Что такое пористый материал

Пористый материал

Связанные понятия

Упоминания в литературе

Связанные понятия (продолжение)

Твёрдые растворы — фазы переменного состава, в которых атомы различных элементов расположены в общей кристаллической решётке.

Концентрационным переохлаждением (КП) называют явление, которое возникает при направленной кристаллизации расплава, содержащего примесь, и заключающееся в том, что в результате перераспределения примеси в расплаве перед фронтом кристаллизации образуется некий слой, в пределах которого расплав оказывается переохлаждённым. Этот участок расплава называется зоной КП.

Агрегат минеральный — скопления и срастания минеральных индивидов (кристаллов и зёрен) одного и того же или разных минералов, отделённых друг от друга поверхностями раздела. Такое срастание может происходить в один или несколько этапов, образовывая разные виды агрегатов. Минеральный агрегат — исходное понятие минералогии, определяющее следующий за минеральным индивидом уровень организации вещества. Минеральный агрегат, в отличие от минеральных индивидов, не обладает чёткими признаками симметричных.

Углеродная нанотрубка (сокр. УНТ) — это аллотропная модификация углерода, представляющая собой полую цилиндрическую структуру диаметром от десятых до нескольких десятков нанометров и длиной от одного микрометра до нескольких сантиметров (при этом существуют технологии, позволяющие сплетать их в нити неограниченной длины), состоящие из одной или нескольких свёрнутых в трубку графеновых плоскостей.

Источник

пористый материал

Полезное

Смотреть что такое «пористый материал» в других словарях:

Пористый кремний — (por Si или ПК) кремний, испещренный порами, то есть имеющий пористую структуру. Содержание 1 История 2 Классификация 3 Получение … Википедия

пористый порошковыйматериал — пористый порошковый материал Порошковый материал, имеющий пористость, обеспечивающую его проницаемость при эксплуатации. [ГОСТ 17359 82] Тематики порошковая металлургия EN sintered metal filters DE Sintermetallfilter FR filtre en métal fritté … Справочник технического переводчика

Пористый порошковый материал — 65. Пористый порошковый материал D. Sintermetallfilter E. Sintered metal filters F. Filtre en métal fritté Источник: ГОСТ 17359 82: Порошковая металлургия. Термины и определения оригинал документа … Словарь-справочник терминов нормативно-технической документации

пористый — ая, ое; рист, а, о. 1. Имеющий крупные, хорошо различимые поры (1 зн.). П. нос, лоб. П ое лицо. П ая кожа. 2. Изобилующий мелкими пустотами. П ая земля. П. снег. П. чугун. П ая сталь. П ое строение дерева. П. материал … Энциклопедический словарь

пористый — ая, ое; рист, а, о. 1) имеющий крупные, хорошо различимые поры 1) По/ристый нос, лоб. П ое лицо. П ая кожа. 2) Изобилующий мелкими пустотами. П ая земля. По/ристый снег. По/ … Словарь многих выражений

мезопористый материал — Термин мезопористый материал Термин на английском mesoporous material Синонимы Аббревиатуры Связанные термины мезопоры Определение Пористый материал, структура которого характеризуется наличием полостей или каналов с диаметром в интервале 2 50 нм … Энциклопедический словарь нанотехнологий

фильтрующий материал — Зернистый или пористый материал, через который пропускается обрабатываемая вода при ее фильтровании … Политехнический терминологический толковый словарь

Асфальтобетон пористый — [биндер] – асфальтобетон, с остаточной пористостью от 5 % до 10 % объема, содержащий щебень или дробленый гравий (45 75 %) с минеральным порошком или без него. [Словарь основных терминов, необходимых при проектировании, строительстве и… … Энциклопедия терминов, определений и пояснений строительных материалов

Песок пористый — Песок пористый – заполнитель с насыпной плотностью не более 1200 кг/м и размерами зерен менее 5 мм. [ГОСТ 9758 2012] Рубрика термина: Легкие наполнители для бетона Рубрики энциклопедии: Абразивное оборудование, Абразивы, Автодороги … Энциклопедия терминов, определений и пояснений строительных материалов

Источник

Материалы с пористой структурой

Основные параметры, ряд полезных характеристик и механические свойства пористого материала. Методы исследования структуры и модели среды пористого тела и классификации пористых материалов, а также пористые неметаллические материалы и изделия из них.

