Что такое поперечный изгиб
Техническая механика
Сопротивление материалов
Изгиб
Основные понятия об изгибе
Деформация изгиба характеризуется потерей прямолинейности или первоначальной формы линией балки (ее осью) при приложении внешней нагрузки. При этом, в отличие от деформации сдвига, линия балки изменяет свою форму плавно.
Легко убедиться, что на сопротивляемость изгибу влияет не только площадь поперечного сечения балки (бруса, стержня и т. д.), но и геометрическая форма этого сечения.
На изгиб могут работать многие элементы конструкций – оси, валы, балки, зубья зубчатых колес, рычаги, тяги и т. д.
Чистый и поперечный изгиб балки
Чистым изгибом называется такой вид деформации, при котором в любом поперечном сечении бруса возникает только изгибающий момент (рис. 2).
Деформация чистого изгиба будет, например, иметь место, если к прямому брусу в плоскости, проходящей через ось, приложить две равные по величине и противоположные по знаку пары сил. Тогда в каждом сечении бруса будут действовать только изгибающие моменты.
При изучении деформации изгиба будем мысленно представлять себе, что балка (брус) состоит из бесчисленного количества продольных, параллельных оси волокон.
Чтобы наглядно представить деформацию прямого изгиба, проведем опыт с резиновым брусом, на котором нанесена сетка продольных и поперечных линий.
Подвергнув такой брус прямому изгибу, можно заметить, что (рис. 1):
— поперечные линии останутся при деформации прямыми, но повернутся под углом друг другу;
— сечения бруса расширятся в поперечном направлении на вогнутой стороне и сузятся на выпуклой стороне;
— продольные прямые линии искривятся.
Из этого опыта можно сделать вывод, что:
— при чистом изгибе справедлива гипотеза плоских сечений;
— волокна, лежащие на выпуклой стороне растягиваются, на вогнутой стороне – сжимаются, а на границе между ними лежит нейтральный слой волокон, которые только искривляются, не изменяя своей длины.
Изгибающий момент и поперечная сила
Как известно из теоретической механики, опорные реакции балок определяют, составляя и решая уравнения равновесия статики для всей балки. При решении задач сопротивления материалов, и определении внутренних силовых факторов в брусьях, мы учитывали реакции связей наравне с внешними нагрузками, действующими на брусья.
Для определения внутренних силовых факторов применим метод сечений, причем изображать балку будем только одной линией – осью, к которой приложены активные и реактивные силы (нагрузки и реакции связей).
Рассмотрим два случая:
Изгибающий момент есть результирующий момент относительно нейтральной оси внутренних нормальных сил, действующих в поперечном сечении балки.
Обратим внимание на то, что изгибающий момент имеет разное направление для левой и правой частей балки. Это говорит о непригодности правила знаков статики при определении знака изгибающего момента.
Поперечная сила есть равнодействующая внутренних касательных сил в поперечном сечении балки.
Обратим внимание на то, что поперечная сила имеет противоположное направление для левой и правой частей балки, что говорит о непригодности правила знаков статики при определении знака поперечной силы.
Так как правила знаков статики неприемлемы для установления знаков изгибающего момента и поперечной силы, установим для них другие правила знаков, а именно: Если внешняя нагрузка стремится изогнуть балку выпуклостью вниз, то изгибающий момент в сечении считается положительным, и наоборот, если внешняя нагрузка стремится изогнуть балку выпуклостью вверх, то изгибающий момент в сечении считается отрицательным (рис 4,a).
Если сумма внешних сил, лежащих по левую сторону от сечения, дает равнодействующую, направленную вверх, то поперечная сила в сечении считается положительной, если равнодействующая направлена вниз, то поперечная сила в сечении считается отрицательной; для части балки, расположенной справа от сечения, знаки поперечной силы будут противоположными (рис. 4,b). Пользуясь этими правилами, следует мысленно представлять себе сечение балки жестко защемлённым, а связи отброшенными и замененными реакциями.
