Что такое попарно пересекающиеся прямые определение
Научная электронная библиотека
Пиралова О. Ф., Ведякин Ф. Ф.,
3.4. Взаимное положение прямых
Две прямые в пространстве могут пересекаться, скрещиваться и могут быть параллельны.
1. Пересекающиеся прямые
Пересекающимися прямыми называются такие прямые, которые имеют одну общую точку.
Из инвариантного свойства 5 следует, что проекция точки пересечения проекций прямых а и b есть точка пересечения этих прямых (рис. 3.4).
.
Рис. 3.4. Пересекающиеся прямые
2. Параллельные прямые
На рис. 3.5 изображены параллельные прямые – прямые, пересекающиеся в несобственной точке (прямые, лежащие в одной плоскости и пересекающиеся в бесконечно удаленной точке).
Из инвариантного свойства 6 следует, что проекции параллельных прямых а и b параллельны.
Скрещивающиеся прямые – это прямые, не лежащие в одной плоскости, это прямые не имеющие ни одной общей точки.
На комплексном чертеже (рис. 3.6) точки пересечения проекций этих прямых не лежат на одном перпендикуляре к оси Х (в отличие от пересекающихся прямых, см. рис. 3.4).
.
Рис. 3.5. Изображение параллельных прямых
.
Пересекающиеся прямые
Пересекающиеся прямые — это в евклидовой геометрии пересечение двух прямых может быть пустым множеством, точкой или прямой. Различение этих случаев и поиск точки пересечения используется, например, в компьютерной графике, при планировании движения и для обнаружения столкновений.
Содержание:
Понятие пересекающихся прямых
Определение. Если две прямые имеют только одну общую точку, то такие прямые называют пересекающимися.
На рисунке 2.291 прямые пересекаются в точке О.
Можно доказать такую теорему.
Теорема 1. Через две пересекающиеся прямые можно провести плоскость, и только одну.
Несколько прямых могут пересекаться не в одной точке, а, например, попарно. На рисунке 2.292 изображено пересечение трех прямых, каждые две из которых пересекаются только в одной точке. При этом образуется треугольник и вся эта фигура всегда лежит в одной плоскости.
Четыре прямые, каждые две из которых имеют только одну общую точку, образуют четырехугольник (рис. 2.293).
На рисунках 2.294, 2.295 изображены куб и тетраэдр, у которых продолжены их ребра. Мы видим, что в каждой вершине куба и тетраэдра пересекаются три прямые.
Эта лекция взята со страницы полного курса лекций по изучению предмета «Математика»:
Смотрите также дополнительные лекции по предмету «Математика»:
Присылайте задания в любое время дня и ночи в ➔
Официальный сайт Брильёновой Натальи Валерьевны преподавателя кафедры информатики и электроники Екатеринбургского государственного института.
Все авторские права на размещённые материалы сохранены за правообладателями этих материалов. Любое коммерческое и/или иное использование кроме предварительного ознакомления материалов сайта natalibrilenova.ru запрещено. Публикация и распространение размещённых материалов не преследует за собой коммерческой и/или любой другой выгоды.
Сколько точек пересечения могут иметь четыре попарно пересекающиеся прямые?
Сразу говорю, что задачу решать НЕ НАДО. Оставьте это мне. Я просто хочу разобраться, что означает «попарное пересекающиеся прямые».
У меня есть такая интерпретация: Имеется в виду, что все прямые «собраны» в пары. И каждая такая «сладкая парочка» пересекается другой такой же парой или «одиночной» прямой. Правда в этом конкретном случае «одиночек» нет, ибо количество прямых четное.
Я правильно все понимаю, или моя интерпретация неверна? Если неверна, то что тогда имеется в виду?
задан 23 Май ’13 13:26
I_Robot
183 ● 4 ● 17 ● 38
92% принятых
Здесь имеется в виду, что какие бы две прямые из четырёх мы ни взяли, они будут пересекаться.
«они будут пересекаться.» Может быть, более точным будет сказать «они ДОЛЖНЫ пересекаться»?
Кстати, преобразуйте пожалуйста свой комментарий в ответ, дабы я мог закрыть вопрос.
3 ответа
Можно сказать «они пересекаются», «они должны пересекаться», «они будут пересекаться». Это всё одна и та же мысль. Суть в том, что любые две прямые из четырёх имеют точку пересечения. Фактически, это означает, что среди прямых нет параллельных (хотя в принципе такие прямые могли бы быть в какой-то другой ситуации, и тогда ответ был бы другим). Слово «попарно» вообще очень часто используется в математике. Например, «даны три попарно различных числа». Это значит, что первое число не равно второму, а также не равно третьему, а второе число не равно третьему.
отвечен 23 Май ’13 13:57
Если речь идет об одной паре прямых, то в одной точке, а ежели о двух парах и более, то рассматриваютя разные варианты расположения уже самих пересекающихся пар прямых.
отвечен 13 Сен ’15 13:02
Можете ли дать ссылку на определение «попарно пересекающиеся прямые» из учебника? Например как построить 5 попарно пересекающихся прямых? Можно-ли из этого сделать вывод, что одна прямая может пересекать лишь 2 других?
отвечен 22 Сен ’17 19:18
Здравствуйте
Пересекающиеся прямые
Если две прямые имеют общую точку, то говорят, что эти прямые пересекаются. Такие прямые называют пересекающимися прямыми:
Точка пересечения — это точка, общая для двух или более геометрических фигур.
Перпендикуляр и наклонная
При пересечении вертикальной и горизонтальной прямой линии образуется четыре прямых угла. Такие линии, относительно друг к другу, называются перпендикулярными линиями или просто перпендикулярами:
Даже если прямые не являются вертикальной и горизонтальной линиями, но при пересечении образуют четыре прямых угла, то они всё равно являются перпендикулярными:
Если прямая линия пересекает другую не под прямым углом, то такая линия называется наклонной к прямой, которую она пересекает. При этом образуется четыре угла: два из них будут острыми и два тупыми:
Образованные острые углы равны и относительно друг друга будут называться вертикальными углами. То же самое можно сказать и об образованных тупых углах — они равные и вертикальные.
Пересекающиеся прямые
Так как проекция прямой есть прямая, то проекцией пересекающихся прямых будут их пересекающиеся проекции:
Чтобы определить на эпюре (комплексном чертеже), пересекаются ли данные прямые в пространстве, достаточно провести линию связи из одной точки пересечения проекций к другой. Если проекции точки пересечения прямых будут лежать на одной линии связи, то прямые пересекаются. Чтобы построить на эпюре (комплексном чертеже), пересекающиеся прямые в пространстве, достаточно провести линию связи из одной точки пересечения проекций прямых к другой. Проекцию точки пересечения прямых на другой плоскости проекций находим в пересечении линии проекционной связи, с проекцией одной из пересекающихся прямых, через нее проводим проекцию другой прямой. Если одна из прямых параллельна профильной плоскости проекций, то для определения положения точки пересечения прямых в пространстве необходимо построить третью (профильную) проекцию.
Построить проекции прямой d, пересекающей заданные прямые a, b и c
Продолжив проекции прямых a и b находим M` =a` ∩ b` и M»=a» ∩ b» проекции точки M, которые совпадают а поэтому находятся на одной линии проекционной связи и следовательно a и b пересекающиеся прямые. Через точку M пересечения прямых a, b и прямую c проводим прямую d(d`, d»): M=a ∩ b; N`= c` ∩ d` ^ N»= c» ∩ d»; N ∈ d ^ M ∈ d