РубрикаХимия
Видреферат
Языкрусский
Дата добавления11.02.2014
Размер файла1,6 M

Что такое пористый материал. Смотреть фото Что такое пористый материал. Смотреть картинку Что такое пористый материал. Картинка про Что такое пористый материал. Фото Что такое пористый материал

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

НИЖЕГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ им Р.Е. Алексеева

Кафедра материаловедения и новых материалов

ТЕМА: Материалы с пористой структурой

студент гр.09-ММ Гаврин В. С.

преподаватель Бетина Т.А.

Основные параметры пористого материала

1) Пористость (3 вида пор)

2) коэффициент размера пор

3) коэффициент извилистости поровых каналов

5) Механические свойства

Методы исследования структуры пористого тела

1) Макро и микроскопия шлифа

2) Амперометрический метод исследования

3) Общий метод изучения структуры

Модели пористых сред

1) Глобулярная модель (или модель упрощённых сфер

2) Капиллярная модель:

3) Модели пористой структуры материала из волокон

Классификации пористых материалов

1) Классификация традиционная (по рекомендации ИЮПАК)

2) Классификация материалов по извилистости пористой структуры

Пористые неметаллические материалы и изделия из них

4) Пористые фильтрующие элементы

5) Фрикционные порошковые материалы

6) Пористые углеродные материалы, сибунит

Пористые материалы, имеющие сквозные поровые каналы и способные пропускать через эти каналы жидкие и газообразные вещества при создании некоторого градиента (перепада) давлений, используются в фильтровальных устройствах для очистки разнообразных жидкостей и газов от механических примесей (смесителях, диспергаторах и др.). К ним относятся материалы из порошков металлов, керамики, полимеров, тканые и вязаные металлические сетки, ткани из искусственных и натуральных волокон, войлок из неметаллических волокон и другие.

Важной особенностью порошковых материалов является возможность создания разнообразных, заранее проектируемых структур пор, от чего зависит работоспособность и области, применения этих материалов. Пористые материалы имеют ряд полезных характеристик:

· Они являются устойчивыми против коррозии, что позволяет использовать из в химически агрессивных средах.

· Могут работать в широком диапазоне температур (в зависимости от рода материала). Благодаря чему получили применение в качестве теплоизоляторов.

· Способны пропускать через поровые каналы жидкие и газообразные вещества при создании некоторого градиента (перепада) давлений, а так же допускают многократную регенерацию, в следствии чего используются в качестве фильтров,

· Легко подвергаются механической обработке и сварке, что облегчает технологию изготовления готовой продукции.

· Обладают высокой тепло- и электропроводностью.

· Высокие демпфирующие характеристики, из за чего пористые материалы нашли широкое применение в строительстве.

Основные параметры пористого тела

Поры в материалах разделяют на три вида:

а) открытые (пористость ПО):открытая пора сообщается с поверхностями пористого тела и участвует в фильтрации жидкости или газа при наличии градиента давления на пористом теле,

б) Тупиковые (пористость ПТ): Часть пор соединяется только с одной поверхностью пористого тела, образуя тупиковую пористость. Тупиковые поры при фильтрации частично заполняются жидкостью, но не влияют на проницаемость пористого материала.

в) Закрытые (пористость ПЗ): Закрытая пора не сообщается с поверхностью пористого тела и не участвует в фильтрации жидкости или газа.

Общая пористость тела слагается из этих трех видов пористости:

П =ПО + ПЗ + ПТ. Закрытая пора не сообщается с поверхностью пористого тела и не участвует в фильтрации жидкости или газа. Закрытые и тупиковые поры образуются в результате пластической деформации частиц порошка при высоких давлениях прессования, а также из-за наличия внутренней пористости частиц.