Изгиб.
Изгибом называется вид деформации, при котором искривляется продольная ось бруса. Прямые брусья, работающие на изгиб, называются балками. Прямым изгибом называется изгиб, при котором внешние силы, действующие на балку, лежат в одной плоскости (силовой плоскости), проходящей через продольную ось балки и главную центральную ось инерции поперечного сечения.
Внутренние силовые факторы при изгибе балки.
При плоском поперечном изгибе в сечениях балки возникают два внутренних силовых фактора: поперечная сила Q и изгибающий момент М. Для их определения используют метод сечений (см. лекцию 1). Поперечная сила Q в сечении балки равна алгебраической сумме проекций на плоскость сечения всех внешних сил, действующих по одну сторону от рассматриваемого сечения.
Правило знаков для поперечных сил Q:
Изгибающий момент М в сечении балки равен алгебраической сумме моментов относительно центра тяжести этого сечения всех внешних сил, действующих по одну сторону от рассматриваемого сечения.
Правило знаков для изгибающих моментов M:
Дифференциальные зависимости Журавского.
Между интенсивностью q распределенной нагрузки, выражениями для поперечной силы Q и изгибающего момента М установлены дифференциальные зависимости:
На основе этих зависимостей можно выделить следующие общие закономерности эпюр поперечных сил Q и изгибающих моментов М:
Особенности эпюр внутренних силовых факторов при изгибе.
1. На участке балки, где нет распределенной нагрузки, эпюра Q представлена прямой линией, параллельной базе эпюре, а эпюра М — наклонной прямой (рис. а).
3. В сечении, где приложен сосредоточенный момент, значение Q не изменяется, а эпюра М имеет скачок, равный значению этого момента, (рис. 26, б).
4. На участке балки с распределенной нагрузкой интенсивности q эпюра Q изменяется по линейному закону, а эпюра М — по параболическому, причем выпуклость параболы направлена навстречу направлению распределенной нагрузки (рис. в, г).
5. Если в пределах характерного участка эпюра Q пересекает базу эпюры, то в сечении, где Q = 0, изгибающий момент имеет экстремальное значение Mmax или Mmin (рис. г).
Нормальные напряжения при изгибе.
Определяются по формуле:
Моментом сопротивления сечения изгибу называется величина:
Опасным сечением при изгибе называется поперечное сечение бруса, в котором возникает максимальное нормальное напряжение.
Касательные напряжения при прямом изгибе.
Определяются по формуле Журавского для касательных напряжений при прямом изгибе балки:
Расчеты на прочность при изгибе.
1. При проверочном расчете определяется максимальное расчетное напряжение, которое сравнивается с допускаемым напряжением:
2. При проектном расчете подбор сечения бруса производится из условия:
3. При определении допускаемой нагрузки допускаемый изгибающий момент определяется из условия:
Далее по полученному значению [Mx] определяют допускаемые значения внешних поперечных нагрузок [Q] и внешних изгибающих моментов [Mвнеш]. Условие прочности имеет вид:
Перемещения при изгибе.
Прогиб считают положительным, если перемещение центра тяжести происходит вверх. Величина прогиба меняется по длине балки, т.е. y = y (z)
Самыми распространёнными способами определения перемещений является метод Мора и правило Верещагина.
Метод Мора.
Порядок определения перемещений по методу Мора:
1. Строится «вспомогательная система» и нагружается единичной нагрузкой в точке, где требуется определить перемещение. Если определяется линейное перемещение, то в его направлении прикладывается единичная сила, при определении угловых перемещений – единичный момент.
3. По всем участкам системы вычисляют и суммируют интегралы Мора, получая в результате искомое перемещение:
4. Если вычисленное перемещение имеет положительный знак, то это значит, что его направление совпадает с направлением единичной силы. Отрицательный знак указывает на то, что действительное перемещение противоположно направлению единичной силы.
