пленках масла или бензина, плавающих на поверхности воды, на пленках окислов, возникающих на поверхности металлов при закалке, и т.п.
Рассмотрим интерференционную картину, получаемую от пластинок переменной толщины (от клина).
Направления распространения световой волны, отраженной от верхней и нижней границы клина, не совпадают. Отраженные и преломленные лучи встречаются, поэтому интерференционную картину при отражении от клина можно наблюдать и без использования линзы, если поместить экран в плоскость точек пересечения лучей (хрусталик глаза помещают в нужную плоскость).
Интерференция будет наблюдаться только во 2-й области клина, так как в 1-й области оптическая разность хода будет больше длины когерентности.
Результат интерференции в точках 





Поскольку разность хода лучей, отразившихся от различных участков клина, будет неодинаковой, освещенность экрана будет неравномерной, на экране будут темные и светлые полосы (или цветные при освещении белым светом, как показано на рис. 8.11). Каждая из таких полос возникает в результате отражения от участков клина с одинаковой толщиной, поэтому их называют полосами равной толщины.
На рис. 8.12 изображена оправа, в которой зажаты две стеклянные пластины. Одна из них слегка выпуклая, так что пластины касаются друг друга в какой-то точке. И в этой точке наблюдается нечто странное: вокруг нее возникают кольца. В центре они почти не окрашены, чуть дальше переливаются всеми цветами радуги, а к краю теряют насыщенность цветов, блекнут и исчезают.
Так выглядит эксперимент, в XVII веке положивший начало современной оптике. Ньютон подробно исследовал это явление, обнаружил закономерности в расположении и окраске колец, а также объяснил их на основе корпускулярной теории света.
Кольцевые полосы равной толщины, наблюдаемые в воздушном зазоре между соприкасающимися выпуклой сферической поверхностью линзы малой кривизны и плоской поверхностью стекла (рис. 8.13), называют кольцами Ньютона.
Общий центр колец расположен в точке касания. В отраженном свете центр темный, так как при толщине воздушной прослойки, на много меньшей, чем длина волны 

Здесь использовано условие 



Если линзу постепенно отодвигать от поверхности стекла, то интерференционные кольца будут стягиваться к центру. При увеличении расстояния на 
Полосы равной толщины можно наблюдать и с помощью интерферометра Майкельсона, если одно из зеркал з1 или з2 (рис. 8.9) отклонить на небольшой угол.
Итак, полосы равного наклона получаются при освещении пластинки постоянной толщины ( 
