2) Коэффициент размера пор (распределение пор по размерам): Это отношение максимального D к среднему d размеру пор. Поровые каналы существенно различаются по размерам. Распределении поровых каналов по размерам происходит по закону нормального распределения Гаусса показанному на рисунке (1).

На горизонтальной оси откладываются размер пор, а вертикальная ось указывает количество пор данного размера в процентах.

рис. 1. Зависимость количества пор от их размера

На рисунке 2 изображены Диапазоны значений пористости и размеров пор пористых материалов.

Область 1: размеры пор порошковых материалов.

Область 2: размеры пор Волокнистых материалов.

Область 1: размеры пор ячеистых материалов.

рис. 2. Диапазоны значений пористости dn= мкм

3) Коэффициент извилистости сквозных поровых каналов а: Минимальная длина поровых линий в порах всегда равна или больше толщины пористого тела в направлении фильтрации среды. Коэффициент извилистости характеризует возрастание длины поровых каналов l по сравнению с толщиной пористого тела h : а = l/h.

У пористых материалов из металлических порошков при пористости 25. 38% коэффициент извилистости составляет

2..2,5. Геометрическая форма поровых каналов сложная и изменяется в зависимости от условий формирования пористого материала и достигаемой пористости тела.

4) Просвет: это доля площади сечения пористого материала, приходящаяся на пустоты. Часто полагают, что пористость и просвет пористого материала численно равны. Основным методом определения величины просвета является исследование шлифов или микрофотографий поверхности материалов. Этот метод часто используют и для определения пористости материалов с анизотропной структурой.

5) Механические свойства: поры в упругой среде являются концентраторами напряжений. При деформации пористого тела поры являются серьёзным препятствием для движения дислокаций. В случае больших пластических деформаций поры изменяют свой объем.

Предел прочности уb при растяжении тел с пористой структурой может быть определён по формуле Е. Рышкевича:

Для пористых листов с П=10…45% из порошков никеля сплава Х20Н80 и титана b соответственно равна 5; 6,5; 7. Численное значение b растёт с уменьшением пластичности и является интегральным показателем хрупкости материалов с пористой структурой.

Методы исследования структуры пористого тела

1) Макро и микроскопия шлифа позволяет определить:

а) Извилистость пористого тела из геометрических соображений (для пористых структур с относительно несложным строением порового пространства). пористый материал неметаллический изделие

б) Просвет пористого тела. Этот метод часто используют и для определения пористости материалов с анизотропной структурой, так как именно у таких материалов просвет может не совпадать с пористостью.

2) Амперометрический метод исследования. Извилистость пористого тела можно определить по результатам измерения электрического сопротивления электропроводной жидкости, заполняющей поры неэлектропроводного материала.

3) Общий метод изучения структуры порового пространства заключается в наполнении пор жидким веществом. После отвердения этого вещества и удаления основного материала (растворением, травлением и т.п.) остается твердая губка, точно воспроизводящая поровое пространство. Исследуя эту губку, можно определить форму и размеры пор, шероховатость их поверхности и некоторые другие параметры порового пространства.

— Достоинство метода в том, что с его помощью можно определить многие характеристики порового пространства (пористость, извилистость, шероховатость и площадь поверхности пор, их распределение по размерам).

— Недостаток метода заключается в его трудоёмкости, а так же в том, что он не отображает закрытые поры.

Модели пористых сред

Математическое описание внутренней поровой структуры пористых сред и материалов проводится с помощью моделей пористых физических тел. Распространены два различных подхода к описанию пористой структуры внутренних паровых каналов физических тел из порошкообразных веществ, оперирующие или с частицами скелета тела (1), или рассматривающие размеры и форму поровых каналов (2).

1) Глобулярные модели пористых сред (или модель упрощённых сфер): В случае модели пористой структуры, при которой физические тела представляются как состоящие из сферических упорядоченно упакованных частиц, оперируют с этими частицами, образующими скелет пористого тела. Такие модели называют глобулярными, моделями уложенных сфер или зернистых материалов. Глобулярные модели относят к первому типу моделей, рассматривающих частицы скелета тела.