Правило Верещагина.
Для случая, когда эпюра изгибающих моментов от заданной нагрузки имеет произвольное, а от единичной нагрузки – прямолинейное очертание, удобно использовать графоаналитический способ, или правило Верещагина.
где Af – площадь эпюры изгибающего момента Мf от заданной нагрузки; yc – ордината эпюры от единичной нагрузки под центром тяжести эпюры Мf ; EIx – жесткость сечения участка балки. Вычисления по этой формуле производятся по участкам, на каждом из которых прямолинейная эпюра должна быть без переломов. Величина (Af*yc) считается положительной, если обе эпюры располагаются по одну сторону от балки, отрицательной, если они располагаются по разные стороны. Положительный результат перемножения эпюр означает, что направление перемещения совпадает с направлением единичной силы (или момента). Сложная эпюра Мf должна быть разбита на простые фигуры(применяется так называемое «расслоение эпюры»), для каждой из которых легко определить ординату центра тяжести. При этом площадь каждой фигуры умножается на ординату под ее центром тяжести.
Деформация изгиба
Во многих механизмах применяют детали, поверхность которых имеет определённый изгиб. Такую форму получают в результате механической обработки или с помощью специального оборудования. Во втором случае деформация изгиба производится механическим воздействием на заготовку. Возникающие в этом случае физические процессы в различных слоях детали подробно описаны в материаловедении.
Все металлы в своём нормальном агрегатном состоянии имеют кристаллическую решётку. Они разделены на четыре основных типа:
При деформации происходит пространственное изменение физического тела. Это может быть изменение объёма или формы. Каждый из типов решётки реагирует по-своему. В каждом слое металла происходят специфические сдвиги атомов решётки, что приводит к изменению физических и механических характеристик всей детали. Допустимые нагрузки и натяжения рассчитывают на основании разработанных методик, которые приведены в специальной дисциплине. Она называется сопромат (сопротивление материалов).
На основании принятой классификации виды деформации твёрдых тел подразделяются на следующие категории:
В подавляющем большинстве случаев наблюдается проявление нескольких видов деформации. Наиболее распространёнными считаются: растяжение или сжатие, сдвиг со смещением всех слоёв физического объекта. Деформация происходит под влиянием внешних факторов на отдельные участки физического объекта. В зависимости от направления воздействия деформация может быть продольной или поперечной. Её подразделяют на две категории: упругую (обратимую) и необратимую. В первом случае в силу своих физических свойств после изгиба объект принимает первоначальную форму. Иногда такую деформацию называют пластической. Во втором случае он приобретает другую форму, которая образовывается в результате такого действия.
Основные понятия
Под изгибом детали понимают естественное или искусственное изменение формы. Этот процесс разделяется на две категории – плоский или косой. В первом случае ось детали сохраняет своё первоначальное положение, во втором происходит её изменение в горизонтальной или вертикальной плоскости.
Основным теоретическим положением, определяющим физические процессы, протекающие в результате изгиба, является закон Гука. Согласно ему величина деформации (изгиба), пропорциональна приложенной к этому телу силе. Для каждого из видов деформации разработан индивидуальный расчёт действующих характеристик.
Оценка степени влияния действующих факторов на деформацию осуществляется с помощью следующих показателей:
Одним из важных параметров считается потенциальная энергия деформации при изгибе. На основании этих параметров производят определение модуля Юнга. С его помощью рассчитывают скорость распространения продольной волны. Величина механического напряжения, при которой деформация тела всё ещё будет упругой, а сам объект способен восстановить первоначальную форму после снятия нагрузки, называется пределом упругости. При превышении допустимого значения этого параметра тело начнёт разрушаться. Этот предел называется прочностью. При оценке прочностных показателей применяют следующие предположения:
Перечисленные гипотезы позволяют оценить деформации сдвига и характер изгиба каждого слоя исследуемой детали. Это происходит в результате воздействия различных сил. Нагрузки вызывают деформацию изгиба в различных плоскостях. Они подразделяются на две категории:
К статическим относятся нагрузки, у которых место приложения и направления сил не меняется или изменяются медленно в течение определённого промежутка времени. К таким нагрузкам относится сила тяжести. В этом случае можно принять утверждение, что элементы физического объекта находятся в состоянии равновесия. У динамических нагрузок эти параметры меняются достаточно быстро или носят импульсивный характер. К ним относятся ударные нагрузки при забивании свай, обработке металла ковкой, воздействие неровностей дороги на колесо.