При упрощении реальной пористой среды получаемую глобулярную модель называют фиктивной пористой средой. У таких сред величина пористости предопределяется видом упаковки сферических частиц. Максимальную пористость, равную 47,6%, имеет фиктивная среда в случае кубической упаковки шаров. Для наиболее плотной ромбоэдрической упаковки пористость составляет 26%. Величина пористости выражается формулой: П=Vпор / (Vзёрен +Vпор). В глобулярных моделях пористых тел поровые каналы представляют собой полости между сферическими частицами, сообщающиеся между собой суженными перешейками («бутылкообразные» порошковые каналы). У таких пористых сред, полученных из сферических частиц одного размера, средний размер пор d можно вычислить по формуле Козени:

где dr ср— средний размер частиц порошка, определенный по следующему выражению:

2) Капиллярная модель: Простейшая модель рассматривающая форму и размеры поровых каналов это модель идеальной пористой структуры.

то модель пористого тела, имеющего прямые параллельные цилиндрические капилляры (трубки), расположенные перпендикулярно одной из поверхностей тела, а=1. Модель идеальной пористой структуры и реальная пористая структура представлены на рисунках 3 и 4 соответственно.

рис. 3. идеальная пористой структуры

рис.4. реальная пористая структура

В этой модели диаметр круглой трубки, которая моделирует пору, считается размером пор. Так как в этом случае d = D, то коэффициент однородности по размеру пор равен единице (Kd= D/d = 1). Реальные пористые тела имеют извилистые поровые каналы различного размера, пересекающиеся между собой. С учетом этого для приближения предлагаемых моделей к реальным пористым средам разработаны различные модификации исходной капиллярной модели из прямых параллельных цилиндрических капилляров.

Разновидности капиллярных моделей

1. Модель, по которой капилляры представляются как извилистые цилиндрические трубки с некоторым коэффициентом извилистости «а».

2. Модель, по которой пористое тело имеет два типа пор: широкие и узкие. Широкие поры между собой не пересекаются, они могут пересекаться с узкими порами.

3. Модель серийного типа: имеются непересекающиеся поры кругового сечения, каждая из которых состоит из последовательного расположения цилиндрических звеньев. Радиус и длина каждого звена есть случайные величины, распределенные по некоторому закону.

4. Решетчатая модель: имеется пространственная решетка из взаимно пересекающихся пор различных диаметров, расположенных в случайном порядке.

5. Модель ветвящихся пор переменного сечения. Пористая среда представляет систему расположенных случайным образом пересекающихся каналов с непрерывно меняющимся радиусом. Пересечение поровых каналов принято таким образом, что в одной точке могут сходиться не более трех ветвей, т.е. каждый поровой канал может разветвляться на два других канала. Параметрами пористой среды в этой модели являются плотность распределения поровых каналов по радиусам и коэффициент извилистости поровых каналов.

Та или иная модель пористой среды имеет ограниченное применение.

3) Модели пористой структуры материала из волокон

Простейшая модель представляется в виде сочетания пластин из чередующихся разнородных компонентов (материала волокон и воздуха), ориентированных параллельно и перпендикулярно потоку тепла (модель для расчета теплопроводности пористых тел).

Другой разновидностью является модель с взаимопроникающими компонентами, отличительной чертой которых является непрерывная протяженность обоих компонентов: волокон и среды, заполняющей поры (воздуха, жидкостей и.т.д.).

Для пористых теплопроводящих тканых сетчатых материалов предложена модель из набора брусьев и введено допущение, что все волокна расположены в плоскости, перпендикулярной тепловому потоку, и пересекаются под прямыми углами.

Классификации пористых материалов

1) Классификация традиционная (по рекомендации ИЮПАК)

По этой классификации все пористые материалы разделяются на группы по размерам пор.