При сосредоточенной статической нагрузке на отдельный участок поверхности бруса происходит его деформация в сторону по направлению сил взаимодействия. Для расчёта параметров характеризующих основные показатели состояния деформированного тела применяют дифференциальные уравнения, которые позволяют выявить существующие функциональные связи. По деформации изгиба с помощью модуля Юнга можно вычислить прочность исследуемого элемента конструкции (балки, бруса, подвесной опоры и т. д.). На основании полученных областей решения можно построить графическое изображение силы упругости, которое наглядно показывает, что происходит с различными участками деформированной детали. Для каждой детали в зависимости от её геометрических размеров, материала изготовления и величины приложенных сил выведена своя формула.
Для наглядности восприятия характера протекающих процессов использует метод нанесения эпюр на поверхность объекта. Эта операция называется топология. Основной идеей является проецирование линий нагрузки на соответствующую плоскость (горизонтальную, фронтальную или профильную). В современных методах топологии применяют фрактальную геометрию.
Чистый и поперечный изгиб балки
Если единственным внешним воздействием является сила, вызывающая изгибающий момент, такой изгиб называется чистым. Собственным весом изделия можно пренебречь.
При изгибе балки вводят следующие допущения:
Если на поверхность детали производится воздействие под углом к поверхности — такой изгиб называется поперечным. При поперечном изгибе в слоях детали (например, балки) возникают два вида напряжений. Одни называются нормальными, другие касательными. В этом случае все сечения не будут плоскими, но искривлёнными. На определённых уровнях искривления при изгибе не достаточно большие. Это позволяет при расчёте применять все формулы, справедливые для чистого изгиба.
Изгибающий момент и поперечная сила
Для оценки параметров деформационных процессов, протекающих в различных конструкциях, применяют изгибающий момент и воздействующую поперечную силу. Их рассчитывают на основании уравнений равновесия. Каждое позволяет найти параметры каждого слоя балки при изгибе.
Величина момента, возникающего при изгибе, равняется сумме всех образованных моментов, расположенных в поперечном сечении. Поперечная сила рассчитывается суммированием проекций всех внешних сил. Оба параметра рассчитываются для составляющих, расположенных с одной стороны от этого сечения.
При проектировании конструкции для расчёта этих параметров учитывают следующие правилами:
Полученные результаты позволяют построить графическое изображение распределения сил и моментов на различных уровнях. Такие изображения называют эпюрами. С их помощью определяют прочность создаваемой конструкции.
Расчёты на прочность при изгибе
Особую важность при проектировании конструкций и их отдельных элементов играют предварительные расчёты на прочность при возникающих изгибах. По результатам проведенных расчётов устанавливают фактические (реальные) и допустимые напряжения, которые способны выдержать элементы и вся конструкция в целом. Это позволит определить реальный срок службы разработать рекомендации по правильной эксплуатации разработанного объекта.
Условие прочности выводится в результате сравнения двух показателей. Наибольшего напряжения, которое возникает в поперечном сечении при эксплуатации и допустимого напряжения для конкретного элемента. Прочность зависит от применённого материала, размера детали, способа обработки и его физико-механических и химических свойств.
Для решения поставленной задачи применяются методы и математический аппарат, разработанный в дисциплинах техническая механика, материаловедение и сопротивление материалов. В этом случае применяются:
Расчёт параметров производится в три этапа:
Полученные знаки величин напряжений определяются на основании оценки протекающих физических процессов и направления проекций векторов сил и моментов.
Наиболее наглядными результатами расчёта являются построенные эпюры на поверхности разрабатываемого изделия. Они отражают влияние всех силовых факторов на различные слои деталей. При чистом изгибе эпюры имеют следующие особенности:
На практике решение систем дифференциальных уравнений может вызвать определённые трудности. Поэтому при расчётах допускаются некоторые прощения, которые не влияют на точность определяемых параметров. К этим упрощениям относятся:
Современные методы исследования воздействия внешних сил, внутренних напряжений и моментов позволяют с высокой степенью точности рассчитать прочность каждой детали и всей конструкции в целом. Применение компьютерных методов расчёта, фрактальной геометрии и 3D графики позволяет получить подробную картину происходящих процессов.
iSopromat.ru
Изгибом называется вид деформации бруса, при котором в его поперечных сечениях, под действием внешних нагрузок возникают внутренние изгибающие моменты.
Деформация изгиба проявляется в искривлении продольной оси бруса.
Брус с прямой осью, подвергающийся изгибу, обычно называется балкой.
Если в сечениях балки возникает только изгибающий момент (поперечные силы отсутствуют), то изгиб называется чистым.
При изгибе одни слои балки растягиваются, а противоположные им – сжимаются, например:
Из балки нагруженной только изгибающим моментом
сечениями I и II мысленно вырежем фрагмент длиной dz
Как видно в данном случае верхние слои балки сжаты, а нижние – растянуты.
При этом наибольшему растяжению/сжатию подвержены крайние нижний и верхний слои балки.
Между ними расположен нейтральный слой, длина которого вследствие изгиба балки не изменяется.
Нейтральный слой расположен на уровне центров тяжести поперечных сечений балки, нормально к плоскости, в которой действуют изгибающие нагрузки.
Линия, образованная пересечением нейтрального слоя с поперечным сечением балки называется нейтральной линией сечения.
В общем случае плоского прямого изгиба в поперечных сечениях балки возникают два внутренних силовых фактора: изгибающий момент M и поперечная сила Q. Такой изгиб называется поперечным.
Для конкретизации направления внутренних усилий им присваиваются соответствующие индексы:
Плоский прямой (поперечный) изгиб возникает при действии на балку системы внешних сил, перпендикулярных к ее оси и лежащих в плоскости, проходящей через главную центральную ось сечения балки.
Изогнутая ось балки в этом случае – плоская кривая, совпадающая с плоскостью действия внешних сил.
Для определения внутренних силовых факторов Q и M используется метод сечений, суть которого применительно к балке показана на следующем рисунке:
Рассматривая равновесие левой от сечения (I-I) части
с учетом правила знаков для Q и M, запишем следующие уравнения равновесия:
или в общем виде:
Внутренняя сила Q в поперечном сечении балки численно равна алгебраической сумме проекций на плоскость сечения всех внешних сил (активных и реактивных), действующих по одну сторону от рассматриваемого сечения.
Изгибающий момент в поперечном сечении численно равен алгебраической сумме моментов внешних сил и пар, вычисленных относительно нейтральной оси рассматриваемого сечения и действующих по одну сторону от проведенного сечения.
Между изгибающим моментом M, поперечной силой Q и интенсивностью распределенной нагрузки q существуют следующие дифференциальные зависимости:
Эти формулы могут быть использованы при построении и проверке эпюр Q и M.
Графические изображения функций Q и M по длине балки называют эпюрами поперечных сил и изгибающих моментов.
Уважаемые студенты!
На нашем сайте можно получить помощь по техническим и другим предметам:
✔ Решение задач и контрольных
✔ Выполнение учебных работ
✔ Помощь на экзаменах