Происхождение этой классификации в основном обязано выделению области пор, в которых происходит (и может быть измерена) капиллярная конденсация, вследствие которой на изотермах наблюдается характерный гистерезис. Эта область названа мезопорами

а) Микропоры. Размеры 50.

2) Классификация материалов по извилистости пористой структуры.

• а=2,5. 4,0-Неоднородные с преимущественной ориентацией поровых каналов вдоль поверхности тела;

Спеченные пористые материалы часто относятся к однородным по ориентации пор. С увеличением пористости до 44. 46% у пористых листовых материалов из порошка стали 08Х12Н15 крупных фракций коэффициент извилистости поровых каналов возрастает до 3,6. 3,8.

У пористого сетчатого материала из никелевой сетки после спекания при холодной прокатке, коэффициент извилистости поровых каналов увеличивается до 4,5. 5,6, т.е. материал становится особо неоднородным по ориентации паровых каналов.

Пористые неметаллические материалы и изделия из них

Направления использования пористых материалов: Автомобильная промышленность, Аккумуляторная промышленность, Биотехнологии и здравоохранение, Керамика, Химическая промышленность, Фильтры и мембраны, Пищевая промышленность, Углеводородная промышленность, Геотекстильная промышленность, Производство средств личной гигиены, Производство ваты, Бумажная промышленность, Фармакологическая промышленность, Металлургическая промышленность, Текстильная промышленность и другие.

1) Легкие бетоны: Это бетоны со средней плотностью 500-1800 кг/м З отличающихся высокой пористостью.

а) По способу создания искусственной пористости легкие бетоны делят на:

· бетоны с легкими пористыми заполнителями;

· Крупнопористые (беспесчаные) бетоны, изготовляемые с применением однофракционного плотного или пористого крупного заполнителя без песка;

· ячеистые бетоны, в структуре которых имеются искусственно созданные ячейки, заменяющие зерна заполнителей.

б) По назначению легкие бетоны делят на:

· конструктивные, предназначенные воспринимать значительные нагрузки в зданиях и сооружениях, средняя плотность их 1400—1800 кг/м З ;

Легкие бетоны с пористыми заполнителями: Их свойства определяются во многом свойствами заполнителей. У пористых заполнителей низкая средняя плотность (менее 1000 кг/м З ), а их прочность меньше прочности бетона. Они способны поглощать много воды. Все это приводит к тому, что прочность легких бетонов зависит от марки цемента и его количества.

Бетонные смеси на пористом заполнителе из-за шероховатой поверхности и небольшой плотности его зерен имеют пониженную удобоукладываемость и требуют эффективных методов уплотнения.

При плотности ниже, чем плотность кирпича, бетоны на пористых заполнителях достаточно прочные и морозостойкие, поэтому при одинаковой теплопроводности толщина стен жилых зданий из легкого бетона может быть значительно меньше.

Ячеистые бетоны на 80—85 % по объему состоят из замкнутых пор (ячеек) размером 0,5—2 мм, играющих роль заполнителя.

Ячеистые бетоны по способу получения называют пенобетон и газобетон.

Его получают, добавляя к смеси вяжущего материала с водой газообразователь (обычно алюминиевую пудру). В щелочной среде вяжущего материала при взаимодействии алюминия с водой выделяется водород, вспучивающий массу.

Для его получения тесто из вяжущего материала и воды смешивают с заранее приготовленной устойчивой пеной, полученной при интенсивном перемешивании воды с пенообразующей добавкой.

рис. 5. Макроструктура ячеистого бетона

Ячеистые бетоны из-за высокой пористости характеризуются повышенным водопоглощением и соответственно низкой морозостойкостью. Однако из них изготовляют стеновые блоки и панели, поверхность которых защищают от действия воды (применяют окраску, декоративно-защитные покрытия). Эффективно применять ячеистые бетоны в слоистых конструкциях в качестве внутреннего теплоизоляционного слоя.

а) Исходное сырьё: стеклянный порошок, получаемый измельчением стекольного боя или специального низкосортного стекла, которое варится в небольших ванных печах и гранулируется охлаждением струи стекломассы в воде.

б) Производство пеностекла: Пеностекло обычно получают по порошковому методу. Порошок стекла и газообразователь измельчаются и перемешиваются в шаровой мельнице и вибромельнице. В качестве газообразователя при производстве теплоизоляционного пеностекла применяют антрацит, кокс, ламповую сажу, древесный уголь. Количество добавляемых газообразователей 1-2%.

в) Назначение изделий: Благодаря тепло- и морозостойкости, а также химической стойкости пеностекло нашло применение в строительстве в качестве утеплителя стен и перекрытий, а также для теплоизоляции оборудования.

рис. 6. Изделия из пеностекла

3) Керамические материалы:

Керамика это поликристаллический материал, получаемый спеканием неметаллических порошков природного или искусственного происхождения. В данное время керамика является третьим промышленным материалом после металлов и пластмасс.

Керамические материалы отличаются от металлических и полимерных следующими свойствами: многофункциональностью, доступностью сырья, низкой энергоемкостью производства, высокой коррозионной стойкостью и устойчивостью к радиационному воздействию, биологической совместимостью, низкой плотностью. По сравнению с другими пористыми материалами керамики обладают хорошей герметичностью.

рис. 7. Влияние пористости керамики (П) на её прочность (К) в относительных единицах.

Пористые керамические материалы применяют в качестве теплоизоляторов (футеровки), и фильтрующих элементов.

4) Пористые фильтрующие элементы

Использование пористых материалов для работы в жидких и газовых средах позволяет уменьшить ограничения, связанные с низкой диффузией реагентов. В системах с проточными пористыми электродами без применения специальных селективных мембран и диафрагм могут быть разделены электродные продукты, продукты абсорбции и десорбции отсасыванием их через поры.

Вследствие высокой пористости такие материалы имеют хорошую проницаемость для жидкостей и газов при достаточно тонкой фильтрации (до 30 мкм). Эти материалы легко регенерируются и при этом почти полностью восстанавливают свои первоначальные свойства. Они не засоряют фильтрующиеся жидкости или газы материалами фильтра.

Технология изготовления металлических пористых элементов зависит от их формы и размеров. Фильтры небольших размеров изготавливают спеканием свободно засыпанного порошка. Для более крупных фильтров применяют холодное прессование и последующее спекание. Для получения тонких пористых лент применяют прокатку.

В технике наибольшее распространение получили фильтры из коррозионно-стойкой стали, бронзы, сплавов никеля и титана.

Применение порошковых материалов увеличивает срок службы насосов, двигателей и других агрегатов, работающих на очищенных жидкостях.

5) Фрикционные порошковые материалы

Порошковые фрикционные материалы предназначены для работы в различных тормозных и передаточных узлах автомобилей, гусеничных машин, дорожных и строительных механизмов, самолетов, станков, прессов и т.п. Фрикционные элементы из порошковых материалов изготавливают в виде дисков, секторных накладок и колодок различной конфигурации. Применяют порошковые фрикционные материалы на основе меди и на основе железа.

Все фрикционные материалы в зависимости от условий работы делят на две группы:

материалы, работающие в условиях сухого трения;

материалы, работающие в масле.

Порошковые материалы на основе оловянных и алюминиевых бронз, содержащие свинец, графит и железо, предназначены преимущественно для работы в условиях сухого трения со средне- углеродистыми сталями с твердостью 40. 45 HRC при давлении до 35 МПа и скорости скольжения до 50 м/с. При меньших давлениях и скоростях до 5 м/с используют металлопластмассовые материалы.

Порошковые материалы на основе железа, содержащие добавки меди, графита, оксида кремния, асбеста, сульфата бария, пред назначены для работы в условиях сухого трения при давлениях до 300 М11а и скоростях до 60 м/с и паре с чугуном либо легированной стапыо в тормозных устройствах различной конструкции дисковых, колодочных или ленточных.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *